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Abstract—There is a growing body of literature that recog-
nises the importance of vehicle performance assessment to eval-
uate and improve vehicle dynamics and fuel consumption. This
study set out to investigate the usefulness of the artificial neural
networks (ANNs) to predict the vehicle performance curves
and acceleration responses. The experimental measurements are
obtained from an OBD2 port of a Suzuki SX4 sedan, and the
torque-power engine curves are achieved according to the SAE
standard SAEJ1491 JUL2006. Therefore, it is demonstrated
that the vehicle performance can be improved and predicted
using vehicle measurements, gear ratios, and dynamic rolling
radius. Then, the actual paper reports that ANNs can be em-
ployed as a non-parametric model to predict vehicle behaviour,
improve comfort, and reduce the steps between gear changes.

Index Terms—Torque-power engine curve; OBD2; vehicle
dynamics; ANN.

I. INTRODUCTION

THE acceleration capability depends on longitudinal
vehicle dynamics, which is the result of body car

characteristics (body stiffness). The powertrain performance
is not only determined by the ideal behavioural capability
itself but also includes losses. The more torque an engine
produces and transmits, the more force it can exert at the
rim of a flywheel of a given radius to move the vehicle.

On an engine, the torque increases as the rotational speed
increases from idle to a certain value of RPM where the
torque reaches its maximum, after which it falls as the
rotational speed continues to increase above this point.
Meanwhile, the power increases with rotational speed up to
and past the point of maximum torque. However, at higher
rotational speeds, the engine starts to be limited by the
amount of air that it can take, and the torque then decreases
more rapidly than the rotational speed increase; therefore,
the power also decreases, as shown in Fig. 1.

Performance analysis can be used to improve stability
with assistance. In many vehicles, it can be used to improve
vehicle performance and reduce fuel consumption or improve
towing loads. The amount of torque or power an engine
can generate determines if the vehicle would be capable of
carrying a certain amount of mass or encountering a slope,
as well as the maximum speed the vehicle can achieve. The
maximum acceleration in a given gear is obtained when
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Fig. 1: Schematic of the torque-power curve.

the maximum torque is obtained, so the best efficiency is
obtained at the maximum torque.

To measure and obtain the torque-power curves, a dy-
namometer is used. Another option is to use the OBD2
port and the diagnosis computer of the vehicle. On Board
Diagnostics II (OBD2) is a diagnostic system that regulates
vehicle emissions. It also checks the status of all sensors
involved in emissions [1] and is also used for failure simu-
lations while the vehicle is under normal conditions during
its operation, instead of at static test benches with off-board
diagnosis [2].

Environmental regulations have evolved to strict levels,
and there is a change in the means of propulsion, such as
hybrid or electric vehicles. Although green vehicles are being
mass-produced, due to their cost, it is not possible to replace
conventional vehicles in emerging countries; due to this, it
is essential to improve and evaluate the impact of emissions
from vehicles that use fossil fuels. Toxicity indices are tested
in static (stationary) or dynamic (transient) conditions; for
the latter, a PEMS (portable emissions measurement system)
can be used, and the adjustment and correction of the torque
improve the toxicity assessment under operating conditions
[3]. Different proposals have been made to integrate OBD to
improve vehicle performance or monitor it. Sentoff et al.[4]
analysed the inertia loads to meet the air quality emissions
requirements. Bishop et al. [5] built engine maps using data
gathered from OBD and portable emissions measurement
systems. Fayazi et al. [6] used the OBD to evaluate the
environmental impact and included the road profile [7]. Jiang
et al. [8] proposed a maintenance system on a diesel heavy-
duty vehicle using OBD. Mayyas et al. [9] proposed a model
to predict the powertrain temperature profiles by OBD based
on the battery current and voltage relationship to the vehicle
speed [10]. Duarte et al. [11] evaluated the effect of battery
state of charge (SOC) on fuel consumption.

Xie et al. [12] proposed an integrated system based on long
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Fig. 2: Simplified active quarter suspension.

short-term memory (PA-LSTM) for building an emission
prediction model using PEMS and OBD, and the responses
can be transmitted by Bluetooth [13]. Turkson et al. [14]
proposed an artificial neural network using OBD signals for
engine calibration. Martinelli et al. [15] integrated a machine
learning system with the signals of an electronic control
unit to prevent theft attacks. Vasavi et al. [16] integrated
an artificial neural network with OBD signals for predictive
maintenance. On board measurements and neural networks
can be used to evaluate the powertrain performance [17].
Orlowska et al. [18] presented neural estimators of the
mechanical state variables of the electrical drive system. The
nonmeasurable state variables are estimated using multilayer
feedforward neural networks. Malik et al. [19] analysed
driver behaviours using OBD and artificial intelligence to
analyse body motion and gestures (hand, feet and head move-
ments). Agostino et al. [20] analysed the driver intention on
a vehicle with a manual gearbox, using an OBD port as an
alternative way for electrification of rear wheels in front-
driven vehicles.

In this work, an ANN is proposed to evaluate the vehi-
cle performance and acceleration responses based on OBD
measurements. Vehicle responses using an on-board mea-
surement system can be used to predict behaviour as a power-
torque curve and accelerations.

II. DISCOMFORT EVALUATION.

To evaluate suspension responses as discomfort, road hold-
ing and body-wheel working space, the responses from accel-
eration and the road are compared using the power spectral
density of the road irregularity

(
1/ω2

)
or
(
1/
(
ω2 + ω2

c

))
depending on the excitation levels.

The quarter system model of a passively suspended road
vehicle is shown in Fig. 2, and the equations of motion are
defined by:

m1z̈1 − r2 (ż2 − ż1)− k2 (z2 − z1) + k1 (z1 − ξ) = 0 (1)

m2z̈2 + r2 (ż2 − ż1) + k2 (z2 − z1) = 0 (2)

The discomfort is evaluated by computing the standard
deviation of the vertical vehicle body acceleration (σFz2).

The standard deviation of the tire radial force (σFz1) is
related to road holding. The variation in the tire radial
force can lead to a loss of contact with the ground and
poor handling ability, influencing the active safety due to
lateral forces influencing the stability and passive safety [21],
[22]. The standard deviation of the relative displacement
between the wheel and vehicle body (σFz2 − σFz1), known
as the working space, is related to design and packaging
constraints, as well as to wheel lateral vibrations. The transfer
functions between the displacement ξ and z1 and ξ and z2
are expressed by

Z1 (jω) =
k1
(
k2 + jr2ω −m2ω

2
)

k1k2 + jk1r2ω − (k2m1 + k1m2 + k2m2)ω2...

−jr2 (m1 +m2)ω
3 +m1m2ω

4

(3)

Z2 (jω) =
k1 (k2 + jr2ω)

k1k2 + jk1r2ω − (k2m1 + k1m2 + k2m2)ω2...

−jr2 (m1 +m2)ω
3 +m1m2ω

4

(4)

The transfer functions between road irregularity ξ and
body acceleration Z̈2 (H1), ξ and road holding σFz1 (H2),
and ξ and relative displacement (σFz2 − σFz1) (H3) are
shown in Equations (5-7), respectively.

H1 (jω) = −ω2Z2 (jω) (5)

H2 (jω) = k1 (1− Z1 (jω)) (6)

H3 (jω) = Z2 (jω)− Z1 (jω) (7)

The displacement ξ (road irregularity) may be represented
by a random variable defined by a stationary and ergodic
stochastic process. The power spectral density (PSD) is
expressed by

PSDξ2 (ω) =
Aυωc

ω2
c + ω2

(8)

where ωc = aυ and a (rad/m) depend on the shape of the
road irregularity spectrum. For a stable system, the PSD
takes the form

PSDl (ω) = |Hl (jω)|2 PSDξq (ω) (9)

For l = 1, PSDl represents the PSD of the vertical
acceleration of the vehicle body; l = 2 PSDl represents
the PSD of the vertical force applied between the tire and
road; and for l = 3, PSDl represents the PSD of the relative
displacement between the wheel and vehicle body. The index
q = 1, 2 refers to the 1S−PSD and 2S−PSD, respectively.
The discomfort is expressed by:

σ2
Z̈2

=
1

2
Abυ

[
1

m2
2

(
(m2 +m1) k

3
2

r2

)
+ k1r2

]
(10)
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For an active system using gains G1 and G2 and the shape
of road irregularity, a(rad/m) discomfort can be evaluated
for 1 and 2 degrees of freedom, respectively.

σ2
Z̈2

= Abυ
1

2

G2
1

G2m2
(11)

σ2
Z̈2

= Aυaυ
1

2

G2
1 (G1 + aυG2)

G2m2 (G1 + aυ (G2 + aυm2))
(12)

III. TIME HISTORY PREDICTION.

The time history can be evaluated using its trend by

Z̄t − ϕiZ̄t−1 − ϕ2Z̄t−2 − ...− ϕpZ̄t−p =

at − θ1at−1 − ...− θqaq−1 (13)

where Z̄t is the regression of its own past values, and its
expected value E(Y ) is described by

E [Y ] = E [f (θ,X) + ε] = E [f (θ,X)] =

f (θ,EX) = f (θ,X) (14)

If function f (·) and the autoregressive parameters θ are
known, Y can be estimated with X . If function f (·) can be
realized by a neural network, the time series can be predicted
by

Y = XM+1 = h

[
N∑

n=1

w2
nIf

(
M∑

m=1

w′
mIxm + b1I

)
+ b2j

]
(15)

Another method to forecast the mechanical behaviour is
by support vector machine [12], as expressed by:

f (x) = w · ϕ (x) + b =

K∑
i=1

(α1 − α∗
1)K (x, xi) + b (16)

By its nature, an artificial neural network has been im-
plemented to analyse nonlinear phenomena; it considers all
the connections between inputs and responses to evaluate
the effect of interconnections (synapses). Synaptic weights
are internal parameters that are modified based on the
process successive responses; they extract the relationships
of inputs and expected behaviour among input, hidden and
output layers [23]. The extraction of information is the
learning process, and the acquired knowledge is organized
to cluster the patterns found, which can be used to predict
future values. The fundamental element is the neuron that
transmits impulses; it has three main parts: the cell body,
dendrites and axon. The cell body is responsible for pro-
cessing the information that is transferred from dendrites.
The function of dendrites is to connect and recollect infor-
mation from other neurons or external elements. Axons are
used to guide between neurons, and their terminations are
known as synaptic terminals. The main components of the
ANN are input signals (x1, x2, x3, . . . .xn), synaptic weights
(w1, w2, w3. . . ., wn), an activation threshold also known as

bias (θ) that functions as a trigger towards the output, the
activation potential (u), the activation function (g) and the
output signal (y). Figure 3 shows a feed forward network.

Fig. 3: ANN topology.

The activation function influences the training process; it is
selected as a sigmoid function because it combines different
behaviours and is expressed by

g (u) =
1

1 + eβ·u
(17)

To prevent noise in the input data, Bayesian regularization
F = ED is used, including an additional term taking into
account the sum of square errors Ew as follows:

F = βED + αEw (18)

Where Ew is defined by

Ew =

N∑
i=1

w2
i (19)

Depending on the objective function parameter (β, α)
relationship, overfitting can occur if β >> α; in other cases,
the training focuses on weight reduction tolerating higher
errors if α >> β [24].

The topology of the network has 40 hidden neurons;
70% of the samples are used for training, and 15% are
used for validation and testing. The parameters used to train
and validate the networks are the vehicle parameters and
computed as RPM, power, torque, velocity and acceleration.

IV. EXPERIMENTAL PERFORMANCE EVALUATION

To obtain the signals of torque-power curves, the USB
connection is used by using the ELM327 scanner and OBD2
port, which is located in the driver’s footwell, in the centre
console or even under the passenger seat. To perform the
analysis, the gear ratios and the dynamic rolling radius are
obtained. The dynamic rolling radius re, also known as the
effective rolling radius, gives the relationship of rolling speed
or angular velocity of the wheel ωw and forward velocity v,
as expressed by

re =
v

ωw
(20)

The effective rolling radius changes with the amount of
tire deflection, which has a value between the unloaded
R and loaded radius [25]. It is obtained by measuring the
angular velocity of the wheel and the forward vehicle speed.
Table I provides the experimental data obtained from an
experimental test to measure this variable.

The gear ratio, also known as the speed ratio, is the ratio of
the angular velocity of the input gear to the angular velocity
of the output gear. The final gear ratio considers the effect
of the gearbox (Nt) and the differential (Nf ) by
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TABLE I: Effective rolling radius at different speeds.

Test speed 20 km/hr 30 km/hr 40km/hr

1 0.3065 0.3359 0.3135

2 0.3035 0.3138 0.3147

3 0.3006 0.3116 0.3128

Average 0.3035 0.3127 0.3137

TABLE II: Effective rolling radius at different speeds.

Shift RPM Speed (m/s) Ntf Nt Deviation

1st 2606.5 5.567 15.542 3.670 2.45%

2nd 2140.3 8.555 8.303 1.960 2.05%

3rd 2250.2 12.651 5.904 1.342 2.44%

R 2354.0 5.442 14.360 3.391 3.00%

Ntf = NtNf (21)

where Ntf is the final gear ratio. However, the final gear
ratio is also the speed ratio, as expressed by

Ntf =
ωe

ωw
(22)

where ωe is the rotational speed of the engine. OBD2 can
only give data of the engine rotational speed and vehicle
velocity (v). Eq. 23 presents a relationship that relates the
linear velocity with rotational velocity:

υ = ωwr (23)

Using 22 and 23, the final gear ratio in terms of engine
angular velocity and vehicle speed is rewritten as follows

Ntf =
ωe

υ
r (24)

where the differential gear ratio Ntf=4.235.
With a velocity of 45.5 km/hr, the engine rotates at 2140.3

RPM. Using (2) and (5), the gear ratios are found, as shown
in Table II.

At high shifts, the gear ratio decreases because the vehicle
needs less torque. Meanwhile, at low shifts, including rever-
sal, a high gear ratio is needed to increase the torque applied
to the wheels, and the vehicle is capable of overcoming
inertia.

OBD2 is unable to give us directly the torque or the power
delivered by the engine in real time. The only kinematic
parameter of the engine that we can read by means of the
OBD2 port is the angular velocity. Analysing the vehicle
dynamics fundamental equation, the following is obtained:

a =

(
N

tfntfTt

re
−Rh −Rx −DA −Wsinϕ

)
∗

1

mMf
(25)

where a is the longitudinal acceleration, Te is the torque
delivered by the engine, ηtf is the total transmission ef-
ficiency, Rh is the towing force, and Rx is the rolling
resistance force. DA is the aerodynamic drag force, W is
the weight of the vehicle, ϕ is the road slope angle, m is the
mass of the vehicle, and Mf is the mass factor.

The test is performed over a horizontal surface (zero road
slope angle). In addition, the vehicle is not towing anything;
thus, the Rh and Wsin ϕ terms are equal to zero. The
rolling resistance force is expressed for low and high speed
respectively by

fr = 0.01
(
1 +

υ

100

)
(26)

fr = fo + 3.24fs

(
1 +

υ

100

)2.5
(27)

where υ is the forward vehicle velocity in MPH and fr, fo
are tire inflation pressure constants

However, the aerodynamic drag force is

DA =
1

2
ρCAυ

2 (28)

where ρ is the air density, Ca is the drag coefficient and
A is the front area of the vehicle. The vehicle under study is
shown in Fig. 4, with a drag coefficient of 0.32 and a mass
of 1650 kg.

Fig. 4: Method used to calculate the vehicle frontal area.

The mass factor index depends on the operating shift and
differential gear ratio (Ntf ) as follows:

Mf = 1 + 0.04Ntf + 0.0025N2
tf (29)

The rolling resistance and drag forces depend on the
forward velocity (v), so we can express v in terms of the
engine angular speed by solving for v in Equation 24. The
longitudinal acceleration (a) in terms of ωe shows that the
angular acceleration is equal to the derivative of the rotational
speed with respect to time. Then, based on the relationship
between longitudinal and rotational acceleration:

a = αwre (30)

The angular acceleration of the engine αe is related to the
rotational acceleration of the wheel αw as follows:

0.8αw =
αe

Ntf
re (31)

The longitudinal acceleration can be rewritten as:

a =
dωe

dt

re
Ntf

(32)

An equation for the torque in terms of the rotational engine
speed is expressed by

Engineering Letters, 30:4, EL_30_4_08

Volume 30, Issue 4: December 2022

 
______________________________________________________________________________________ 



Te =

((
dωe

dt
r

Ntf

)
(mMf ) + 0.01

(
W +

W ωe
Ntf

r

100

)
+ ϑ

)2

Ntfηtf

r
(33)

where ϑ = 1
2ρCA

(
ωe

Ntf
r
)2

.
The test was performed from idle speed to 6000 RPM in

the first shift, obtaining the engine rotational speed versus
time from OBD2. The final gear ratio Ntf for the first shift
was calculated as well as the effective rolling radius re and
the aerodynamic drag force parameters.

V. RESULTS AND DISCUSSION

What is striking about the vehicle behaviour monitoring
in this study case is that the responses are nonlinear and
generated from diverse sources. The main one is the non-
linear components such as the wheels, but other origins
might be the road irregularities, bad driving habits, number of
passengers, payload, fuel level. Another cause would be the
environmental conditions such as temperature could change
the wheel forces. Therefore, it is certainly important to
consider these different causes to implement them in an on-
board system (OBD). Therefore, the OBD can be improved
by using ANNs which are non-parametric model obtained
from empirical data.

Figure 5 presents the results from the 1st shift to the 5th
shift (Figs. 5a-5e), while the shift increases the expected
accelerations. The ideal behaviour is compared with the
losses by the powertrain system. The second evaluation
includes the transmission and rolling resistance (trans +
rolling), finally including the transmission, rolling resistance
and drag coefficient using the ANN.

To evaluate the constant engine power, it is approached
with the tractive effort that the vehicle can reach maximum
power. To predict the losses of the driveline, the losses by
the components and the drag coefficient, the changes between
gears indicate the biases of the transmission system, as shown
in Figure 5. In the first gear (Fig. 5a), the behaviour with
losses is less than ideal but has a similar tendency due
to the effect of the drive train, as well as when including
the rolling and drag coefficients. In the second speed, it is
observed that the effects of rolling and the drag coefficient
are similar to each other but have a greater effect than only
when considering the effects of the drive train. From the third
gear, the difference between accelerations is greater due to
the inertial effects of the components, the change in traction
forces at the points of contact of the wheels, and the drag
coefficient, which increases its effect at a higher speed, as
can be seen from Figure 5b.

The acceleration curve is an on-time measurement of a
vehicle torque requirement to minimize the steps between
gears due to shift inertial phases. Figure 6 compares the steps
between the gears, although this behaviour is expected to be
reduced to improve the comfort during acceleration and to
improve the longitudinal vehicle dynamics. To evaluate the
vehicle with the powertrain, the rolling resistance and drag
coefficient are isolated and compared with the ANN result
to analyse its prediction.

The experimental torque-power curves (Fig. 7) are below
the ideal curves. This loss of performance can be explained

(a)

(b)

(c)

(d)

(e)

Fig. 5: Acceleration in (a) 1st gear, (b) 2nd gear, (c)3rd gear,
(d)4th gear and (e) 5th gear.

Engineering Letters, 30:4, EL_30_4_08

Volume 30, Issue 4: December 2022

 
______________________________________________________________________________________ 



Fig. 6: Acceleration prediction using the ANN.

Fig. 7: Torque-power curve prediction using the ANN.

by the altitude of Mexico City. An increase in altitude causes
the atmospheric pressure to decrease, and the percentage of
oxygen present per unit volume of air decreases as well. A
vehicle operating at a rotational speed below its maximum
torque point is in an unstable speed regime. If it slows down
by a small amount, the torque decreases, and its speed will
fall further. Conversely, if the speed increases, then the torque
increases and the speed increases even more, so the driver
must compensate for these variations by closing or opening
the throttle. The maximum errors found in the prediction
are 0.13% for the acceleration and 0.02% for the power and
torque.

The development of systems to evaluate vehicle perfor-
mance can be used in internal combustion vehicles to reduce
polluting emissions, while for hybrid or electric vehicles,
systems can be implemented to reduce energy consumption
by improving efficiency and performance. On the other hand,
the analysis can be used to improve traction forces.

VI. CONCLUSION

The purpose of the current study was to analyse the
responses of a vehicle in transitory systems rather than static
ones. Consequently, it was considered different kind of vari-
ables such as passenger numbers, environmental conditions,
and vehicle maintenance. It was also included the driving
habits which can suddenly change the vehicle response.

The engine torque is usually measured under steady state
conditions on a dynamometer. Then, the predicted and mea-
sured torques are reduced employing the rotational inertia
components condensed as the system losses. The evaluation
necessarily needs to be obtained from real conditions. It can
therefore be noted that the OBD responses using together
with ANNs can be identified the engine characteristic curves
without a dynamometer. Since there are methods to simulate
air conditions, there are others static and dynamic variables
that must be evaluated under operating conditions. It is well
known that engine torque will tend to increase and resist
slowing. Therefore, if it speeds up by a small amount, the
torque will decrease to prevent an increase in speed.

It was also noted that user’s comfort can be improved
by reducing steps between the gear acceleration responses.
This reduction has a direct effect over the longitudinal
dynamic and the tractive forces. Another observation might
be that the combination between this response, the overall
powertrain efficiency, and losses can be employed to reduce
fuel consumption. Therefore, the present work reports that it
is necessarily considering the vehicle feedback, leading to a
higher torque to acquire a better overall efficiency.

Finally, it was stated that the OBD needs to incorporate
acceleration to improve the dynamic vehicle behaviour under
distinct conditions such as roll, dive and squat. There is also
a significant finding, this kind of active systems to improve
vehicle performance on longitudinal dynamic and stability
for lateral dynamics.
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[23] Şahin Yildirim and İbrahim Uzmay, “Neural network applications to
vehicle’s vibration analysis,” Mechanism and Machine Theory, vol. 38,
no. 1, pp. 27–41, 2003.

[24] M. Jimenez-Martinez and M. Alfaro-Ponce, “Effects of synthetic data
applied to artificial neural networks for fatigue life prediction in
nodular cast iron,” Journal of the Brazilian Society of Mechanical
Sciences and Engineering, vol. 43, p. 9, 2021.

[25] H. B. Pacejka, Tyre and Vehicle Dynamics, United Kingdom:
Butterworth-Heinemann, 2006.

M. Sobrino y Arjona Guzmán was born in Mexico in 1992. He is a
postgraduate student in Automotive Engineering and received a bachelorś
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M. Jimenez-Martinez was born in México in 1979. He received his PhD
in Mechanical Engineering from IPN in 2015. He became a Member (M)
of IAENG in 2020. His current research interests include Artificial Neural
Network in Mechanical design. Finite Element Analysis and Nonlinear
Analysis.

Dr. Jimenez is member of the Canadian Society of Mechanical Engi-
neering(CSME) and is member of the Mexican National System Research
(SNI).

S.G. Torres Cedillo is a PhD in Mechanical Engineering with extensive
experience in mechanical vibrations and rotodynamic. His PhD degree was
obtained at The University of Manchester, UK in 2015. Since then, he
has continued exploring non-invasive inverse methods for the unbalance
identification applied to rotodynamic systems using techniques such as
artificial neural networks, inverse problem method.

Currently, he is a Professor SNI level 1 at Centro Tecnológico at FES
Aragon UNAM.

Engineering Letters, 30:4, EL_30_4_08

Volume 30, Issue 4: December 2022

 
______________________________________________________________________________________ 




