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Abstract—In the random service system, there are often
customers who need to receive secondary service, but not every
customer needs it. In this paper, we analyse the Bernoulli
feedback service (receive secondary service) mechanism and
set each customer to receive secondary service is random with
a probability after the first service, and the secondary service
rate is different from the first service rate. In addition, the
customer who receives feedback service has priority over the
customer who receives the service for the first time. Using the
method of matrix geometric solution of quasi-birth-and-death
process, the performance indexes such as the mean queueing
length as well as the mean waiting time and the mean sojourn
time are calculated. Numerical experiments were conducted to
observe the trend of each performance index as the parameters
changed. The last part of the article investigates the optimal
strategy for the aim of reducing costs and improving efficiency.

Index Terms—feedback priority strategy, variable service
rate, quasi-birth-and-death process, M/M/1 queue, matrix ge-
ometry solutions.

I. INTRODUCTION

EARLY in the 20th century, mathematician Erlang [1] ap-
plied the knowledge of queueing theory when studying

the telephone communication problem. Therefore, scholars
began to study the theory of queueing. After more than 100
years of development, queueing theory has formed a mature
theory, and researchers have incorporated various strategies
based on the classical queueing theory in conjunction with
practical problems. Lv [2] studied machine repairable system
with different service strategies. Lyu et al. [3] studied the
M/M/2 queueing system with variable service strategies.

In the study of queueing system, we often assume that a
customer will leave the system after receiving one service.
However, in real life, there are often customers who are not
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satisfied with the service, or do not complete the service all
at once, and need to return to the service station to receive
a second service. Such a mechanism is called feedback.
For example, secondary packaging of products, lathe parts
processing and outpatient services etc. Until now, queueing
models with feedback have been studied extensively by
scholars. Kiran [4] studied M/G/1 queueing model with
feedback. Ghahramani et al. [5] studied two M/M/1 queues
with inconsistent arrivals and queueing models with random
feedback. They obtained a probability generating function
for the modles and tested results numerically for validity.
Barlas and Özgün [6] studied feedback strategy among three
service stations. They assumed that the arrival rates and
service rates for the second visit to any service station are
not the same. Tsai et al. [7] proposed a general configuration
strategy for an open queueing network, which consists of
any number of service stations with different service rates
for each station. Som and Seth [8] refer to customers who
rejoin the queue due to dissatisfaction as feedback customers.
They propose a multi-server wireless capacity Markov feed-
back queueing model with encouraged arrivals and solve
its steady-state conditions as well as various performance
metrics. Saravanarajan and Chandrasekaran [9] study the
Bernoulli vacations and stochastic fault feedback queueing
model, combining faulted vacations and feedback. Kumar et
al. [10] combined impatient customers and feedback policy to
construct M/M/1/N queueing model and obtained the optimal
capacity of the system by continuous optimization.

For this article, based on the traditional M/M/1 queueing
model, the feedback customer is given priority to receive
service. It is optimized for real life. In addition, we believe
that the service rate will change when the service station
provides service to customers who receive service for the
second time.

II. MODEL DESCRIPTION

1) We assume that the system has an infinite capacity and
only one service station. The customer arrival process obeys
the Poisson process with λ.

2) The customer in the system leaves the system directly
after receiving the service with probability 1− α, or returns
to the service station again with probability α to receive the
second service. Each customer can be given feedback service
at most one time.

3) The time of customers receiving service all obeys
negative exponential distribution. The service rate is µ1 when
each customer receives service for the first time, the service
rate is µ2 when they return to the service station again for
the second time.
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4) Customers who arrive at the system for the first time
are served according to the rule of first-come, first-served. It
is assumed that all processes are independent of each other.

5) When a customer who has received the first service
needs a second service, the service station will immediately
perform the second service for that customer, and then serve
the next customer after the second service for that customer
is completed.

The diagram of the queueing model is shown in Figure 1.
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Fig. 1. Schematic diagram of the queueing model.

III. STATE TRANSFER DIAGRAM

Let L(t) be the number of customers in the system at
moment t (including the one being served and those waiting
in line), and J(t) is defined as the service state of the service
station. When J(t) = 0 means that there is no feedback
request in the system at time t and the service station is
serving the customer who is receiving the service for the first
time; when J(t) = 1 means that there is a customer initiating
feedback in the system at time t and the service station is
serving the customer who is given the feedback. This means
that the state of the queueing system can be divided into a
feedback state and a Non-feedback state. Specifically, {(0,0)}
means that the system is in the idle state.

According to the memoryless nature of the exponen-
tial distribution, {L(t), J(t)} constitutes a two-dimensional
Markov process whose state space is

Ω = { (0, 0)} ∪ { (k, j), k ≥ 1, j = 0, 1} .

By arranging the states of the model in dictionary order,
the state transfer diagram of this two-dimensional Markov
chain can be obtained as Figure 2.

From the state transfer diagram, the transfer rate matrix is

Q =


A0 C0

B1 A C
B A C
B A C

. . . . . . . . .

,
where
A

0
= −λ, C0 =

(
λ 0
)
, B1 =

(
(1− α)µ

1

µ2

)
,

A =

(
−(µ1 + λ) αµ1

0 −(µ2 + λ)

)
, B =

(
(1− α)µ1 0

µ2 0

)
,

C =

(
λ
λ

)
.

Therefore {L(t), J(t)} is a Quasi-birth-and-death(QBD)
[11].

IV. STEADY-STATE CONDITIONS AND STEADY-STATE
PROBABILITIES

A. Stability

Theorem 1. The matrix equation R2B + RA + C = 0

has a minimum non-negative solution R =

(
r11 r12
r21 r22

)
,

where
r11 = λ(λ+µ2)

µ1(λ−αλ+µ2)
, r12 = αλ

λ−αλ+µ2
, r21 = λ2

µ1(λ−αλ+µ2)
,

r22 = λ
λ−αλ+µ2

.

Proof Bringing R into the system of equations R2B +
RA+ C = 0. Then

(r11
2 + r12r21)(1− α)µ1 + (r11r12 + r12r22)µ2

− (µ1 + λ)r11 + λ = 0,

αµ1r11 − (µ2 + λ)r12 = 0,

(r21r11 + r22r21)(1− α)µ
1

+ (r21r12 + r22
2)µ2

− (µ1 + λ)r21 = 0,

αµ1r21 − (µ2 + λ)r22 + λ = 0.

(1)

The minimum non-negative solution can be calculated by
solving the Eq. (1)

R =

(
λ(λ+µ2)

µ1(λ−αλ+µ2)
αλ

λ−αλ+µ2

λ2

µ1(λ−αλ+µ2)
λ

λ−αλ+µ2

)
. (2)

Proof complete.
Lemma If H = A + B + C is a finite generating

element and x is a steady-state probability vector of H .
Then a sufficient necessary condition for the spectral radius
SP (R) < 1 of the state transfer matrix Q (where R is the
rate array of Q) is xBe > xCe (where e is a two-dimensional
column vector which all elements are equal to 1) [11].
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Fig. 2. State transfer diagram.
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Theorem 2. The M/M/1 queueing system with feedback
priority and variable service rate is steady-state when and
only when

λ <
µ1µ2

µ2 + αµ1
. (3)

Proof Prerequisites: H =

(
−αµ1 αµ1

µ2 −µ2

)
. Let x be a

two-dimensional row vector, x = (x1, x2). From xH = 0,
we can get x = c(µ2, αµ1), c as any positive real number.
And because xBe > xCe, then,

c(µ2, αµ1)

(
(1− α)µ1 0

µ2 0

)(
1
1

)
> c(µ2, αµ1)

(
λ 0
0 λ

)(
1
1

)
simplify to get: λ < µ1µ2

µ2+αµ1
.

Its adequacy is clearly evident. Proof complete.
In summary, under steady-state conditions, the mean input

λt of the system in time period [0, t] should be smaller than
the mean output µ1µ2

µ2+αµ1
t.

B. Steady-state probability

The steady-state probability is defined as

πij = lim
t→∞

P {L(t) = i, J(t) = j} , (i, j) ∈ Ω.

Corresponding to the block structure of Q, the steady-state
probability vector π is labeled

π = (π0, π1, π2, . . .),

where π0 = π00, πi = (πi0, πi1), i ≥ 1.
When λ < µ1µ2

µ2+αµ1
, the steady-state probability vector π

exists, in order to solve the probability vector π0, π1, π2, . . .,
the following square matrix is introduced

B[R] =

(
A0 C0

B1 RB +A

)
. (4)

Then the steady-state distribution of the QBD process
{L(t), J(t)} satisfies the following relation

(π0, π1)B[R] = 0,

π0e+ π1(I −R)
−1
e = 1,

πk = π1R
k−1, k ≥ 2.

(5)

Bringing Eq. (2) into Eq. (4) and Eq. (5) gives

π00 = −αµ1λ− µ1µ2 + λµ2

µ1µ2
,

π10 =
λ (λ+ µ2) (αµ1λ− µ1µ2 + λµ2)

µ1
2 (−λ+ αλ− µ2)µ2

,

π11 =
αλ (αµ1λ− µ1µ2 + λµ2)

µ1 (−λ+ αλ− µ2)µ2
.

(6)

Then,

π0 = π00 = −αµ1λ− µ1µ2 + λµ2

µ1µ2
,

π1 =


λ (λ+ µ2) (αµ1λ− µ1µ2 + λµ2)

µ1
2 (−λ+ αλ− µ2)µ2

αλ (αµ1λ− µ1µ2 + λµ2)

µ1 (−λ+ αλ− µ2)µ2


>

,

πk = π1 +Rk−1(k ≥ 2).

(7)

V. SYSTEM STEADY-STATE PERFORMANCE INDICATORS

1) Mean Queueing length in steady-state system

E(L) =
λ
(
−α2µ1λ− αλµ2 + µ2

2 + αµ1 (λ+ µ2)
)

µ2 (−αµ1λ+ (µ1 − λ)µ2)
. (8)

Proof

E(L) =
∞∑
n=1

nπne

= π1e+ 2π2e+ 3π3e+ . . .

=
∞∑
n=1

nπ1R
n−1e = π1

1

(1−R)
2 e

=
λ
(
−α2µ1λ− αλµ2 + µ2

2 + αµ1 (λ+ µ2)
)

µ2 (−αµ1λ+ (µ1 − λ)µ2)
.

Exceptionally, when α = 0, that is, the customer’s feed-
back probability is 0. In this case, the queueing model is
the primordial M/M/1 queueing model. The mean queueing
length is E(L) = λ

µ1−λ .
2) Generalized mean service time (the length of time from

the service beginning to the secondary service is over)

T = (1− α)µ−11 + α(µ−11 + µ−12 ). (9)

3) Mean waiting time (the length of time from a customer
enters the system to he/she starts receiving service)

W = L · T. (10)

4) Mean sojourn time (the length of time from a customer
enters the system to he/she leaves the system)

S = (L+ 1)T. (11)

5) The probability that the system is in Non-feedback state
(the probability of the service station is serving customers
who is receiving service for the first time)

P (J(t) = 0) =

∞∑
i=1

πih1

= π1h1 + π2h1 + π3h1 + · · ·
= π1h1 + π1Rh1 + π1R

2h1 + · · ·
= π1(I −R)

−1
h1

=
λ

µ1
,

(12)

where h1 = (1, 0)
>.

6) The probability that the system is in feedback state (the
probability of the service station is serving customers who
needs secondary service)

P (J(t) = 1) =
∞∑
i=1

πih2

= π1h2 + π2h2 + π3h2 + · · ·
= π1h2 + π1Rh2 + π1R

2h2 + · · ·
= π1(I −R)

−1
h2

=
αλ

µ2
,

(13)

where h2 = (0, 1)
>.

7) The probability that the system is being idle

P (Idle state) = π00 = −αµ1λ− µ1µ2 + λµ2

µ1µ2
. (14)
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Fig. 3. The trend of E(L) versus λ for α takes different values
(µ1 = 4 and µ2 = 5).
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Fig. 4. The trend of mean waiting time W versus µ2

(α = 0.5).

VI. NUMERICAL SIMULATION

We illustrate the trend of E(L) with the change of λ in
this section. We let µ1 = 4, µ2 = 5, α = 0, 0.2, 0.5, 0.8 and
1, respectively. The range of variation of λ is 0 ≤ λ ≤ 2. It
can be verified that the above settings satisfy the steady-state
condition. In particular, the queueing system is a classical
M/M/1 queueing system if the feedback probability α = 0,
and the customer will definitely accept the twice service if
the feedback probability α = 1. In addition, 0.2, 0.5 and 0.8
are taken as the value of α to illustrate the trend of E(L)
versus λ for the feedback probability is small, equal, and
larger than the non-feedback probability, respectively.

Figure 3 shows that E(L) increases with the increase of
λ. In other words, λ and E(L) are positively correlated.
E(L) increases with the increase of feedback probability α,
and the growth trend is more and more significant, which is
consistent with our actual cognition.

In Figure 4, we illustrate the trend of the mean waiting
time with the change of µ2. Let the feedback probability
α = 0.5, the arrival rate λ equal to 1 and 2, the first service
rate µ1 equal to 4 and 5, respectively. And the range of values
of µ2 is the interval value of 4 ≤ µ2 ≤ 5. It is verified that the
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Fig. 5. The trend of mean sojourn time S versus µ1 and µ2

(α = 0.8 and λ = 1).
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Fig. 6. The trend of the probability of the state system versus λ
(µ1 = 3, µ2 = 4 and α = 0.5).

above values are consistent with the steady-state condition.
Figure 4 shows that when µ1 and λ are constant values, the

mean waiting time decreases with the increase of µ2. When
µ1 and µ2 are constant, the mean waiting time increases
with the increase of λ. When µ2 and λ are constant, the
mean waiting time decreases with the increase of µ1. These
characters are consistent with our intuition.

We study the trend of the mean sojourn time with the
change of µ1 and µ2 in Figure 5. Assuming α = 0.8 and
λ = 1, the range of variation of µ1 is 4 ≤ µ1 ≤ 5, and
the range of variation of µ2 is 6 ≤ µ2 ≤ 7. The above
assumptions are calculated to be consistent with the steady-
state conditions.

Figure 5 depicts the effect of service rates µ1 and µ2 on the
mean sojourn time. From Figure 5, we can observe that the
service rate and the mean sojourn time are negatively related.
When µ2 is invariant, the mean sojourn time is gradually
decreasing as µ1 increases; when µ1 is invariant, the mean
sojourn time is also gradually decreasing as µ2 increases, but
the effect of µ1 on the mean sojourn time is more obvious.
These characters are consistent with the actual ones.

Figure 6 depicts the trend of three state probabilities of
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Fig. 7. The trend of the probability of the state system versus service rate (λ = 2 and α = 0.8).
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Fig. 8. The trend of the probability of the system being idle versus service rate (λ = 2, α = 0.2, 0.5 and 0.8).

the system with the change of λ. Let’s assume µ1 = 3, µ2 =
4, α = 0.5, and the arrival rate varies in the range 0 ≤ λ ≤ 2.
After calculating, the above setting is to satisfy the steady-
state condition.

From Figure 6, it can be seen that as λ increases, the
probability of the system being in idle state decreases, the
probability of being in feedback state and Non-feedback
state increases. Moreover, the probability of being in Non-
feedback state is greater than the probability of being in
the feedback state. This is in line with the actual situation.
For example, when patients are queueing for registration in
a hospital, as the arrival rate of patients increases, i.e. the

number of customers arriving per unit of time increases, the
pressure on the system increases, and the probability of the
service station being idle becomes smaller and smaller. At the
same time, customers will not necessarily receive the second
service, but each customer will receive the first service. So,
the probability of the system being in Non-feedback state is
greater than the probability of feedback state.

In Figure 7, we illustrate the trend of feedback and
Non-feedback state probabilities with respect to µ2 and µ1

respectively. In Figure 8, we study the trend of the idle state
probability with respect to µ1 and µ2.

From Figure 7, it can be seen that the probability of
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the system being in feedback state decreases as µ2 grows
and Non-feedback probability decreases as µ1 grows. Figure
8 depicts the probability of the system being in idle state
increases with the growth of µ1 and µ2. Moreover, as the
probability of a customer initiating feedback increases, the
probability of the system being in idle state decreases, which
is realistic.

VII. SOCIALLY OPTIMAL STRATEGIES

It is clear from the numerical analysis that a change in each
parameter in the model will have an impact on the queueing
system. From a strategy point of view, however, the only
controllable parameter is the service rate. Therefore, we will
study the relationship between the following policy functions
and the service rate. Let λ = 2, α = 0.5, the value range of
µ1 is 4 ≤ µ1 ≤ 5, and the value range of µ2 is 4 ≤ µ2 ≤ 5.
After verification, the above settings are satisfied with the
steady-state condition.

A. Mean cost function

The mean cost function per unit of time is established
according to the above performance indicators, and the
impact of changes of parameters on the cost is observed to
minimize the cost as much as possible. The expected value
of the total cost per unit of time is equal to the sum of the
operating cost of the service station and the waiting cost of
the customers.

Let Z be the expected value of all costs per unit of time,
C1 be the mean cost per unit time of the service station,
C2 be the cost per unit time of one customer spends in the
system, it is the waiting cost, and E(L) be the mean number
of customers in the system, it is the mean queueing length.
Then we have

Z = C1 + C2

λ
(
−α2µ1λ− αλµ2 + µ2

2 + αµ1 (λ+ µ2)
)

µ2 (−αµ1λ+ (µ1 − λ)µ2)
.

(15)
Let C1 = 10, C2 = 5. In Figure 9, we can see that the

mean cost per unit of time is negatively related to the service
rate. When µ2 is constant, the mean cost per unit of time
decreases with the increase of µ1. When µ1 is constant, the
mean cost per unit of time decreases as µ2 increases. From
Figure 9, we can also observe that the mean cost per unit
of time decreases more significantly as µ1 increases, which
means that µ1 has a more significant impact on the mean cost
per unit of time. Therefore, to keep the cost at the lowest,
the service rate µ1 must be increased as much as possible.

B. Mean revenue function of the service station

If the waiting cost of customers is not taken into account,
the mean revenue of service station per unit of time can be
expressed as M = Kλ − eλµ , where K is the revenue of
service station serving one customer, and e is the cost of
per unit time of the service station serving for customers.
Supposing that when a customer receives the service for the
first time, the cost of per unit time of the service station
is e1, when a customer receives the secondary service, the
cost of per unit time of the service station is e2. Then the
cost per unit time of the service station can be expressed as

e1(1−α)λ 1
µ1

+e1αλ
1
µ1

+e2αλ
1
µ2

. According to the revenue
expression, the mean revenue of the service station is

M = Kλ− [e1(1− α)λ
1

µ1
+ e1αλ

1

µ1
+ e2αλ

1

µ2
]. (16)

In practice, the magnitude of e1 and e1 is uncertain. Here
we let K = 50, e1 = 10, e2 = 12. From Figure 10, we find
that the greater of the values of µ1 and µ2, the higher the
mean revenue value, and the service rate µ1 has a greater
impact on the mean revenue of the service station.
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Fig. 9. The trend of mean cost per unit of time Z versus µ1 and
µ2 (α = 0.5, λ = 2, C1 = 10 and C2 = 5).
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C. Individual expected income function

Suppose that a customer receives F units of revenue after
the service is completed and spends G units per unit of
time to stay in the system. Let U represent the expected
net revenue of the customer, then U = F −GS, and S is the
mean sojourn time.

U =F −G{[
λ
(
−α2µ1λ− αλµ2 + µ2

2 + αµ1 (λ+ µ2)
)

µ2 (−αµ1λ+ (µ1 − λ)µ2)

+ 1][1− αµ−11 + αµ−11 + µ−12 ]}.
(17)

Engineering Letters, 30:4, EL_30_4_09

Volume 30, Issue 4: December 2022

 
______________________________________________________________________________________ 



Let F = 30, G = 10. It can be seen from Figure 11
that individual expected income increases with the increase
of service rate, and the first service rate µ1 has a greater
impact on individual expected income U , indicating that the
larger µ1 is, the higher the revenue will be.
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Fig. 11. The trend of individual expected income versus µ1 and
µ2 (α = 0.5, λ = 2, F = 30 and G = 10).

VIII. CONCLUSION

In this paper, we study a single service station queue-
ing system with priority when customers need to receive
secondary service and variable service rates after feedback.
We obtain the steady-state probability distribution of the
system state by using the matrix geometric solution method
of the two-dimensional Markov process. Moreover, we get
the performance indexes of the system from the probability
distribution of the system state. In addition, the trend of
each performance index is simulated in specific cases to
analyze the model more intuitively. Finally, in connection
with the actual situation, three optimization functions were
established from different perspectives, and after analysis, it
was concluded that µ1 has more influence on each function.
Therefore, we should continuously improve the service rate
of the service station for the first time customer receiving
service as much as possible to make the cost minimized, the
benefit maximized, and the social benefit reached the optimal
value. According to the research in this paper, the model with
variable service rates and feedback can be extended to multi-
sever systems in the future.
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