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Improved Salp Swarm Algorithm Based on
Oscillation Inertia Weights to Solve Function
Optimization Functions

Xue-Long L1, ie-Sheng Wang *, Chun-Li Lin, Zhen-L.ong Zhao

Abstract—Salp swarm algorithm (SSA) is a new meta-
heuristic algorithm based on the behavior of the salps swarm. In
view of the defects of SSA, such as poor exploitation and
exploration ability, six kinds of inertia weights oscillated in
accordance to the increase of iteration number were introduced
into the optimization process of SSA algorithm so as to make it
not falling into the local optimum in advance. In order to verify
the effectiveness of the improved SSA, the original SSA and the
improved SSA with oscillatory inertia weights are tested with 24
CEC test functions and the simulation experiments results are
analyzed. The simulation results show the proposed algorithms
based on six oscillating inertia weight are better than the
original SSA, and improve its convergence speed and
optimization accuracy.

Index Terms—salp swarm algorithm, oscillation inertia
weight, function optimization, performance computation

[. INTRODUCTION

S the complexity of various problems increases, the

need for low-cost, fast and more intelligent optimization
algorithms have appeared over the past decades. There are
many difficulties and challenges in practical problems, such
as non-linearity, multi-objective, multivariability, high
dimension, uncertainty and non-convex constraints.
Traditional mathematical optimization methods were
proposed, such as integer programming, gradient descent,
and newton method, but these optimization algorithms can
not solve complex practical problems well Many
meta-heuristics algorithms have been applied in engineering
and scientific fields, which have successfully solved many
optimization problems in recent years , making them a
research hot spot for optimization [1]. The meta-heuristic
methods adopt the random optimization strategy, which
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generates multiple random solutions through iterative
generation process, and improves them in the optimization
process [2]. In general, it is of great significance to research
the theory, improvement and application of meta-heuristic
algorithm, both in improving its optimization performance
and in broadening its application fields [3].

SSA was a new swarm intelligence optimization algorithm
based onrandom population proposed by Mirjalili in 2017 [4].
It has the advantages of less computation, less control
parameters and easy to implement. It shows obvious
advantages in many practical engineering problems. But
similar to other swarm intelligence algorithms, the standard
SSA still has some defects, such as low solution accuracy and
slow convergence rate. Researchers have proposed many
strategies to enhance its performance. The chaotic mapping
was added to adjust the random parameters of leader position
in order to upgrade the classification performance of standard
SSA in feature selection [5]. The refraction reverse learning
mechanism and adaptive control factor were proposed to
improve search performance of standard SSA [6]. The
mutation operator (DE/frand/1) were adopted to mutate
non-optimal individuals, which has achieved good results in
the application of reactive power compensation in
distribution system [7]. The combination of standard SSA
and PSO algorithm to update population location can delete
redundant or confused features in feature selection while
maintaining high accuracy and efficiency [8]. The constant
mnertia weight factor was added to food source location and
K-neighborhood classifier was combined to select features
[9]. The time-varying inertia weight factor was proposed to
update follower position and the adaptive catastrophe
strategy was combined to enhance its performance [10]. The
spatial transformation searching (STS) was added to SSA and
the experiments results show STS-SSA has good robustness
in searching process [11]. The reverse learning strategy and
local search feature selection algorithm was proposed to
increase the calculation accuracy of standard SSA [12]. The
hybrid method obtained by combining the characteristics of
the firefly algorithm with SSA effectively improved the
performance of standard SSA and has been successfully
applied to solve UPMSP [13]. The strategy by using the
weighted distance position update mode was proposed to
increase the exploration ability and calculation accuracy of
standard SSA [14]. The operators of the SCA and disruption
operator were added to improve the exploration efficiency of
SSA[15].

To solve the problems of low accuracy and slow
convergence velocity of standard SSA, an hybrid SSA based
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on oscillation inertia weights was proposed. The inertia
weight based SSA (IWSSA) was introduced on the basis of
the standard SSA to improve its randomness and increase its
local searching and exploration ability. By optimizing 24
benchmark functions and comparing the performance with
the standard SSA, the effectiveness and robustness of IWSSA
are verified.

II. BASIC PRINCIPLES OF SALP SWARM ALGORITHM
A. Biological Principle of Salp Swarm Algorithm

The main idea of SSA comes from the clustering behavior
of salps. Salp is an almost completely transparent
barrel-shaped marine organism, whose transparent property
can well protect salps from predators in the ocean. Salp
mainly feeds on phytoplankton, rely on inhalation and
ejection of sea water to move forward. They can transport
tons of carbon from the ocean surface to the deep sea every
day, prevent the carbon from re-entering the atmosphere and
effectively reduce the possibility of carbon entering the
atmosphere to become a greenhouse gas. It has a good carbon
removal effect for nature, and the special function of salp
makes it play an irreplaceable role in the ocean. Most
creatures in nature move and forage in groups, but salp is
connected from end to end to form a chain for foraging. Salp
often forms a salp chain swarm in the deep sea, which
includes two parts: leaders and followers. The individual at
the front of the salp chain is considered to be the leader, other
individuals are considered to be followers, and the leader
leads the follower to move according to the location of the
food source. The biological principle of SSA is shown in Fig.
1.

B. Salp Swarm Algorithm

The whole optimization process of SSA originates from
the clustering foraging behavior of salps chain, and the
process of searching for the best food source of salps
population is compared to the optimization of function. In
order to balance the algorithm in the basic SSA, the salps in
the first half of the salps chain are the leaders, and the rest are
the followers. Different from other swarm intelligence
optimization algorithms, leaders will not affect the
movement of the whole swarm, and followers will update
their positions according to the previous individual, and so on
to form a salps chain.

(a) Individual salp (b) Swarm of salps (salps chain)

Fig. 1 Biological principle of salp swarm algorithm.

The leader will play a weaker and weaker role in the
leadership of the followers, and the followers will not blindly
move towards the leader. This behavioral characteristic
maintains the diversity of the population. SSA saves the
optimal solution and assigns it to the food source variable, so
even if the whole population deteriorates, it will not be lost.

SSA only updates the position of the leader relative to the
food source, so the leader is always exploring and developing
the space around it. The progressive movement of followers
reduces the situation of falling into local extreme. In salp
swarm algorithm, the position vector X; of each salp
individual is defined for searching in D -dimensional space,
where N is the number of decision variables. The position
vector X} in SSA will be composed of N salps individuals
with dimension D . Therefore, the population vector is
composed of N x D -dimensional matrices, which is defined
as:

X X Xp
2 2 2
| xF X X
: 1 2 D
X (N
N
X X Xp

SSA initializes the population by generating random

numbers, and initializes the position X, (i=l--,D,
J=L--.D) of salps.
X =rand(N, D)x (ub())-Ib(j))+Ib(;) (2)

where, N is the population size of salps and D is the spatial
dimension.

In SSA, the initial position of the food source is selected by
the objective function. By determining the position of leaders
and followers, leaders and followers is represented by a
two-dimensional matrix X . The location update strategy for
leaders is realized by:

o Fo+e ((ub,—1b)c, +1b,),c, >0.5
1 — J 1 J Jj’/72 Jj 3
X ‘{1«; —e((ub, ~1B)c, +1b,).¢; <05 O

where,  represents the current number of iterations, X (D
represents the follower’s position at the current generation of
the 7 -th obsidian in the J -dimensional space, /*; is the food
source’s position at the current generation in the
J -dimensional space, #b, and b, represent the upper and
lower limits of the ./ -dimensional space, and ¢, and ¢; are
random numbers evenly distributed in the scope (0, 1), which
is used to adjust the changing trend of the leader's
position. Coefficient ¢, is the most crucial parameter of SSA
to be used in balancing the exploration and exploitation,
which decreases adaptively with the increase of iterations.
The value range of ¢, is shown in Eq. (4).
. 2
o = 26_(41/ Max _iter) 4)
The position of followers is updated based on the Newton's
law of motion shown in Eq. (5).

x;:%atz +yt (%)

where, X ,’ represents the position of the 7 -th follower in the
J -th dimension, 7 22 , ! represents the time, V, represents
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acceleration &= (Vﬁm; vy )/ AL

the initial velocity,
i—1 H

Y s :(xj -xj.)/./_\t_ . o

Because the difference between each iteration 1s 1 and the

initial velocity v,=0, Eq. (3) can be expressed as:
i 1 i i
Xj(l):E(XJ(l—1)+XJ1([—1)) (&)

where, [ represents the current number of iterations, X j,(f)
represents the position of the i -th follower at current
generation and J -th dimension, X (I-1 and X7'(-D
represent the positions of the 7 -th and (7 -1 )-th follower of
the previcus generation in the J -th dimension space,
respectively.

C. Pseudo Code of 554
The flowchart of SSA 1s shown in Fig. 2.

IIT. IMPROVED SSA BASED ON OSCILLATION INERTIA
WEIGHTS

Inertia weight strategy introduced inertia weight factor w
into PSO algorithm for the {irst time by Shi [16] and achieved
satisfactory results. Many subsequent studies have also
proved the importance of W to balance the global
optimization and local optimization. It can be seen from Eq.
{(6) that during a certain iteration of SSA, the current position
1s updated according to the midpoint of the historical position
of i—1-thand 7 -th followers, which is also the mathematical
model embodiment of the following characteristics of salps
chain.

Start

Initialization parameters and random
generation of initial population

Calculate the fitness value of each slap

4

Update according to Eq. (3)

4
Update leader position according to

Eq.{(2)

Update follower location according
to Eq. (4)

Whether the
termination condition is
satisfied

Output optimal
value

End

Fig. 2 Flowchart of salp swarm algorithm.

However, this is a kind of blind following behavior, which
does not take into account the impact of the former on the
latter, but only accepts the location information of the former
to update the current location, which limits the search
efficiency of the algorithm. In this paper, six convergence
factors D are adopted as oscillatory inertia weights w [17].
The vanation trend of six oscillatory inertia weights with the
number of iterations 1s shown in Fig. 3, and the calculation
formula is defined as:

w,=2Q2a-1yexp(—(1.50)" / Max _iter®) (7

w, =10((a—0.5)(1— cos(l / Max_iter—0.357))) (8)

w,=5((a—0.5)1+sin(l/ Max _iter+)) ©)
w, ~(a-0.5)(2-tan(l / Max _iter) (10)

w, = 4((a— 0.5)(1— (1/ Max _ iter)")) (11)
w,=4((a— 0.5)(2 exp(0.7 / Max _iter))) (12)

where, 4 represents a random number uniformly distributed
between O to 1, [ represents the current iteration number,
and Maxiter represents the maximum iteration number. So
the oscillating inertia weight W can be realized by:

2 1 2 i—
XJZE(XJerxXJl) (13)

The oscillating inertia weight W decreases gradually in
accordance with the increase of the iteration number. At the
beginning of the iteration, the attenuation degree of w 1is
lower and can move in a larger range. In the later process of
iteration, the attenuation degree of w increases and the
moving amplitude decreases, so that the optimal solution can
be mined more accurately, thus the exploitation and
exploration capabilities of search can be balanced.

IV. SIMULATION EXPERIMENTS AND RESULT ANALYSIS

A Testing Functions

In the simulation experiments, 24 benchmark functions are
used to evaluate the performance of SSA, so as to show the
validity of the proposed strategy. The expressions of 24
benchmark functions are listed in Table 1 [18], which
includes three kinds. F;-F,, are unimodal functions ,which
have only one global optimal selution,and can efficiently
verify the development ability of the improved
algorithm. Fj;-F,; are multi-peak functions, which have more
than one extreme point or more than one local optimal value,
so as to verify its global optimization performance. I,
are combined functions, which can venify its stability and
robustness.

B. Simulation Results Analysis of Improved 554

This section compares six improved SSAs based on
oscillatory nertia weight {IWn-SSA, »n=1, 2, ... ,6) with the
original 35A and SSA with the inertia weight shown in Eq.
(12) [19]. The particle number of each algorithm is set as 30.
The experimental results of function optimization are
illustrated in Fig. 4.
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Fig. 3 Six oscillation inertia weights.
TABIE 1. BENCHMARK FUNCTIONS
Function Dim Range finin
Flay=D "] 30 [-100,100] 0
Bx=3" lx+T1. %l 30 [-10,10] 0
n 1 2
Ex=3" (Z e ) 30 [-100,100] 0
Fy(x) =max {|x, .1 <i < n} 30 [-100,100] 0
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Bx=3" [mo(xm R 1)2}
F =" ix'+rand[0,1)

F)=g 410050,

E®=2,
E@=30
Rl =X 0%

A= () (2
Fy@=(q-1 + 3" (25 - x,)

|:' +

X

x|

30 [-30,30] 0
30 [-100,100] 0
30 [-10,10] 0
30 [-1.1] 0
30 [-100,100] 0
30 [-10,10] 0
30 [-1,4] 0
30 [-10,10] 0

Fm(x)=—206Xp[—0.2 lz"leJ—exp[lz’”lcos(zm!)} 204+e 30 [-32,32] 0
n= n
1 i
F;4(x):mz]=lag271_[]:1005[%}& 30 [-600,600] 0
Fy(x) =%{105i11(7:y1)+ S (-1 [1+ 10sin? (7y,,,) ]
+(3, -1 1+ 3" u(x,10.100,4)
x+1
¥ :”T 30 [-50,50] 0
k(x,—a) x>a
u(x],a,k,m): 0 —a<x<a
k(-x -a)" x<-a
Fo(0)=01sin (3zx )+ 5" (x 1 [1+sin? (373 +1
* ) (s )+ 20, ) 1 ( )] 30 [-50,50] 0
+(x, 1) [1+sin® (27, ) }+ 37 #(x,5,100,4)
Fy(x)=37 |x sin(x,)+ 0.1x 30 [-10,10] 0
FL(x)= Ziz[(xx -1+ (x 7xf)2} 30 [0,10] 0
By (x)=si? (r )+ 3 (o, ~1) [L+10sin® (2w, +1)]
+(w, ~1)*[1+ sin® (27w, | 30 [-10,10] 0
x—1
W =
g
1 n-l . i
b2l (x):[— s (sin(50.05"%)+1 }
20 ”_lzml (\/_( ( ) )) 30 [-10,10] )
5 =5t 2,
F, (x)=—cos(x )cos (xz)e[i(ﬁiﬂ){(lﬂﬂ 30 [-100,100] 0
-1
B, (x) = L+Zjﬁl% 2 [-65,65] 1
210 j+z:=1 (x] - a'v)
i
it X (b!2+b:'x2)
=3 {a] R ve— 4 [-5,5] 0.00030
F (x)—(x . 2-¢—i —6]2+10[1—LJC05 +10 2 [-5,5] -0.398
= oLt s :

The experimental results of 10 runs are listed in Table 2,
which gives the optimal values, average values and variance
values. It can be concluded from the above simulation results
the function optimization performance under six oscillatory
inertia weights based SSAs (TWn-SSA, n=1, 2, ... 6) is better
than standard SSA.

Seen from the results of the convergence curves on the
testing functions, most of the results show that the oscillatory
nertia weights based SSAs improve the convergence speed

and accuracy than other algorithms to a great extent. In the
mean time, it can be seen from Table 2 that the effectiveness
of six oscillatory inertia weights based SSA is very stable in
the process during 10 times optimization. From all the test
results, they greatly improve the exploration ability and
convergence speed and accuracy in most cases. In particular,
in the fixed-dimensional test function, the robustness and
reliability are improved under ensuring its optimization
accuracy.
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Fig. 4 Convergence curves of function optimization.
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TABLE 2. QUANTITATIVE INDICATORS OF ALGORITHM OPTIMIZING FUNCTIONS

Function TW1-3SA TW2-38A IW3-35A IW4-38A IW5-8SA IWe6-3SA IW-SSA 3SA
Best 5.25E-24 5.52E-38 3.1E-20 3.44E-24 1.82E-31 8.77E-39 3.99E-15 0.028657
I Ave 1.65E-23 1.11E-36 1.12E-19 2.04E-23 1.28E-30 1.1E-37 4.86E-15 0.701742
Std 1.6E-23 9.1E-37 5.71E-20 2.38E-23 1.54E-30 2.08E-37 4.52E-16 0.548558
Best 5.25E-24 5.52E-38 31E-20 3 44E-24 1.82E-31 8.77E-39 3.99E-15 0.028657
F, Ave 1.65E-23 1.11E-36 1.12E-19 2.04E-23 1.28E-30 1.1E-37 4.86E-15 0.701742
Std 1.6E-23 9.1E-37 5.71E-20 2.38E-23 1.54E-30 2.08E-37 4.52E-16 0.548558
Best 7.29E-47 2.56E-73 3.98E-3% 4.96E-45 5.02E-60 4.85E-75 2.39E-28 41.12348
F, Ave 9.78E-45 24E-70 4.29E-37 8.58E-44 1.23E-58 1.31E-73 4.97E-28 397.7453
Std 1.6E-44 6.45E-70 4.67E-37 1.02E-43 1.54E-58 1.89E-73 231E-28 2591304
Best 3.01E-24 2.13E-37 242E-20 2.52E-24 1.04E-31 5.11E-39 3.29E-15 0.957931
F, Ave 1.16E-23 1.14E-36 1.2E-19 3.14E-23 6.01E-31 6.13E-38 4.18E-15 5.824102
Std 6.76E-24 1.37E-36 7.71E-20 3.47E-23 5.43E-31 7.72E-38 447E-16 3.014837
Best 28.32454 28.2824 28.37659 2831332 28.31379% 28.35955 28.26724 2372297
F, Ave 28.38628 28.36828 2840951 28.38415 28.38772 2841726 28.38462 149.7875
Std 0.040314 0.04761 0.027578 0.045633 0.045969 0.040153 0.070064 2588257
Best 5.92E-06 2.66E-06 3.65E-08 1.68E-06 1.49E-06 8.31E-06 2.38E-07 0.026192
F, Ave 6.62E-05 7.06E-05 34E-05 7.94E-05 6.6E-05 4.88E-05 4.07E-05 0.076214
Std 6.15E-05 6.09E-05 3.94E-05 6.59E-05 7.78E-05 3.63E-05 4.99E-05 0.027131
Best 5.34E-41 5.43E-68 1.13E-33 7.46E-40 1.63E-55 1.69E-70 5.94E-23 0.514017
F, Ave 1.29E-39 2.34E-65 24E-31 1.09E-38 1.76E-53 1.37E-68 9.7E-23 960.127
Std 2.12E-39 3.53E-65 4.61E-31 9.67E-39 4.11E-53 1.42E-68 2.2E-23 1108.555
Best 8.07E-52 9A41E-77 547E-43 1.07E-49 8.19E-64 9.75E-79 9.55E-35 2.88E+08
F, Ave 2.51E-47 1.09E-73 2.68E-40 4.35E-47 9.65E-61 5.66E-76 1.48E-32 891E+13
Std 5.88E-47 1.94E-73 4.27E-40 7.58E-47 1.22E-60 7.7E-T6 3 8E-32 247E+14
Best 8.96E-24 4.05E-36 1.76E-19 4.86E-23 1.89E-30 8.79E-38 3.79E-14 1.444358
F, Ave 1.53E-22 1.45E-35 9.97E-19 6.72E-22 2.21E-29 5.63E-37 4.71E-14 12.26086
Std 1.15E-22 1.88E-35 7.02E-19 6.87E-22 2.34E-29 4.88E-37 6.66E-15 9452518
Best 1.3E-240 0 7.6E-198 1.3E-231 1.7E-305 0 3.6E-145 6.54E-36
I, Ave 9.7E-224 0 7.5E-187 6.7E-222 1.3E-298 0 2.2E-143 1.39E-24
Std 0 0 0 0 0 0 2.9E-143 4.16E-24
Best 5.6E-50 3.08E-77 5.75E-42 3.04E-4% 3.89E-64 1.35E-78 2.37E-31 1.73E-11
F Ave 1.94E-48 6.95E-75 2.72E-40 9.15E-48 6.9E-61 1.7E-76 3.29E-31 3.14E-11
Std 2.72E-48 7.95E-75 3.38E-40 7.31E-48 1.75E-60 345E-76 7.05E-32 9.04E-12
Best 0.66667 0.666669 0.666718 0.666725 0.666672 0.666699 0.666674 0.666668
F, Ave 0.667059 0.666867 0.667077 0.667033 0.667155 0.667047 0.66687 4899772
Std 0.000341 0.000159 0.000544 0.000254 0.000602 0.000407 0.000274 515.1308
Best -84%96 -8786.64 -9347.1 -8511.84 -9055.16 -9022.17 -8740.42 -8869.5
I, Ave -7419.46 -7826.89 -7790.37 -76754 -7849.52 -7758.54 -7585.91 -7957.54
Std 6053683 576.2334 914.975 6599136 933.3411 763.7965 654.9152 3835722
Best 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 4.44E-15 0.931305
F, Ave 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 4.44E-15 22348
Std 0 0 0 0 0 0 0.22321 0.63445
Best 6.78E-11 1.06E-10 9.82E-11 7.88E-11 1.05E-10 943E-11 9.25E-11 1.513352
F. Ave 0.001519 1.55E-10 1.7E-10 0.000168 1.86E-10 1.68E-10 1.33E-10 4.949989
Std 0.004556 2.69E-11 7.11E-11 0.000504 6.24E-11 5.94E-11 2.11E-11 2.929871
Best 0.010987 0.010987 1.1E-09 1.89E-09 1.04E-09 1.21E-09 1.79E-09 1.79E-09
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Fm Ave 2.079548 2375057 1484136 1.192927 0.894122 2377254 1.782846 0.017491
Std 1354191 1.182035 1481942 1447776 1.356426 1.177681 1449164 0.017804
Best 6.97E-26 1.34E-38 2.13E-21 2.25E-25 2.97E-32 227E-39 4.14E-16 1.042736
F. Ave 8.53E-25 9.66E-38 8.12E-21 2.78E-24 9.07E-32 6.2E-39 4.93E-16 3.289686
Std 7.8E-25 6.29E-38 7.89E-21 1.45E-24 5.36E-32 3.74E-39 4 86E-17 1.656366
Best 542E-10 7.91E-10 1.3E-09 9.82E-10 7.06E-10 8.99E-10 1.08E-09 9.79E-10
F1 3 Ave 241E-07 9.16E-09 2.61E-08 4.31E-07 3.06E-08 2.9E-08 6.69E-08 0.188543
Std 6.19E-07 9.93E-09 3.23E-08 1.04E-06 5.21E-08 6.38E-08 8.69E-08 0.56563
Best 1.94E-08 2.16E-07 0.089529 5.06E-07 6.64E-09 0.089528 8.39E-07 2.516747
F, Ave 0.188009 0.197656 0.303969 0.204927 0.232524 0.295451 0.177008 9.584603
Std 0.109283 0.08901 0.151235 0.177468 0.154247 0.126932 0.140147 5.042292
Best 3.68E-13 1.12E-19 3.54E-11 4.02E-13 14E-16 211E-20 1.29E-08 1.030016
an Ave 6.32E-13 21E-19 6.69E-11 14E-12 3.24E-16 42E-20 1.5E-08 1.314713
Std 1.81E-13 8.91E-20 2.65E-11 7.16E-13 24E-16 1.61E-20 1.34E-09 0.13531
Best 2145671 107.7467 2231278 2331786 242.4359% 192.9462 335.6792 349.6402
F,  Ave 3456051 2927521 339.6085 3449242 348.8447 311.1972 435.5458 583.6005
Std 107.0131 9935754 9622215 8628318 80.95211 117.1058 66.50761 136.0176
Best 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004
F22 Ave 0.998004 1.196809 1.097407 0.998004 0.998004 0.998004 1493834 0.998004
Std 2.33E-16 0397611 0.298208 1.79E-16 2.05E-16 298E-16 0.91324 1.72E-16
Best 0.000307 0.000308 0.000307 0.000308 0.000307 0.000307 0.000307 0.00062
F,. Ave 0.000341 0.000319 0.000355 0.000397 0.000362 0.000335 0.000463 0.000832
Std 3.76E-05 1.66E-05 0.0001 0.000118 0.000102 3.76E-05 0.000286 0.000205
Best 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887
F24 Ave 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887
Std 8.85E-15 1.60E-14 1.55E-14 14E-14 8.38E-15 246E-14 1.31E-14 2.02E-15
Problems,” Advances in Engineering Software, vol. 114, pp. 163-191,
V. CONCLUSION [5] 2(21; Sayed, G. Khoriba, and M. H. Haggag, “ A Novel Chaotic Salp

As a new biological heuristic algorithm, SSA can solve
some optimization problems to some extent. However, in
some specific cases, it can not show a good search ability
and high optimization accuracy ability. In this paper, the
adaptive inertia weights are firstly introduced. To represent
the performance of the proposed strategy, 24 benchmark
functions are adopted to be optimized and compared the
performance of SSA. The optimization results show
IW-SS5A has a good optimization effect on most of the
functions, and it reveal that proposed ITW-SSA presented
competitive and greater results compared to SSA. While
increasing its convergence speed and accuracy, it ensures the
balance of exploration and exploitation capabilities of SSA,
and achieves best results.
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