
Abstract—Internet worms pose a serious threat to network
security due to their automated scanning and propagation
strategies. In this paper, we first propose a novel network worm
attack model of SCEIRS based on worm behavior. A novel
connected state is established to represent machines completely
compromised by a connection scan but not infected. The
connection rate and code delivery rate combined with this new
state are introduced. Compared with the previous SEIRS model,
the SCEIRS model can reflect the accurate transition behaviors
of machines in the target acquisition (scanning a target machine
and attempting to establish a connection before actual infection
behaviors occur) and code delivery stages (attempting to infect
a target machine through the delivery of worm code). Moreover,
it provides us with a new perspective for analyzing the key
parameters that affect worm propagation and the effect of
countermeasures on worm containment. Then, we propose the
M-SCEIRS model, which combines both the trap and feedback
mechanisms of honeypots on the baseline of the proposed new
state. In the M-SCEIRS model, the basic reproduction number,
equilibria, and stability are also obtained. Numerical results
suggest that countermeasures during the target acquisition and
code delivery stages are crucial for mitigating worm
propagation in the early stages. Furthermore, the two
mechanisms of honeypots combined in the M-SCEIRS model
are effective for worm control.

Index Terms—internet worm, propagation model, honeypot,
basic reproduction number, state transition.

I. INTRODUCTION

NTERNET worms are devious malware that can
self-replicate and quickly spread across several machines

on the internet or within a corporate network [1], [2]. The
worm monitors the internet or an internal network for other
vulnerable targets from its perch on an infected machine and
then spreads to other machines by scanning the entire IPv4
address. In a matter of days, any vulnerable machines
connected to the internet would be infected. On July 19, 2001,
the Code Red worm began to spread by uniformly scanning
the IP address space. Due to infection and the resulting
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increase in bandwidth consumption, this worm caused
substantial disruptions, costing approximately $2 billion in
financial losses [3]–[5].

In the fight against internet worms, honeypot technologies
are intriguing weapons [6]–[8]. They can be used to reroute
malicious worm traffic to dedicated spoof services, catch and
analyze worms safely, and finally contain worm propagation
across networks. Unfortunately, they are still lacking test
experience when used over large networks.

An essential objective has been built to use a mathematical
model to examine worm behavior and the effects of safety
countermeasures on worm proliferation. Additionally,
simulating the influence of honeypots on worm attacks
provides critical parameters for controlling worm
propagation.

Due to the similarity between biological viruses and
malware, researchers have proposed many different
biological models to explore the dynamic behaviors and
characteristics of malware, including worms in networks in
which the machines are considered nodes and their joints
represent corresponding communications. The classical SI
model [9] is the most basic epidemic propagation model,
which consists of only susceptible and infected states.
Subsequent models, including SIR [10], [11], SIRS [12], [13],
SIQR [14], [15], SEIR [16], and SEIRS [17]–[19], consider
more factors, such as the malware characteristics and human
intervention (e.g., immunity and quarantine measures).
Toutonji et al. [20] proposed an SEIRS model that considered
accurate locations for dysfunctional nodes and their
replacements in state transition. Based on Toutonji’s work,
J.D. Hernández Guillén et al. [21] proposed an improved
SEIRS model that considered more realistic parameters
related to worm propagation.

All the models assume that nodes from susceptible nodes
turn into exposed or infected nodes in an instant. According
to Glenn Gebhart [22], a complete worm attack process
includes target acquisition (once completed, the nodes will
transition from a susceptible to a connected state), delivery of
hostile code (once completed, the nodes will transition from a
connected to an exposed state), and execution of hostile code
(once accomplished, the nodes will transition from an
exposed state to an infected state). As a result, the transition
from susceptible to exposed nodes is not immediate.

To tackle the shortcomings of the aforementioned models,
we propose an accurate worm attack propagation model of
SCEIRS, which focuses on the disruption approach in the
worm propagation chain. A new "connected state" is
introduced in this model, which depicts nodes that are
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connected to infected nodes but are not infected. Unlike other
worm propagation models, we explore corresponding
countermeasures for disrupting worm propagation in the
connected state.

We integrate honeypots as state variables and combine
both the trap and feedback mechanisms into a new model of
M-SCEIRS to explore the influences of each mechanism on
worm propagation when the connected state is introduced.
The results show that honeypots, when used in combination
with a complete worm attack propagation model, have the
overall effect on containing worms.

This paper is organized as follows. Section 2 introduces
the SCEIRS and M-SCEIRS models. The basic reproduction
number and the global stability of the worm-free equilibrium
are investigated in Section 3. In Section 4, numerical
simulations and suggestions are presented. Finally, Section 5
concludes the paper.

II. MODEL FORMULATION

A. SCEIRS Model Considering the Connected State
Safety countermeasures are an essential component that

affects worm propagation [23]. Thus, measuring their effects
is of great importance for conquering worms and preventing
their outbreaks in an early phase. To complete this task, an
accurate model that can depict the process of a worm attack is
needed. Algorithm 1 illustrates a typical scan-based worm
attack and propagation algorithm.

Algorithm 1 worm attack and propagation process

1. Generate an IP address
2. Sending a TCP/SYN packet to a machine randomly
If a TCP SYN-ACK packet is received, then
Accomplish the three-way handshake and establish a connection with

target machine
Else
Return to 2

3. Deliver hostile code to connected machine
4. Induce connected machine to execute hostile code
5. Newly infected machine starts from 1

Our proposed model is based on the SEIRS models
proposed by Toutonji et al. [20] and J.D. Hernández Guillén
et al. [21], in which the concept of network node dysfunction
occurs in an infectious state, and the replacement of
dysfunctional nodes occurs in a recovered state, which is
consistent with a real network environment. The SEIRS
models presented by Toutonji et al and J.D. Hernández
Guillén et al., similar to other worm attack propagation
models, have two main issues. First, the transition of nodes
from a susceptible state to an exposed state is not immediate
since a connection scan needs to be established before any
infections. Furthermore, the impact of countermeasures on
the target acquisition phase and code delivery phase should
be considered. Second, the use of an abstract infection
coefficient to illustrate the worm attack mechanism is overly
simplistic.

The arguments above motivate us to develop a more
suitable SCEIRS model for worm attacks that considers a

new "connected state." The SCEIRS model classifies nodes
as being in one of five different stages, and any node can
potentially be in any of these stages at any time. The states of
nodes in our model are defined as follows:

(1) Susceptible (S): including nodes that are vulnerable to
worm attack.

(2) Connected (C): including nodes that have established a
connection with infected nodes but have not yet been infected
by worms.

(3) Exposed (E): including nodes that have been infected
but have not yet executed hostile codes and thus are not
actively infectious.

(4) Infected (I): including nodes that are actively scanning
or infecting new victims.

(5) Recovered (R): including nodes that have been patched
and thus immune to a worm attack temporarily.

The state-transition rules of the proposed SCEIRS model
are shown in Figure 1, and the respective definitions of the
variables and parameters involved are shown in Table 1.

Fig. 1. The state-transition rules of the SCEIRS model.

TABLE I
NOTATION AND EXPLANATION FOR PROPOSED MODELS

Notation Explanation
S(t) number of susceptible nodes at time t
C(t) number of connected nodes at time t
E(t) number of exposed nodes at time t
I(t) number of infected nodes at time t
R(t) number of recovered nodes at time t
MA(t) number of susceptible honeypots at time t
MB(t) number of infected honeypots at time t
N total number of nodes
M total number of honeypots
β connection rate between susceptible and infected nodes
β1 connection rate under the effect of honeypots between

susceptible and infected nodes
β2 connection rate between infected nodes and honeypots
ε code delivery rate
α code execution rate
γ transition rate from infected to recovered nodes
θ dysfunctional rate
ψ1 transition rate from susceptible to recovered nodes
ψ2 transition rate from connected to recovered nodes
ψ3 transition rate from exposed to recovered nodes
ϕ transition rate from recovered to susceptible nodes
μ feedback rate
λ replacement rate

To model Code Red, [24] define χ as the average
probability that an infected node hits a specific IP address in
the scanning space per second, and χ is characterized as

= ,


(1)
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where η denotes the average number of scans an infected
node sends out per unit time, and Ω denotes the scanning
space, i.e., the entire IPv4 address space (Ω=232).
Considering that the transition from a susceptible state to a
connected state can be affected by security countermeasures,
we define the connection rate as

,pp   


(2)

where p denotes an adjustable constant governed by the
network security status, such as some countermeasures that
have been deployed. The SCEIRS model for the propagation
dynamics of worms is given by the following system of
ordinary differential equations:
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The SCEIRS model focuses on the connected state, and
its transition and the impact of countermeasures to disrupt the
transfer from the susceptible to the connected state, as well as
from the connected state to the exposed state, are taken into
account.

B. M-SCEIRS Model with the Trap and Feedback
Mechanisms of a Honeypot
A honeypot is an ideal network decay to attract attacks by

receiving probes from worms. It can be deployed in a variety
of locations on a network. Figure 2 shows the deployment
blueprint of the honeypot. A honeypot outside the firewall
can trap more probes from an external network than from the
internal network and does not increase any risk to the internal
network. The downside of external honeypots is that they are
incapable of capturing intrusions from internal networks. For
a honeypot with effective trap mechanisms, it is vital that
they are properly deployed.

Fig. 2. Honeypot framework under a worm scan

Let κ be a constant determined by the deployment

locations of honeypots in the network; then, the connection
rate under the effect of honeypots between susceptible nodes
and infected nodes is

1
[ ]= M p 




, (4)

where   ,
0,

M M
M

M
  

 


  
   

.

The ideal condition is that all probes are intercepted, and
then infected nodes try to infect each of these honeypots.
Thus, the attraction mechanism of honeypots not only
consumes the attack resources of worms, interrupting the
transition from a susceptible state to a connected state, but
also serves as the premise to realize the feedback mechanism,
which aims to actively send immunization codes to nodes that
have not been immune.

Additionally, the connection rate between a honeypot and
an infected node is

2 = 


. (5)

Algorithm 2 trap and feedback mechanisms of honeypot

1. Choose a location to deploy and configure the honeypot
2. Keep the honeypot monitor at the network
If a TCP/SYN packet is received, then

Accomplish the three-way handshake and establish a connection with the
infected machine
Else

Continue to perform step 2
3. Analyze the infection behavior of the worm and prepare immunization
code
4. Scan the network and remotely patch vulnerable machines

Based on the SCEIRS model, the M-SCEIRS model,
which incorporates both a trap mechanism and a feedback
mechanism, is proposed. According to the feedback
mechanism [25], [26], a honeypot can contain worms on a
network scale by transmitting immunizing information to
other nodes once it identifies a worm. To our knowledge,
however, current models have not accounted for the trap
mechanism. Worm probes can be intercepted dramatically,
reducing the probability of worms infecting other nodes and
preventing the early spread of worms. Using the previously
discussed connection rate, we can add the trap mechanism to
our model.

The M-SCEIRS model enables us to assess honeypot
implementation from a new perspective and offers us a
comprehensive strategy for efficiently conquering worms.
Honeypots are included as state variables based on the five
previously outlined states:

(1) Susceptible honeypots (MA): including honeypots that
have not yet detected a new worm.

(2) Infected honeypots (MB): including honeypots that
have established a connection with infected nodes and
received hostile code from them.
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Fig. 3. The state-transition rules of the M-SCEIRS model.

The set of differential equations for the M-SCEIRS model
is the following system:
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（

(6)

III. MODEL ANALYSIS

A. The Basic Reproduction Number
Using the reduction method, system (6) can be reduced as:
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(7)

Let N and M denote the total number of nodes and
honeypots in the network, respectively, which satisfy

=N S C E I R    and .A BM M M  Then, the compact
feasible region of the system (7) is denoted by
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which is a positively invariant set. The worm-free
equilibrium of system (7) is
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the spectral radius of a matrix called the next-generation
matrix [27, 28]. Let
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B. Global Stability of the Worm-Free Equilibrium
Theorem 1. Suppose that 0 1,  then, the worm-free

equilibrium 0E of the system (7) is globally asymptotically
stable in Ω.
Proof. Set a Lyapunov function
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Ω. By the LaSalle invariance principle [29], we complete the
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proof of Theorem 1.

C. Sensitivity Evaluation
In order to eradicate the worms or inhibit their epidemics

below a certain level, it is critical to have an overall
knowledge of the effects of parameters that determine the
basic reproduction number ℜ0 on worm propagation. We are
therefore interested in studying the rate of change of ℜ0 as the
parameter values are changed.

From equation (8), the basic reproduction number ℜ0 of
system (7) depends on the following parameters: β1, ε, α, θ, γ,
ψ1, ψ2, ψ3 and ϕ. Using a normalized sensitivity index (NSI),
one may estimate the rate of change of ℜ0 given a change in
the parameter value. NSI[parm] is defined as:

0
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From these results, we can see that ℜ0 decreases as β1, ε, α,
and ϕ decrease or θ, γ, ψ1, ψ2, and ψ3 increase. For illustration,
we have computed the NSI for the special case of parameter
values listed in Table Ⅱ . The NSI and corresponding %
values in Table Ⅲ represent the changes in parameter values
needed for a 1% reduction in ℜ0.

TABLE Ⅱ
VALUES OF THE PARAMETERS THAT CORRESPOND TO THE WORM-FREE

EQUILIBRIUM

Parameter Value Unit
β1 0.00000032783 second-1

ε 0.08 second-1

α 0.03 second-1

θ 0.033 second-1

γ 0.005 second-1

ψ1 0.0005 second-1

ψ2 0.0007 second-1

ψ3 0.00035 second-1

ϕ 0.000005 second-1

From Table Ⅲ, to get a 1% decrease in the value of ℜ0, it
is necessary to decrease the values of β1 and ϕ by 1% and
1.010%. Besides, a 1.010% increase in the values of ψ1 is
required to achieve a 1% reduction in the value of ℜ0.
Consequently, from the NSI, the optimum approaches of
reducing the value of ℜ0 are to decrease the connection rate
between susceptible and connected nodes (β1), decrease the
transition rate from recovered to susceptible nodes (ϕ), and

increase the transition rate from susceptible to recovered
nodes (ψ1), respectively.

TABLE Ⅲ
NSI OF ℜ0 AND CHANGE IN PARAMETER FOR 1% CHANGE IN ℜ0

Parameter NSI[parm] Corresponding % changes
β1 1 1
ε 0.008674 115.287
α 0.0115 86.730
θ -0.8684 -1.151
γ -0.1315 -7.604
ψ1 -0.9901 -1.010
ψ2 -0.008674 -115.287
ψ3 -0.0115 -86.730
ϕ 0.9901 1.010

IV. NUMERICAL EVALUATION

In this section, we first investigate the behavior of the
existing SEIRS and propose the SCEIRS model at the
worm-free equilibrium point. Then, the effects of worm
containment strategies determined by the values of
coefficients on the target acquisition and code delivery stages
will be evaluated. Next, we simulate the effects of the trap
and feedback mechanisms of honeypots on the proposed
M-SCEIRS model.

A. The SCEIRS model
The modified SEIRS model for worm propagation

proposed by J.D. Hernández Guillén et al. [21] is given by the
following system:
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In system (11), the incidence is defined by SI
N


(ω is the

infection rate), while in the system (3), we define the
incidence as:

= .pSI pSI SI  


In the SCEIRS model, the incidence is defined by a
precise physical definition that considers the process of
establishing connections between worms and target nodes.
Using the fourth-order Runge‒Kutta (RK4) method, we
illustrate the dynamics of the two systems by performing
numerical simulations. The experiments focus on actively
scanning worms such as Code Red, which uses the scanning
strategy to compromise susceptible nodes in the network that
have a 232 address space. In the simulations, each infected
node launches 4,000 probes per second. The total number of
nodes is N = 360,000, with initial values: S (0) = 359,950, C
(0) = 0, E(0) = 0, I (0) = 50, and R (0) = 0. The remaining
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parameters are as follows: κ = 8, p = 0.88, ω = 1.27, β =
0.0000075, ε = 0.08, α = 0.03, ψ1 = 0.0005, ψ2 = 0.0007, ψ3 =
0.00035, ϕ = 0.000005, θ = 0.033, γ = 0.005, λ = 0.25, and μ =
0.00001. Consequently, we obtain the following basic
reproduction number of the system (11):

0
1 3

= =0.33 1.
( )( )( )
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The reproduction number of system (3) is as follows:
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Fig. 4 and Fig. 5 show the dynamics of the system (11) and
system (3), respectively. The results show, as expected, that
the exposed and infected nodes in Fig. 5 reach their peak
more slowly than those in Fig. 4 due to the time it takes for
worms to scan and connect with the target nodes.
Furthermore, since the chain of worm propagation can be
disrupted at the target acquisition and code delivery stages,
there is a decline in the scale of infection in Fig. 5 compared
with Fig. 4.

Fig. 4. Worm-free behaviors of the SEIRS model.

Fig. 5. Worm-free behaviors of the SCEIRS model.

To illustrate the impact of the connected state on the
infection outbreaks, we use varying connection rates and
code delivery rates in the following time history and
three-dimensional phase plots.

Case Ⅰ: Connection rate
Highlighting the connection rate is our distinction. Worm

propagation begins with targeting a system and establishing a

connection with it. However, no existing models consider
this early factor that influences worm spread at the target
acquisition stage. From equation (2), p is an important
parameter that affects the connection rate. We denote (1－p)
as the interception rate of probes launched by worms. As seen
in Fig. 6 and Fig. 7, a lower value of p is beneficial for
containing the spread of the worm in terms of the reduction of
the speed and number of newly increased connected and
infected nodes. To decrease p, countermeasures are needed,
such as turning off unneeded services or deploying a firewall
on the path between susceptible nodes and infected nodes.
Fig. 8 and Fig. 9 show the phase plots for (C, E, I) and (S, I, R)
states, respectively, with different values of p.

Fig. 6. Effect of interception rate on the connected state.

Fig. 7. Effect of the interception rate on the infected state.

Fig. 8. Phase plot of the SEIRS model (C, E, I).
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Fig. 9. Phase plot of the SEIRS model (S, I, R).

Case Ⅱ: Delivery rate of hostile code
After the connection has been established, the next step for

the infected node is finding ways to transfer its hostile code to
the target system. Fig. 10 and Fig. 11 show the effects of
different code delivery rates on connected and infected states.
From Fig. 10, a lower code delivery rate results in a longer
time for the connected population to reach its peak, and the
longer the time, the larger the peak is. In Fig. 11, a lower code
delivery rate results in a lower overall number of infected
nodes. Furthermore, a spot of decrease in ε results in a
considerable reduction in the total number of infected nodes.
From this point, it is essential for administrators and users to
pay attention to decreasing ε to disrupt the transmission of
hostile code, thus containing worm propagation at an early
stage. The most common method for this step is to maintain
an Intrusion Detection System (IDS). For an unknown worm,
an effective IDS can provide a real-time warning mechanism
against newly released worms. Fig. 12 and Fig. 13 show the
phase plots for the (C, E, I) and (S, I, R) states, respectively,
with different values of ε.

Fig. 10. Effect of the code delivery rate on the connected state.

Fig. 11. Effect of the code delivery rate on the infected state.

Fig. 12. Phase plot of the SCEIRS model (C, E, I).

Fig. 13. Phase plot of the SCEIRS model (S, I, R).

The two cases discussed above cover the impact of the
connection rate and code delivery rate on the target
acquisition and code delivery stages. The simulation results
show that worm propagation can be slowed and contained if
we consider the corresponding safety measures to disrupt
these two stages.

B. Control strategies
Following the target acquisition and code delivery stages,

assuming the worm successfully delivered hostile code to the
target system, a discussion of containment strategies for
continued worm dispersion is presented. From the explicit
expression of the basic reproductive number ℜ0 of the system
(3) and taking into account that 0 < β, ε, α, θ, γ, ψ1, ψ2, ψ3, ϕ ≤
1, the following can be determined:

0 3
2

1 2 3

= >0.
( )( )( ) ( )

N
        


    

According to Theorem 1, the prevalence of worms in
networks is entirely governed by ℜ0. In addition to the
connection rate and code delivery rate stated above, it should
be noted that the code execution rate is a crucial parameter
that can reduce the value of ℜ0. Consequently, we evaluate
the effect of α on the dynamics of worm spread. On the other
hand, even if malicious code has resided on the target system,
it is still possible to contain the epidemic by taking safety
precautions. To obtain effective worm containment solutions,
the relationship between α and the maximum number of
infected nodes is determined by repeated numerical
simulations using the same parameter values in part A. From
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the simulation results depicted in Figure. 14, the following
conclusions and suggestions can be drawn:

(ⅰ) There exists a threshold for α, below which the
maximum population of infected nodes sharply increases.
Otherwise, the variation in the maximum population of
infected nodes is minimal.

(ⅱ) Effective countermeasures are necessary to keep the
value of α as low as possible. Since worms use various means
to induce a target system to execute malicious code, system
administrators must adopt the appropriate methodologies to
remain ahead of the attackers. Another strategy for users to
decrease the value of α is to refrain from running programs
they have no reason to trust, which requires system
administrators to empower users with adequate training and
reminders.

Fig. 14. The relationship between α and maximum population of infected
nodes.

C. The M-SCEIRS model
To investigate the impact of honeypots on suppressing

worm propagation, we implement the M-SCEIRS model with
several simulations. In the M-SCEIRS model, we setM = 300,
and from (4) and (5), we have the following values: β1 ≈ 3.28
×10-7 and β2 ≈ 7.45×10-6. The rest of the initial values and
parameters are the same as those of the SCEIRS model. Then,
we can obtain that ℜ0 = 0.26 < 1, which implies that the worm
eventually disappears according to Theorem 1. Fig. 15 shows
the dynamics of the system (6). Comparing Fig. 15 with Fig.
5, a noticeable reduction occurs in both population and
propagation speed for connected, exposed and infected nodes,
which confirms the effectiveness of the honeypot for
conquering worms. Fig. 16 and Fig. 17 show the phase plots
for the (C, I, MA) and (C, I, MB) states, respectively, with
different initial values of infected nodes.

(a)

(b)

Fig. 15. Worm-free behaviors of the M-SEIRS model.

Fig. 16. Phase plot of the M-SCEIRS model (C, I, MA).

Fig. 17. Phase plot of the M-SCEIRS model (C, I, MB).

With the baseline of the M-SCEIRS model, we examine
the trap mechanism of honeypots whose implementation is
subject to the number and location of deployed honeypots in
case Ⅰ and the feedback mechanism of honeypots in case Ⅱ.

Case Ⅰ: Number and location of deployed honeypots
Fig. 18 and Fig. 19 show the effect of the number of

deployed honeypots on connected and infected nodes,
respectively. It can be noted that when we set the number of
honeypots to zero, the M-SCEIRS model turns into the
SCEIRS model. From Fig. 19, compared with the network
without honeypots, when deployed with 300 honeypots, the
maximum number of infected nodes is reduced by nearly fifty
percent. Fig. 22 and Fig. 23 show the effect of different
values of parameter κ on connected and infected nodes,
respectively. The result indicates that a reasonable value of κ
also has a considerable effect on containing worm spread.
Combining Fig. 18 and Fig. 23 with Formula (4), we can
conclude that the trap mechanism of the honeypot is effective,
and we can improve its efficiency either by increasing the
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number of deployed honeypots or choosing a reasonable
deployment location. Normally, numerous honeypots can
increase the maintenance cost, whereas we can increase κ as
much as we can by choosing appropriate deployment
locations. Because the value of κ has an overall effect on
containing the speed of worm propagation by intercepting the
probes sent by worms to increase κ, network administrators
must investigate the topology of the entire network and then
deploy honeypots at key locations. Fig. 20, Fig. 21, Fig. 24
and Fig. 25 further reveal the effect of the trap mechanism of
the honeypot on the dynamics of the M-SCEIRS model by
phase plots.

Fig. 18. Effect of the number of deployed honeypots on the connected state.

Fig. 19. Effect of the number of deployed honeypots on the infected state.

Fig. 20. Phase plot of the M-SCEIRS model (C, I, MA).

Fig. 21. Phase plot of the M-SCEIRS model (C, I, MB).

Fig. 22. Effect of the location of the deployed honeypot on the connected
state.

Fig. 23. Effect of the location of the deployed honeypot on the infected state.

Fig. 24. Phase plot of the M-SCEIRS model (C, I, MA).
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Fig. 25. Phase plot of the M-SCEIRS model (C, I, MB).

Case Ⅱ: Feedback rate of honeypots
Fig. 26 and Fig. 27 show the effect of the feedback rate on

connected and infected nodes, respectively. In line with
expectations, as a result of the higher feedback rate, the
maximum number of connected and infected nodes and the
speed with which they become connected and infected are
both reduced. This result means that after successfully
capturing the new worm sample, real-time feedback should
be made to ensure that worm diffusion is inhibited. Based on
the above analysis, the feedback mechanism of honeypots is
crucial for worm control, especially when dealing with a new
type of worm. Fig. 28 and Fig. 29 show the phase plots for the
(C, I, MA) and (C, I, MB) states, respectively, with different
feedback rates.

Fig. 26. Effect of the feedback rate on the connected state.

Fig. 27. Effect of the feedback rate on the infected state.

Fig. 28. Phase plot of the M-SCEIRS model (C, I, MA).

Fig. 29. Phase plot of the M-SCEIRS model (C, I, MB).

D. Further discussion
The relationship between the two mechanisms of

honeypots and the dynamics of the M-SCEIRS model will be
investigated. Case I in part C relates the trap mechanism to
the number and location of deployed honeypots. By
combining equations (4) and (8), we can determine that the
value of ℜ0 is effected by the parameters κ and M. Denote
τ(M) = κM, then take partial derivatives of ℜ0 with respect to
β1 and τ(M), we can obtain:
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1 1 2 3

= >0.
( )( )( )( )
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Since ℜ0 determines the full dynamics of the M-SCEIRS
model, we will discuss how the trap mechanism influences
the epidemic that is governed by ℜ0 over time. Taking the
following set of parameters: p = 5, ε = 0.08, α = 0.03, ψ1 =
0.0005, ψ2 = 0.0007, ψ3 = 0.00035, ϕ = 0.000005, θ = 0.033, γ
= 0.005, N = 360,000, and η = 4,000, Figure. 30 demonstrates
that ℜ0 and τ(M) have a negative linear relationship.
Considering that ℜ0 decreases as τ(M) increases, we can
prevent the spread of worms in networks effectively by

(ⅰ) deploying honeypots intentionally as opposed to blindly.
Investigating the boundary of the network and placing
honeypots in strategic areas is required.

(ⅱ) deploying an adequate quantity of honeypots. In Fig.
30, the relationship between threshold value ℜ0 and τ(M)
addresses the question of how many honeypots need to be
financially provided to control the epidemic.

The expression of ℜ0 of the system (7) shows that the
feedback mechanism does not affect this threshold value. The
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analysis results from Case Ⅱ in part C reveal, however, that it
does inhibit worm diffusion.

Fig. 30. The effect of τ(M) on ℜ0.

V. CONCLUSION

To accurately predict worm behavior and the effect of
countermeasures on the target acquisition and code delivery
phases of worm attacks, the SCEIRS model is established by
introducing a new connected state. Based on the SCEIRS
model, we defined the connection rate and code delivery rate
in the target acquisition and code delivery phases,
respectively. Numerical results show that we can mitigate the
damage caused by worms by both increasing the interception
rate and decreasing the code delivery rate. Moreover,
multiple countermeasures are suggested to disrupt the
transition both from the susceptible state to the connected
state and from the connected state to the exposed state. In the
absence of proper worm propagation models and testing
experience of honeypots in large-scale networks, we
proposed the M-SCEIRS model, which combines both trap
and feedback mechanisms to investigate the function of
honeypots in worm containment. Mathematically, we
obtained the basic reproduction number ℜ0 that governs the
full dynamics of the M-SCEIRS model. The parameter β1,
which determines the trap mechanism of the honeypot, can
greatly affect the value of R0. In contrast, the feedback rate
that determines the feedback mechanism of the honeypot
does not affect ℜ0. Evaluations indicate that the effect of the
trap mechanism, which is determined by the number and
location of deployed honeypots, is essential for the early
control of worm spread. On the other hand, increasing the
feedback rate also has an overall effect on worm containment.
In the future, we will combine the honeypot technique with
the quarantine method to construct a more efficient worm
defense system.

REFERENCES

[1] Y. Tang, J. Q. Luo, B. Xiao and G. Y. Wei, “Concept, characteristics
and defending mechanism of worms,” IEICE Transactions on
Information and Systems, vol. 92, no. 5, pp. 799-809, 2009.

[2] S. Qing and W. Wen, “A survey and trends on Internet worms,”
Computers and Security, vol. 24, no. 4, pp. 334-346, 2005.

[3] H. Berghel, “The code red worm,” Communications of the ACM, vol.
44, no. 12, pp. 15-19, 2001.

[4] J. Cowie, A. Ogielski, B. Premore and Y. Yuan, “Global routing
instabilities during code red ii and nimda worm propagation,” Renesys
Corporation, 2001.

[5] D. Moore, C. Shannon and K. Claffy, “Code-red: a case study on the
spread and victims of an Internet worm,” Proceedings of the 2nd ACM
SIGCOMMWorkshop on Internet Measurement, pp. 273–284, 2002.

[6] F. Raynal, Y. Berthier, P. Biondi and D. Kaminsky, “Honeypot
forensics part 1: analyzing the network,” IEEE Security and Privacy
Magazine, vol. 2, no. 4, pp. 72-78, 2004.

[7] D. Graham-Rowe, “Honeypot for hackers,”New Scientist, vol. 171, no.
2303, pp. 15-15, 2001.

[8] N. Provos, “A virtual honeypot framework,” USENIX Security
Symposium, vol. 173, no. 2004, pp. 1-14, 2004.

[9] G. Streftaris and G. J. Gibson, “Statistical inference for stochastic
epidemic models,” Proc. 17th International Workshop on Statistical
Modeling, pp. 609-616, 2002.

[10] W. O. Kermack and A. G. McKendrick, “A contribution to the
mathematical theory of epidemics,” Proceedings of The Royal Society
A Mathematical Physical and Engineering Sciences, vol. 115, no. 772,
pp. 700–721, 1927.

[11] J. Satsuma, R. Willox, A. Ramani, B. Grammaticos and A. S. Carstea,
“Extending the SIR epidemic model,” Physica A: Statistical
Mechanics and its Applications, vol. 336, no. 3, pp. 369-375, 2004.

[12] L. Acedo, G. González-Parra and A. J. Arenas, “Modal series solution
for an epidemic model,” Physica A: Statistical Mechanics and its
Applications, vol. 389, no. 5, pp. 1151-1157, 2010.

[13] B. K. Mishra, and S. K. Pandey, “Fuzzy epidemic model for the
transmission of worms in computer network,” Nonlinear Analysis:
Real World Applications, vol. 11, no. 5, pp. 4335–4341, 2010.

[14] Q. Liu, D. Jiang and T. Hayat, “Dynamics of a stochastic multigroup
SIQR epidemic model with standard incidence rates,” Journal of the
Franklin Institute, vol. 356, no. 5, pp. 2960-2993, 2019.

[15] H. Hethcote, Z. Ma and S. Liao, “Effects of quarantine in six endemic
models for infectious diseases,” Mathematical Biosciences, vol. 180,
no. 1, pp. 141-160, 2002.

[16] Y. Hua and G. Chen, “Network virus-epidemic model with the
point-to-group information propagation,” Applied Mathematics and
Computation, vol. 206, no. 1, pp. 357-367, 2008.

[17] B. K. Mishra and S. K. Pandey, “Dynamic model of worms with
vertical transmission in computer network,” Applied Mathematics and
Computation, vol. 217, no. 21, pp. 8438–8445, 2011.

[18] C. Wang and S. Chai, “Hopf bifurcation of an SEIRS epidemic model
with delays and vertical transmission in the network,” Advances in
Difference Equations, vol. 2016, no. 1, pp. 1-19, 2016.

[19] B. K. Mishra and D. K. Saini, “SEIRS epidemic model with delay for
transmission of malicious objects in computer network,” Applied
Mathematics and Computation, vol. 188, no. 2, pp. 1476–1482, 2007.

[20] O. A. Toutonji, S. M. Yoo and M. Park, “Stability analysis of VEISV
propagation modeling for network worm attack,” Applied
Mathematical Modelling, vol. 36, no. 6, pp. 2751-2761, 2012.

[21] J. H. Guillén, A. M. del Rey and L. H. Encinas, “Study of the stability
of a SEIRS model for computer worm propagation,” Physica A:
Statistical Mechanics and its Applications, vol. 479, pp. 411 – 421,
2017.

[22] G. Gebhart, “Worm Propagation and Countermeasures,” SANS
Institute InfoSec Reading Room, 2004.

[23] C. C. Zou, W. Gong and D. Towsley, “Code red worm propagation
modeling and analysis,” Proceedings of the 9th ACM Conference on
Computer and Communications Security, pp. 138-147, 2002.

[24] C. C. Zou, D. Towsley and W. Gong, “On the performance of Internet
worm scanning strategies,” Performance Evaluation, vol. 63, no. 7, pp.
700-723, 2006.

[25] J. G. Ren and Y. H. Xu, “a compartmental model to explore the
interplay between virus epidemics and honeynet potency,” Applied
Mathematical Modelling, vol. 59, pp. 86-99, 2018.

[26] Q. Fu, Y. Yao, C. Sheng and W. Yang, “Interplay between malware
epidemics and honeynet potency in industrial control system network,”
IEEE Access, vol. 8, pp. 81582-81593, 2020.

[27] M. G. Roberts and J. Heesterbeek, “Characterizing the next-generation
matrix and basic reproduction number in ecological epidemiology,”
Journal of Mathematical Biology, vol. 66, no.4, pp. 1045-1064, 2013.

[28] C. Castillo-Chavez, Z. Feng and W. Huang, “On the computation of ℜ0
and its role on global stability,” Mathematical Approaches for
Emerging and Re-emerging Infection Diseases: An Introduction, vol.
125, pp. 31-65, 2002.

[29] J. P. LaSalle, “The stability of dynamical systems,” Society for
Industrial and Applied Mathematics, 1976.

Engineering Letters, 30:4, EL_30_4_16

Volume 30, Issue 4: December 2022

 
______________________________________________________________________________________ 


	I.INTRODUCTION
	II.MODEL FORMULATION
	A.SCEIRS Model Considering the Connected State
	B.M-SCEIRS Model with the Trap and Feedback Mechanis

	III.MODEL ANALYSIS
	A.The Basic Reproduction Number
	B.Global Stability of the Worm-Free Equilibrium
	C.Sensitivity Evaluation 

	IV.NUMERICAL EVALUATION
	A.The SCEIRS model
	B.Control strategies 
	C.The M-SCEIRS model
	Case Ⅰ: Number and location of deployed honeypots
	Case Ⅱ: Feedback rate of honeypots
	D.Further discussion

	V.CONCLUSION
	REFERENCES



