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Abstract—Based on the stochastic Magnus expansion, an
explicit expression for the solution of the linear stochastic
differential equations is proposed in this paper. By use of the Lie
bracket and the rooted tree, the stochastic Magnus expansions,
which can be used to compute the solutions directly, are
analyzed in detail. Moreover, the global rate 1.0 for the mean-
square convergence is obtained in the numerical algorithm.
Finally, some numerical experiments are given to show the
advantages of this numerical algorithm.

Index Terms—Differential equations, Stochastic Magnus ex-
pansions, Lie bracket, Rooted tree, Mean-square convergence.

I. Introduction

FOR the matrix differential equation

Ẏ = A(t)Y, (1)

where A(t) is a n × n matrix. It was shown in [1] (also see
[2]–[9]) that the solution of this equation is

Y(t) = exp(Ω(t))Y0, (2)

Ω is defined by

Ω̇ = d exp−1
Ω (A(t)), Ω(0) = 0,

where
d exp−1

Ω (H) =
∑
k≥0

Bk

k!
ad[Ω]k[H].

Bk are the Bernoulli numbers, ad[Ω][A] = ΩA−AΩ is the
adjoint operator. Ω satisfies the differential equation

Ω̇ = A(t) −
1
2

[Ω, A(t)] +
1

12
[Ω.[Ω, A(t)]] + . . . .

By Picard fixed point iteration, we have

Ω(t) =
∫ t

0
A(k)dk −

1
2

∫ t

0
[
∫ k

0
A(ξ)dξ, A(k)]dk

+
1
4

∫ t

0
[
∫ k

0
[
∫ ξ

0
A(η)dη, A(ξ)]dξ, A(k)]dk

+
1
12

∫ t

0
[
∫ k

0
A(η)dη, [

∫ k

0
A(ξ)dξ, A(k)]]dk + . . . ,

(3)
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which is the so-called Magnus expansions.

If A(t) commutes with A(s), we have

Ω(t) =
∫ t

0
A(τ)dτ. (4)

The remainder in equation(3) is of size O(t5), the truncated
series which are inserted into Y(t) = exp(Ω(t))Y0 will produce
a better approximation to the solution of the equation (1).
The application of Magnus expansion to numerical com-
putation of differential equations was firstly proposed by
A. Iserles and developed by other authors (see [5]–[11] ).
An important advantage of the Magnus expansion is that,
even if equation (3) is truncated, it still preserves intrinsic
geometric properties of the exact solution. For example, if
equation (1) refers to the quantum mechanical evolution
operator, the approximate solution obtained by the Magnus
expansion is still unitary, no matter where the equation (3) is
truncated. More generally, when equation (1) is considered
on a Lie group G, exp(Ω(t)) will stay on G for all t, provided
A(t) belongs to the Lie algebra associated with G. In the
pioneering work, Iserles and Nørsett translated the advantage
of the Magnus expansion into a powerful numerical algo-
rithm. The methods produced better results than the classical
numerical schemes in the different examples. The structure-
preserving methods for both deterministic and stochastic
differential equations have received much more attention in
theory and application (see [8], [12]). In recent years, the
stochastic differential equations have been widely used in
the simulations of random phenomena appearing in physics,
engineering, economics etc, (see [12], [13]). Some numerical
methods for solving stochastic differential equations have
been investigated and developed (see [12], [14], [15]). An
interesting application of Magnus expansion to the stochastic
case was given in [14], [16]. However, there has not been
the general stochastic Magnus expansion. It is important
to extend Magnus expansion in deterministic case to the
stochastic counterpart. In this paper, we will pay attention
to the linear stochastic differential equation in Stratonovich
sense as follows

dy = a(t)ydt +
d∑

j=1

b j(t)y ◦ dW j(t), y(t0) = y0, y ∈ Rn, (5)

where a(t) and b j(t) ( j = 1, 2, . . . , d) are continuous matrix
functions, and W j(t) ( j = 1, 2, . . . , d) are the standard Winner
processes. Although, there is a vast literature on the linear
differential equation, (see [17], [18]), but lots of them can
not be used to compute the solution directly. Therefore, the
purpose of this paper is to present the formula of Magnus
expansion, which can be immediately used in investigating
the numerical solutions of the linear stochastic differential
equations. In equation (5), there is no reason to expect
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that the functions a(t) and b j(t) associated with the Winner
processes commute. This paper is organized as follows.
In section 2, the formula of stochastic Magnus expansions
is obtained by Lie brackets (see [19]–[21]). In section 3,
based on the theory of rooted trees, we investigate the
explicit form of stochastic Magnus expansions. In section
4, we truncate the explicit Magnus expansions and give an
algorithm with the strong order 1. In the last section, we do
some numerical experiments to show the advantages of our
numerical algorithm.

II. The StochasticMagnus Expansion

In this section , we will use the definition of Lie bracket
(see [11]) to present the formula of stochastic Magnus
expansion. The binary operation is linear in each component,
and subject to the Jacobi identity,

[a, b] = −[b, a], for a, b ∈ g,

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, a, b, c ∈ g.

Equation (5) has the form, when d = 1,

dy(t) = a(t)y(t)dt + b(t)y(t) ◦ dW(t), y(t0) = y0, y(t) ∈ Rn.
(6)

Suppose that the solution of (6) has the following form

y(t) = exp(σ(t))y0 (7)

with
dσ(t) = σ1(t)dt + σ2(t) ◦ dw(t). (8)

Theorem 2.1. The functions σ1(t) and σ2(t) in equation
(8) satisfy the following equations

∞∑
m=0

1
(m + 1)!

ad[σ(t)]m[σ1(t)] = a(t), (9)

∞∑
m=0

1
(m + 1)!

ad[σ(t)]m[σ2(t)] = b(t), (10)

where ad[p]0[q] = q, ad[p]k[q] = [p, ad[p]k−1[q]], k ∈ N.

Proof. Inserting equation(7) into (6), we have

dy = d(exp(σ(t))y0)
= a(t) exp(σ(t))y0dt + b(t) exp(σ(t))y0 ◦ dw(t),

(11)

then

d exp(σ(t)) = a(t) exp(σ(t))dt + b(t) exp(σ(t)) ◦ dw(t). (12)

From the fact that

exp(σ(t)) =
∞∑

k=0

1
k!

(σ(t))k, (13)

we obtain

d(exp(σ(t))) =
∞∑

k=1

1
k!

dσ(t)k =

∞∑
k=1

1
k!

(dσ(t)σ(t)k−1

+ σ(t)dσ(t)σ(t)k−2 + . . . σ(t)k−1dσ(t)).

(14)

Combining equation (14) with equation (8), it implies that

d exp(σ(t)) =
∞∑

k=1

1
k! (

k∑
j=1
σ(t) j−1σ1(t)σ(t)k− j)dt

+
∞∑

k=1

1
k! (

k∑
j=1
σ(t) j−1σ2(t)σ(t)k− j) ◦ dw(t).

(15)
From equation (12) and equation (15), it follows that

∞∑
k=1

1
k!

(
k∑

j=1

σ(t) j−1σ1(t)σ(t)k− j) = a(t) exp(σ(t)), (16)

∞∑
k=1

1
k!

(
k∑

j=1

σ(t) j−1σ2(t)σ(t)k− j) = b(t) exp(σ(t)). (17)

Therefore

a(t) =
∞∑

k=1

1
k!

(
k∑

j=1

σ(t) j−1σ1(t)σ(t)k− j) exp(−σ(t))

=

∞∑
k=1

1
k!

(
k∑

j=1

σ(t) j−1σ1(t)σ(t)k− j)[
∞∑

l=0

(−1)l

l!
σ(t)l]

=

∞∑
l=1

(−1)l

l!

l∑
j=1

[
l∑

k= j

(−1)k

 l

k

]σ(t) j−lσ1(t)σ(t)l− j.

(18)

It’s not difficult to prove that

l∑
k= j

(−1)k

 l

k

 = (−1) j

 l − 1
j − 1

 , (19)

ad[σ(t)]l[σ1(t)]

=

l∑
j=0

(−1)l− j

 l

j

σ(t) jσ1(t)σ(t)l− j, l ∈ Z+.
(20)

Based on the above discussion, we get equation (9) and
equation (10). The proof is finished.

Theorem 2.2. If σ(t) satisfies the equation

dσ(t) = (
∞∑

m=0

fmad[σ(t)]m[a(t)])dt

+

∞∑
m=0

fmad[σ(t)]m[b(t)]) ◦ dw(t),

(21)

fm(m = 0, 1, ...) are coefficients of the power series

f (z) :=
∞∑

m=0

fmzm =
1

d(z)

d(z) :=
∞∑

l=0

1
(l + 1)!

zl,

then equation (9) and equation (10) remain true.

Proof. From equation (8) and equation (21), it follows
that

σ1(t) =
∞∑

m=0

fmad[σ(t)]m[a(t)], (22)

σ2(t) =
∞∑

m=0

fmad[σ(t)]m[b(t)]. (23)
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With the definition of ad[ · ][ · ], it is derived that

ad[p]l−m[ad[p]m[q]] = ad[p]l[q]. (24)

Insteading σ1(t) in equation (9) and (22), we have

∞∑
l=0

1
(l + 1)!

ad[σ(t)]l[σ1(t)]

=

∞∑
l=0

1
(l + 1)!

ad[σ(t)]l[
∞∑

m=0

fmad[σ(t)]m[a(t)]]

=

∞∑
m=0

∞∑
l=m

fmdl−mad[σ(t)]l−m[ad[σ(t)]m, [a(t)]]

=

∞∑
l=0

l∑
m=0

fmdl−mad[σ(t)]l[a(t)],

(25)

and
∞∑

l=0

1
(l + 1)!

ad[σ(t)]l[σ1(t)] = a(t), (26)

Similarly, we have

∞∑
l=0

1
(l + 1)!

ad[σ(t)]l[σ2(t)]

=

∞∑
l=0

1
(l + 1)!

ad[σ(t)]l[
∞∑

m=0

fmad[σ(t)]m[b(t)]]

=

∞∑
m=0

∞∑
l=m

fmdl−mad[σ(t)]l−m[ad[σ(t)]m[b(t)]]

=

∞∑
l=0

l∑
m=0

fmdl−mad[σ(t)]l[b(t)]

(27)

and
∞∑

l=0

1
(l + 1)!

ad[σ(t)]l[σ2(t)] = b(t). (28)

The proof is finished.
If the coefficients of equation (21) satisfy the conditions of

existence and uniqueness theorem for the stochastic differ-
ential equation, equation (21) can be written in the integral
form

σ(t) =
∞∑

m=0

fm(

t∫
0

ad[σ(s)]m[a(s)]ds+ad[σ(s)]m[b(s)]◦dw(s).

(29)
Then we can get

σ(t) =
∫ t

0
a(k)dk +

∫ t

0
b(k) ◦ dw(k)

−
1
2

∫ t

0
[

k∫
0

a(ξ)dξ, a(k)]dk

−
1
2

∫ t

0
[
∫ k

0
a(ξ)dξ, b(k)] ◦ dw(k)

−
1
2

∫ t

0
[
∫ k

0
b(ξ)dw(ξ), b(k)] ◦ dw(k)

−
1
2

∫ t

0
[
∫ k

0
b(ξ) ◦ dw(ξ), a(k)]dk + . . . .

(30)

III. The Analysis of Expansion via Rooted Trees

In this section, we will focus on the expansion of the
general equation (21).

Let E be the set of all terms’ derivatives in the expansion.
We propose the following four composition rules, in which
E := H1⋃H2 is defined recursively,
(1) a(t) ∈ H1, b(t) ∈ H2.

(2) ∫
Hτ =


∫

Hτ(t)dt, Hτ ∈ H1,∫
Hτ(t) ◦ dw(t), Hτ ∈ H2.

(3) [
∫

w1,w2] ∈ E, if w1(t),w2(t) ∈ E.

(4) [
∫ t

0 w1(t)dt,w2(t)] belongs to H1, if w2(t) belongs to H1;

[
∫ t

0 w1(t)dt,w2(t)] belongs to H2, if w2(t) belongs to H2.

In general, we look for an expansion in the following form

σ(t) =
∞∑

k=1

∑
τ∈Tk

ατ

∫ t

0
H1
τ (k)dk +

∞∑
k=1

∑
τ∈Tk

βτ

∫ t

0
H2
τ (k) ◦ dw(k),

(31)
where Tk is the set of all binary trees of order k. We can use
the composition rules to get terms Hτ. For example, T1 =

{ω1
0, ω

2
0},T4 = {ω

1
1, ω

2
1, ω

3
1, ω

4
1} and Tm = Ø, if m , 3n + 1,

n = 0, 1, . . . . The coefficients ατ and βτ depend solely on
the sequence { fm} (m = 0, 1, . . .) .

From (31), it follows that

dσ(t) =
∞∑

k=1

∑
τ∈Tk

ατH1
τ (t)dt +

∞∑
k=1

∑
τ∈Tk

βτH2
τ (t) ◦ dw(t). (32)

Let

U1
m = ad[

∞∑
k=1

∑
τ∈Tk

ατ

∫ t

0
H1
τ +

∞∑
k=1

∑
τ∈Tk

βτ

∫ t

0
H2
τ ]

m[a(t)], (33)

U2
m = ad[

∞∑
k=1

∑
τ∈Tk

ατ

∫ t

0
H1
τ +

∞∑
k=1

∑
τ∈Tk

βτ

∫ t

0
H2
τ ]

m[b(t)], (34)

According to (21), we have

σ1(t) =
∞∑

m=0

fmU1
m, (35)

σ2(t) =
∞∑

m=0

fmU2
m. (36)

Using the definition of ad[ · ]m[ · ], it is concluded that

U1
m = [

∞∑
k=1

∑
τ∈Tk

ατ

∫ t

0
H1
τ +

∞∑
k=1

∑
τ∈Tk

βτ

∫ t

0
H2
τ ,

ad[
∞∑

k=1

∑
τ∈Tk

ατ

∫ t

0
H1
τ +

∞∑
k=1

∑
τ∈Tk

βτ

∫ t

0
H2
τ ]

m−1[a]]

= [
∞∑

k=1

∑
τ∈Tk

ατ

∫ t

0
H1
τ +

∞∑
k=1

∑
τ∈Tk

βτ

∫ t

0
H2
τ , U1

m−1],

(37)
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U2
m = [

∞∑
k=1

∑
τ∈Tk

ατ

∫ t

0
H1
τ +

∞∑
k=1

∑
τ∈Tk

βτ

∫ t

0
H2
τ ,

ad[
∞∑

k=1

∑
τ∈Tk

ατ

∫ t

0
H1
τ +

∞∑
k=1

∑
τ∈Tk

βτ

∫ t

0
H2
τ ]

m−1[b]]

= [
∞∑

k=1

∑
τ∈Tk

ατ

∫ t

0
H1
τ +

∞∑
k=1

∑
τ∈Tk

βτ

∫ t

0
H2
τ , U2

m−1].

(38)

According to the composition rules, we can get

R1(τ1, τ2, . . . , τr) := H1
τ

= [
∫

Hτ1 , [
∫

Hτ2 , . . . , [
∫

Hτr , a]]],
(39)

R2(τ1, τ2, . . . , τm) := H2
τ

= [
∫

Hτ1 , [
∫

Hτ2 , . . . , [
∫

Hτm , b]]].
(40)

Proposition 3.1. For any m ∈ N, it is true that

U1
m =

∞∑
k1=1

∞∑
k2=1

. . .

∞∑
k3=1

∑
τ1∈T1

∑
τ2∈T2

. . .∑
τm∈Tm

r1
τ1

r1
τ2
. . . r1

τm
R1(τ1, τ2, . . . , τm),

(41)

r1
τi
=

 ατi , Hτi ∈ H1,

βτi , Hτi ∈ H2,

and

U2
m =

∞∑
k1=1

∞∑
k2=1

. . .

∞∑
k3=1

∑
τ1∈T1

∑
τ2∈T2

. . .∑
τm∈Tm

r2
τ1

r2
τ2
. . . r2

τm
R2(τ1, τ2, . . . , τm),

(42)

r2
τi
=

 ατi , Hτi ∈ H1,

βτi , Hτi ∈ H2.

Proof. We use the following composition rules for the
construction of rooted trees (see [6], [8], [22]). We associate
the function a(t) with the trivial tree of order one denoted
by a black dot, and b(t) with the trivial tree of order one
denoted by a black rectangle,

a(t){ s , b(t){ .

Then
T0 = { s , }.

If Tk is defined for k = 0, 1, . . . ,m − 1, we can get

Tm =

 @�

τ1
τ2 : τ1 ∈ Tk1 , τ2 ∈ Tk2 , k1 + k2 = m − 1

 .
It’s not difficult to deduce that every binary tree τ obtained
by our composition rules can be uniquely written in the form

τ =@�

τ1

@�

τ2

@

τ3

@�
sτs

. . . .

or

τ =@�

τ1

@�

τ2

@

τ3

@�

τs

. . . .

.

We will adopt the representations in the sequel.
Proposition 3.2. For any r ∈ N and τk ∈ Tmk ,

k = 1, 2, . . . , r, it is true that

ordR(τ1, τ2, . . . , τr) =
r∑

k=1

mk + 2r + 1, (43)

where

ordR(τ1, τ2, . . . , τr) =
 ordR1(τ1, τ2, . . . , τr), R ∈ H1,

ordR2(τ1, τ2, . . . , τr), R ∈ H2,

ordR is the order of the tree R.
Proof. we can get it by the induction method and the

definition of R.
Corollary 3.1. Tk = Ø, when k , 1 mod 3, k ∈ N.
Proof. According to equation (36), it yields∑
τ∈Tk

ατH1
τ

=

⌊(k−1)/2⌋∑
l=1

fl
∑

n1,n2,...,nl∈N

∑
τi∈Ti

i=1,2,...,l

r1
τ1

r1
τ2
. . . r1

τl
R1(τ1, τ2, . . . , τl),

(44)∑
τ∈Tk

βτH2
τ

=

⌊(k−1)/2⌋∑
l=1

fl
∑

n1,n2,...,nl∈N

∑
τi∈Ti

i=1,2,...,l

r2
τ1

r2
τ2
. . . r2

τl
R2(τ1, τ2, . . . , τl).

(45)

Where n1 + n2 + . . . + nl = k − 2l − 1. This identity can be
simplified in terms of corollary 3.1, since we just need to
consider trees of order 1 mod 3.∑
τ∈T3m+1

ατH1
τ

=

⌊(3m)/2⌋∑
l=1

fl
∑

n1,n2,...,nl∈N

∑
τi∈T3ni+1
i=1,2,...,l

r1
τ1

r1
τ2
. . . r1

τl
R1(τ1, τ2, . . . , τl),

(46)∑
τ∈T3m+1

βτH2
τ

=

⌊(3m)/2⌋∑
l=1

fl
∑

n1,n2,...,nl∈N

∑
τi∈T3ni+1
i=1,2,...,l

r2
τ1

r2
τ2
. . . r2

τl
R2(τ1, τ2, . . . , τl).

(47)

Where n1 + n2 + . . . + nl = m − l.
Comparing (46) with (47), we conclude that

T3m+1 =

{R(τ1, τ2, . . . , τl) : τi ∈ T3ni+1, i = 1, 2, . . . , l,
n1 + n2 + . . . + nl + l = m, l = 1, 2, . . . , ⌊3m/2⌋}.

(48)
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According to the equation (46) and (47), the coefficients
ατ and βτ can be evaluated. The values of r j

τi , j = 1, 2, i =
1, 2, . . . , l, are the same as in equation (41) and (42).

TABLE I
The stochastic magnus expansions of terms Hi

τ, i = 1, 2, when the orders of
trees τ are ≤ 7.

order name expression tree representation coefficient

1 ω1
0 a s - f0

ω2
0 b - f0

4 ω1
1 [

∫
a, a] @�

s s
R1(ω1

0) f0 f1

ω2
1 [

∫
b, a] @�

s
R1(ω2

0) f0 f1

ω3
1 [

∫
a, b] @�

s
R2(ω1

0) f0 f1

ω3
1 [

∫
b, b] @� R2(ω2

0) f0 f1

7 ω1
2 [

∫
a, [
∫

a, a]] @�
@�

s s s
R1(ω1

0, ω
1
0) f2 f 2

0

ω2
2 [

∫
b, [
∫

a, a]] @�
@�

s s
R1(ω2

0, ω
1
0) f2 f 2

0

ω3
2 [

∫
a, [
∫

b, a]] @�
@�

s s
R1(ω1

0, ω
2
0) f2 f 2

0

ω4
2 [

∫
b, [
∫

b, a]] @�
@�

s
R1(ω2

0, ω
2
0) f2 f 2

0

ω5
2 [

∫
a, [
∫

a, b]] @�
@�

s s
R2(ω1

0, ω
1
0) f2 f 2

0

ω6
2 [

∫
a, [
∫

b, b]] @�
@�

s
R2(ω1

0, ω
2
0) f2 f 2

0

ω7
2 [

∫
b, [
∫

a, b]] @�
@�

s
R2(ω2

0, ω
1
0) f2 f 2

0

ω8
2 [

∫
b, [
∫

b, b]] @�
@�

R2(ω2
0, ω

2
0) f2 f 2

0

ω9
2 [

∫
[
∫

a, a], a] @�

@�

s s s
R1(ω1

1) f 2
1 f0

ω10
2 [

∫
[
∫

b, a], a] @�

@�
s s

R1(ω2
1) f 2

1 f0

ω11
2 [

∫
[
∫

a, b], a] @�

@�

s
s

R1(ω3
1) f 2

1 f0

order name expression tree representation coefficient

7 ω12
2 [
∫

[
∫

b, b], a] @�

@� s
R1(ω4

1) f 2
1 f0

ω13
2 [
∫

[
∫

a, a], b] @�

@�

s s
R2(ω1

1) f 2
1 f0

ω14
2 [
∫

[
∫

b, a], b] @�

@�
s

R2(ω2
1) f 2

1 f0

ω15
2 [
∫

[
∫

a, b], b] @�

@�

s
R2(ω3

1) f 2
1 f0

ω16
2 [
∫

[
∫

b, b], b] @�

@�

R2(ω4
1) f 2

1 f0

αω1
0
= f0, βω2

0
= f0, (49)

αR1(τ1,τ2,...,τl) = fl
l∏

i=1

r1
τi
, (50)

βR2(τ1,τ2,...,τl) = fl
l∏

i=1

r2
τi
, (51)

Table 1 displays all expansion terms, trees and coefficients
of order seven. Assisted by Table 1, we present the terms of
the stochastic Magnus expansion for the equation (21),

σ(t) = f0

t∫
0

a(s)ds + f0

t∫
0

b(s) ◦ dw(s)

+ f0 f1

t∫
0

[

s∫
0

a(k)dk, a(s)]ds

+ f0 f1

t∫
0

[

s∫
0

a(k)dk, b(s)] ◦ dw(s)

+ f0 f1

t∫
0

[

s∫
0

b(k)dw(k), a(s)]ds

+ f0 f1

t∫
0

[

s∫
0

b(k)dw(k), b(s)] ◦ dw(s) + . . . .

(52)

For the general stochastic differential equation in
Stratonovich sense,we can get

dy(t) = a(t)y(t)dt +
d∑

j=1

b j(t)y(t) ◦ dW j(t), y(t0) = y0,

where y(t) = exp(σ(t))y0, y(t) ∈ Rn.
Our method can be easily extended to the case of d > 2

and we will give the general form of the expansions without
proof.
1). Let E be the set of the derivatives of all terms in the

expansion .We propose the following four composition
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rules. E := H0⋃H1 . . .
⋃

Hd is defined recursively,
j=1,2. . . ,d.
(1) a(t) ∈ H0, bi(t) ∈ Hi, i = 1, 2 . . . , d.
(2) ∫

Hτ =


∫

Hτ(t)dt, Hτ ∈ H0,∫
Hτ(t) ◦ dW j(t), Hτ ∈ H j,

(3) If w1(t),w2(t) ∈ E, we can get
[
∫ t

0 w1(t) ◦ dW l(t), w2(t)]∈ E,

dW l(t) =
 dt, w1(t) ∈ H0,

dW j(t), w1(t) ∈ H j,

(4) [
∫ t

0 w1(t) ◦ dW l(t),w2(t)] belongs to Hi, if w2(t)
belongs to Hi, i = 0, 1, 2, . . . , d.

2). Analogously, we can get

dσ(t) = (
∞∑

m=0

fmad[σ(t)]m[a])dt

+

d∑
j=1

∞∑
m=0

fmad[σ(t)]m[b j]) ◦ dW j(t),

(53)

σ(t) =
d∑

i=0

∞∑
k=1

∑
τ∈Tk

αi
τ

∫ t

0
Hi
τ(t) ◦ dW i(t), (54)

and
Ri(τ1, τ2, . . . , τr) := Hi

τ

= [
∫

Hτ1 , [
∫

Hτ2 , . . . , [
∫

Hτr , bi] . . .]],

i = 1, 2 . . . , d, Hτi ∈ E,

R0(τ1, τ2, . . . , τr) := H0
τ

= [
∫

Hτ1 , [
∫

Hτ2 , . . . , [
∫

Hτr , a]]],

Hτi ∈ E.

3). ω0 := {ω0
0 := a(t), ω1

0 := b1(t), . . . , ωd
0 := bd(t)},

αi
ωi

0
= f0, i = 0, 1, . . . , d,

αRm(τ1,τ2,...,τl) = fl
l∏

i=1

rm
τi
,

where

rm
τi
=

 α0
τi
, Hτi ∈ H0,

α
j
τi , Hτi ∈ H j.

Finally, we have

σ(t) = f0
t∫

0
a(s)ds +

d∑
j=1

f0
t∫

0
b j(s) ◦ dW j(s)

+ f0 f1
d∑

i=0

d∑
j=0

t∫
0

s∫
0

[ωi
0, ω

j
0] ◦ dW i(s) ◦ dW j(t) + . . . .

(55)
Remark 1.
Let’s consider the stochastic differential equation in

Stratonovich sense

dy(t) = a(t)y(t)dt + a1(t)dt +
d∑

j=1
b j(t)y(t) ◦ dW j(t)

+
q∑

m=1
cm(t) ◦ dWm(t), y(t0) = y0, y ∈ Rn,

where a(t) is defined as a matrix or a vector, b j(t) ( j =
1, 2, . . . , d) are matrices, cm(t) (m = 1, 2, . . . , q) are vectors,
and Wi(t) (i = 1, 2 . . .) are independent Winner processes. By
the variation of constants formula, we have

y(t) = exp(σ(t))(y0 +
∫ t

0 exp(−σ(s))a1(s)ds

+
q∑

m=1

∫ t
0 exp(−σ(s))cm(s) ◦ dWm(s)),

(56)

where σ(t) is the same as the one in (46).
Remark 2.
If the matrices a(t) and b(t) are commutative, we have

σ(t) =
t∫

0
a(s)ds +

t∫
0

b(s) ◦ dw(s). Then y(t) = exp(σ(t))y0,

which coincides with the already-known result.

Remark 3.
When a(t) and b(t) are constant matrices and non-

commutative, Bernoulli numbers are denoted by fm (m =
0, 1, 2, . . .). We have f0 = 1, f1 = − 1

2 , f2 = 1
12 . Substituting

fm into (51), we get

σ(t) =
t∫

0
a(s)ds +

t∫
0

b(s) ◦ dw(s) − 1
2

t∫
0

k∫
0

[a, b]ds ◦ dw(k)

− 1
2

t∫
0

k∫
0

[b, a] ◦ dw(s)dk + 1
4

t∫
0

k∫
0

ξ∫
0

[[a, b], a]d(η) ◦ dw(ξ)dk

+ 1
4

t∫
0

k∫
0

ξ∫
0

[[a, b], b]d(η) ◦ dw(ξ) ◦ dw(k)

+ 1
4

t∫
0

k∫
0

ξ∫
0

[[b, a], a] ◦ dw(η)d(ξ)dk

+ 1
4

t∫
0

k∫
0

ξ∫
0

[[b, a], b]dw(η)d(ξ) ◦ dw(k)

+ 1
12

t∫
0

k∫
0

k∫
0

[a, [b, a]]d(η) ◦ dw(ξ)dk

+ 1
12

t∫
0

k∫
0

k∫
0

[a, [a, b]]d(η)d(ξ) ◦ dw(k)

+ 1
12

t∫
0

k∫
0

k∫
0

[b, [b, a]] ◦ dw(η) ◦ dw(ξ)dk

+ 1
12

t∫
0

k∫
0

k∫
0

[b, [a, b]] ◦ dw(η)d(ξ) ◦ dw(k) + . . . .

(57)
By the properties of the Lie bracket and multi-Stratonovich

integral, we finally get

σ(t) =at + bJ1,t −
1
2

[a, b](J01,t − J10,t)

+ [a, [b, a]](
1
2

J010,t −
1
6

J1,t J00,t)

+ [b, [a, b]](
1
2

J101,t −
1
6

J0,t J11,t) + . . . .

(58)

IV. Numerical Algorithms Based on The Linear Stochastic
Magnus Expansion

In this section, we will investigate the numerical solution
of the stochastic differential equation with the following form

dy = A(t)ydt + B(t)y ◦ dW(t). (59)

In order to construct efficient numerical algorithms based
on the stochastic Magnus expansions, the multiple stochastic
integrals should be easily computed. We will give several
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schemes with different strong orders (mean-square sense).
And in all cases, we will choose the quadrature rules with
equispaced points over the interval [tn, tn+1]. Our numerical
algorithm errors contain two parts. One is the truncated error,
the other is the error caused by the numerical schemes.

The σ(t) is truncated in the following way

σm(tn+h) =
1∑

i=0

m∑
k=1

∑
τ∈T3k+1

αi
τ

∫ tn+h

tn
Hi
τ(t)◦dW i(t)+IJ

m+1,m ⩾ 2.

(60)
J = (1, 1, · · · , 1) is an index of length m + 1,

IJ
m+1 =

∫ tn+h

tn

∫ s1

tn
· · ·

∫ sm+1

tn︸                    ︷︷                    ︸
m+1

[B[B · · · , [B, B] · · · ]]

◦ dW(sm+1) ◦ dW(sm) · · · dW(s2) ◦ dW(s1),

(61)

and

dW i =

 dt, i = 0,
dW(t), i = 1.

As discussed in Section 3, the order(the number of ver-
tices) k of the tree Tk is of the form k = 3m+1,m = 0, 1, · · · ,
and the number n(Tk) of the tree with the order k satisfies

n(Tk) =
 2, m = 0,

22m, m > 0.

Based on the multiple Stratonovich integrals and the
multiple itô integrals, we can get the following lemma easily.

Lemma 4.1. If A(t) and B(t) are uniformly bounded in
the finite intervals, the multiple Stratonovich integrals of the
form

IJ
m =

∫ tn+h

tn

∫ s1

tn
· · ·

∫ sm

tn︸                  ︷︷                  ︸
m

[C j1 [C j2 · · · , [C jm−1 ,C jm ] · · · ]]

◦dW jm (sm) ◦ dW jm−1 (sm−1) · · · dW j2 (s2) ◦ dW j1 (s1),

(62)

where
J = ( j1, j2, · · · , jm−1, jm), (63)

C ji =

 A, ji = 0,
B, ji = 1,

(64)

and ji ∈ {0, 1}( i = 1, 2, · · ·m), satisfy

(E|IJ
m|

2)1/2 ⩽ (8M2)m/2hL(J)+N(J)/2 ⩽ (8M2)m/2hm/2. (65)

M is the bound of A and B. L(J) is the number of compo-
nents of J, and L(J) = 0. N(J) is the number of components
of J, and N(J) = 1.
Proof:

Since A and B are uniformly bounded, we have |A| ⩽ M
and |B| ⩽ M. We will use the induction to prove this lemma.

When m = 1,

E(|
∫ tn+h

tn
B(s) ◦ dW(s)|)2 = E(|

∫ tn+h

tn
B(s)dW(s)|)2

=

∫ tn+h

tn
E(|B2(s)|)dt ⩽ M2h ⩽ 8M2h,

According to the Cauchy-Schurz inequality, we can get

E(|
∫ tn+h

tn
A(s)ds|)2 ⩽

∫ tn+h

tn
dsE(
∫ tn+h

tn
|A(s)|2ds

⩽ M2h2 ⩽ 8M2h2.

For any m ⩽ n, the equation (65) holds, if we need
to prove equation (65) holds for m = n + 1 and J =
( j1, j2, · · · , jn, jn+1).

Based on the Stratonovich integral and Itô-integral, we
have

1) If j1 = 1

IJ
n+1 =

∫ tn+h

tn

∫ s1

tn
· · ·

∫ sn+1

tn︸                    ︷︷                    ︸
n+1

[B[C j2 · · · , [C jn ,C jn+1 ] · · · ]]

◦ dW jn+1 (sn+1) ◦ · · · dW j2 (s2) ◦ dW(s1)

=

︷                                                          ︸︸                                                          ︷∫ tn+h

tn

∫ s1

tn
· · ·

∫ sn+1

tn︸                    ︷︷                    ︸
n+1

[B[C j2 · · · , [C jn ,C jn+1 ] · · · ]]

IJ
n+1(1)︷                                           ︸︸                                           ︷

◦dW jn+1 (sn+1) ◦ · · · ◦ dW j2 (s2)dW(s1)

+
1
2
δ j2 j1

︷                                                        ︸︸                                                        ︷∫ tn+h

tn

∫ s1

tn
· · ·

∫ sn

tn︸                  ︷︷                  ︸
n

[B[C j2 · · · , [C jn ,C jn+1 ] · · · ]]

IJ
n+1(2)︷                                   ︸︸                                   ︷

◦dW jn+1 (sn) ◦ · · · ◦ dW j3 (s2)ds1

where

δi j =

 1, i = j,

0, others.

Therefore, we get

E|IJ
n+1(1)|2

=

∫ tn+h

tn
E(|
∫ s1

tn
· · ·

∫ sn+1

tn
[B[C j2 · · · , [C jn ,C jn+1 ] · · · ]]

◦ dW jn+1 (sn+1) ◦ · · · ◦ d j2 W(s2)|)2ds1

⩽ 4M2
∫ tn+h

tn
((8M2)n(s1 − tn)2L+N )ds1

= K1hp1 =
(8M2)n+1

2L(J) +N(J)
h2LJ+N(J)

⩽ (8M2)n+1/(n + 1)h2LJ+N(J),

where
p1 = 2L( j2, j3, · · · , jn+1) +N( j2, j3, · · · , jn+1) + 1,

K1 =
(8M2)n+1

2L( j2, j3, · · · , jn+1) +N( j2, j3, · · · , jn+1) + 1
.

Using the Cauchy-Schwarz inequality, we get

E|IJ
n+1(2)|2

⩽ 4M2h
∫ tn+h

tn
((8M2)n(s1 − tn)2L+N )ds1

= K2hp2 ⩽ (8M2)n+1 1
n

h2L(J)+N(J),

(66)

where
p2 = 2L( j2, j3, · · · , jn+1) +N( j2, j3, · · · , jn+1) + 2,

K2 =
(8M2)n+1

2L( j2, j3, · · · , jn+1) +N( j2, j3, · · · , jn+1) + 1
.
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Finally, we get

(E|In+1|
2)1/2 ⩽ (E|I1

n+1|
2)1/2 + δ j2 j1 (E|I2

n+1|
2)1/2

⩽
(8M2)n+1

n + 1
hL(J)+N(J)/2 + δ j2 j1 (8M2)n+1 1

n
hL(J)+N(J)/2

⩽ (8M2)
n+1

2 hL(J)+N(J)/2 ⩽ (8M2)(n+1)/2h(n+1)/2,
(67)

2) If j1 = 0,

IJ
n+1 =

∫ tn+h

tn

∫ s1

tn
· · ·

∫ sn+1

tn︸                    ︷︷                    ︸
n+1

[A[C j2 · · · , [C jn ,C jn+1 ] · · · ]]

◦ dW jn+1 (sn+1) ◦ · · · dW j2 (s2)ds1,
(68)

According to the Cauchy-Schwarz inequality, we have

E(|IJ
n+1|)

2

⩽

∫ tn+h

tn
ds
∫ tn+h

tn
E(|
∫ s1

tn
· · ·

∫ sn+1

tn
[A[C j2 · · · , [C jn ,

C jn+1 ]]] ◦ dW jn+1 (sn+1) · · · ◦ d j2 W(s2)|)2ds1

⩽ 4M2h
∫ tn+h

tn
(8M2)(n)(s1 − tn)2L+Nds1

⩽ K3hp3

⩽ (8M2)n+1/(n + 1)h2L(J)+N(J),
(69)

where
p3 = 2L( j2, j3, · · · , jn+1) +N( j2, j3, · · · , jn+1) + 2,

K3 =
(8M2)n+1

(2L( j2, j3, · · · , jn+1) +N( j2, j3, · · · , jn+1) + 1)
.

The proof is finished.
Lemma 4.2. Let σ(tn + h) be the exact solution of the

equation (59) and σm(tn + h) be the truncated solution given
by equation (60), it is true that

(E|σ(tn + h) − σm(tn + h)|2)1/2 = O(h(m+1)/2). (70)

Proof

σ(tn+h)−σm(tn+h) =
1∑

i=0

∞∑
k=m+1

∑
τ∈T3k+1

αi
τ

∫ tn+h

tn
Hi
τ(t)◦dW i(t),

(71)
According to Cauchy-Schwarz inequality, we get

(E|σ(tn + h) − σm(tn + h)|2)1/2

⩽
1∑

i=0

∞∑
k=m+1

∑
τ∈T3k+1

|αi
τ|(E|
∫ tn+h

tn
Hi
τ(t) ◦ dW i(t)|2)1/2

⩽
∞∑

k=m+1

22k(8M2h)k/2 =
(8
√

2Mh1/2)m+1

1 − 8
√

2Mh1/2
.

(72)

The second inequality is obtained by the lemma 4.1 and
|αi
τ| ⩽ 1. We complete the proof.
Theorem 4.1. Let exp(σ(tn + h)) be the exact solution of

equation (59) and exp(σm(tn + h)) be the truncated solution
of the system (59), we have

|E(exp(σ(tn + h)) − exp(σm(tn + h)))| ⩽ O(hm/2+1), (73)

(E|exp(σ(tn+h))−exp(σm(tn+h)))|2)1/2 ⩽ O(hm/2+1/2). (74)

Proof:
exp(σ(tn + h)) = exp(σm(tn + h) + δ̄)

where

δ̄ =

1∑
i=0

∞∑
k=m+1

∑
τ∈T3k+1

αi
τ

∫ tn+h

tn
Hi
τ(t) ◦ dW i(t),

and δ̄ does not include the term (61).
The local remainder of the truncated Magnus expansion

is

Serror = exp(σ(tn + h)) − exp(σm(tn + h))
= exp(σm(tn + h) + δ) − exp(σm(tn + h))

= δ +
1
2

(σmδ + δσm) + O((σm)2δ).

Combining Lemma 4.1with Lemma 4.2, we can prove the
theorem easily.

In Theorem 4.1, the truncated error is m/2. If the numerical
scheme which has the mean-square order at least m/2 is
adopted, we will get the algorithm with strong order m/2.
Remark
• We can use any numerical algorithm with order m/2 to

approximate the solution of formula, if we can exactly
integrate the equation (60).

• To get a m-order algorithm, there is no need to include
all the trees with order less than 2m. We just include
the trees which have strong order less than m.

• When A and B are constant matrices, we can reduce the
explicit expansion to a more simple structure.

Next, we will give an algorithm of strong order 1.
In this case, σ(t) corresponds to the following form

σ1(tn + h) =
∫ tn+h

tn
A(s)ds +

∫ tn+h

tn
B(s) ◦ dW(s). (75)

Using the Euler numerical algorithm, we can get

σ̄1(tn + h) = A(tn)h + B(tn)∆Wn, (76)

According to the Taylor expansion, we can get the
stochastic expansion for the solution of the equation (59).

y(tn + h) = y(tn) + A(tn)y(tn)h + B(tn)y(tn)∆Wn

+ B(tn)2y(tn)∆W2
n/2 + O(h1.5),

(77)

The approximate solution can be expanded in the follow-
ing form

ȳ(tn + h) = exp(σ̄1(tn + h))ytn = exp(A(tn)h + B(tn)∆Wn)
= y(tn) + A(tn)y(tn)h + B(tn)y(tn)∆Wn + (A(tn)h

+ B(tn)∆Wn)2/2y(tn) + O(h1.5),
(78)

It is easy to get

|Ey(tn + h) − ȳ(tn + h)| = O(h2),
(E|y(tn + h) − ȳ(tn + h)|2)1/2 = O(h1.5).

According to the Milstein mean-square convergence
theorem, the strong convergence order is 1.
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V. Numerical Experiment

A. The Lyapunov exponent of a linear system with small
noise

The negativeness of upper Lyapunov exponent is an impor-
tant indication for the system stability. It is usually difficult
to derive analytical formulas for Lyapunov exponents. An
algorithm for the computation of Lyapunov exponent was
proposed by Talay (see [23]) for the first time, and the
algorithm was based on the weak schemes.

To test the numerical algorithm, we proposed in Section
4, we will use the two-dimensional linear itô system

dX = AXdt + εBXdW(t). (79)

X is a two-dimensional vector, A and B are constant 2× 2
matrices, W is the standard wiener process, and ε > 0.

In the ergodic case, there exists a unique Lyapunov expo-
nent λ of system (79),

λ = lim
t−>∞

1
t
Eρ(t) = lim

t−>∞

1
t
ρ(t)a.s. (80)

where ρ(t) = ln|X(t)|, X(t) (t ⩾ 0) is the non-trivial solution
of the system (79).
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Fig. 1. The exact value and numerical value of the Lyapunov exponent
over the time interval [0,10].

Herein, we consider system (79) with the matrices A and
B,

A =
 a c

−c a

 , B =  b d

−d b

 , (81)

the Lyapunov exponent is given by (3.4)(see [24]).
In order to study the system(79) conveniently, we trans-

form it into its Stratonovich form

dX = (A −
1
2

B2)Xdt + εBX ◦ dW(t). (82)

We simulate the system (82) with the algorithm (76). The
one-step algorithm is

Yn+1 = exp((A −
1
2

B2)∆tn + B∆Wn)Yn, (83)

In the following, we simulate λ(T ) with a = −0.5, c =
−3, b = 2, d = −1, ε = 0.2, X1(0) = 0, X2(0) = 1. The
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Fig. 2. The exact value and numerical value of the Lyapunov exponent
over the time interval [0,100].
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Fig. 3. The approximate solutions of the Magnus method, Balanced
Milstein method, Euler method, Milstein method and Balanced Implicit
method.

simulation results are shown in Figure 1 and Figure 2. In
Figure 1, the time interval is [0,10], the stepsize of numerical
approximation is denoted by dT , and dT = 0.1. The time-
dependent function is λ̄(T ) = Eρ̄(T )/T . The number of
realizations is denoted by M, and M = 400. In Figure 2,
the time interval is [0,100]. The time-dependent function is
ρ̄(T )/T which is computed along a single trajectory. The
dashed line shows the exact value of the Lyapunov exponent,
and λ = −2.06.

From Figure 1 and 2, we can see that our algorithm is
strong convergent, and it is efficient to compute the Lyapunov
exponent.

B. A linear system with nonnegative solution

To test the numerical algorithm proposed in Section 4, we
consider the other linear system

dX(t) = [a + bX(t)]dt + σX(t)dw(t), (84)
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where a ≧ 0, b ∈ R and σ ≥ 0.
The strong solutions of this equation are nonnegative. To

solve this problem, we split the original system into two
subsystems

dX1(t) = [b −
1
2
σ2]X1(t)dt + σX(t) ◦ dw(t), (85)

and
dX2(t) = adt. (86)

For system (85), we use the magnus algorithm (76) to
approximate the solution. For system (86), the solution can
be computed exactly. Finally, we use the composite method
to get one-step numerical scheme of the form

X̄tn+h = exp(ah)X̄1(tn + h). (87)

where, X̄1(tn + h) is the approximate solution of the system
(85).

In Figure 3, the time interval is [0,4], the stepsize of
numerical approximations is dT = 0.5, and a = 1, b =
−1, σ = 1.4. We compare our method with the Balanced
Milstein method(see [25]), the Balanced implicit method(see
[26]), the Euler method and the Milstein method. As one
would expect, our method can preserve the positivity exactly
and perform as well as the Balanced Milstein method.

Figure 4 shows that our method is of strong order 1 which
verifies the theoretical analysis in Section 4. It can be seen
from the image, the errors obtained by our method are less
than other methods.

Table 2 shows the percentages of the negative paths in
the simulation. Weight functions of BMM are defined by
d0(x) = 1+0.5∗1.42, and d1(x) = 0, the number of simulated
paths is 1500. We can see that both Euler and Milstein
methods have a certain percentage of negative paths. When
the stepsize decreases, the number of negative paths also
decreases. Our method is as good as the Balanced Milstein
method in preserving the positivity of the solution. And the
method is independent of the time interval and the stepsize
of time.

TABLE II
The percentage of the negative paths for

dX(t) = (1 − X(t))dt + 1.4X(t)dW(t).

Time Stepsize Euler Milstein BMM LM
T=1 dT=1/2 27.35% 22.12% 0% 0%

dT=1/4 26.35% 8.21% 0% 0%
dT=1/16 17.35% 0.12% 0% 0%

T=4 dT=1/2 69.35% 53.45% 0% 0%
dT=1/4 66.24% 18.48% 0% 0%

dT=1/16 57.89% 2.45% 0% 0%
T=16 dT=1/2 98.67% 94.25% 0% 0%

dT=1/4 96.56% 58.48% 0% 0%
dT=1/16 95.72% 9.08% 0% 0%

VI. Conclusions
Based on the stochastic Magnus expansions, an explicit

expression for the solutions of linear stochastic differen-
tial equations is proposed. In our numerical algorithm, the
formula of Magnus expansion can be used in investigating
the numerical solution immediately. Some numerical exper-
iments are given to show the advantages of this numerical
algorithm. At the same time, we also show that our method
is efficient for preserving positivity of the models.
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