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Abstract—In the present paper, we introduce the notion of
quasi-Boolean algebras as a generalization of Boolean algebras.
First we discuss some properties of quasi-Boolean algebras.
Next we define ideals and filters of quasi-Boolean algebras and
investigate the related properties. We also show that there is a
one-to-one correspondence between the set of ideals and the set
of ideal congruences on a quasi-Boolean algebra. Finally, we
present the relationship between quasi-Boolean algebras and
Boolean quasi-rings.

Index Terms—Boolean algebras, quasi-lattices, quasi-Boolean
algebras, ideals, Boolean quasi-rings

I. INTRODUCTION

RECENTLY, quantum computational logics have been
received more and more attentions. Many authors con-

sidered that these logics were closely related with fuzzy
logics [8]. In order to study these new forms of non-
classical logics, some logical algebras had been introduced
and the known results showed that these algebras were
generalizations of well-known algebras associated with fuzzy
logics [3], [6]. For example, Ledda et al. introduced quasi-
MV algebras and pointed out that quasi-MV algebras were
generalization of MV-algebras [12]. Chen and Wang defined
quasi-BL algebras and showed that quasi-BL algebras gen-
eralized BL-algebras [7].

In [10], quasi-Boolean algebras were introduced by
Iorgulescu in order to generalize the relationship between
MV-algebras and lattice ordered groups. It was proved that
any quasi-Wajsberg algebra defined in [1] is a quasi-Boolean
algebra. Since quasi-MV algebras are equivalent to quasi-
Wajsberg algebras, it is natural to obtain that any quasi-
MV algebra is a quasi-Boolean algebra. Compared the re-
lationship between Boolean algebras and MV-algebras and
considered the important role of Boolean algebras in fuzzy
logics, we wish to find a more suitable way to define quasi-
Boolean algebras which generalize Boolean algebras in the
setting of quantum computational logics.

In 1993, Chajda introduced q-lattices and presented some
elementary results of a q-lattice [4]. Subsequently, an algebra
of quasiordered logic based on a q-lattice was defined in
[5]. The concepts of algebra of quasiordered logic as a
generalization of Boolean algebra is similar to the case of
quasi-MV algebras generalizing MV-algebras. However, in
the algebra of quasiordered logic, the unary operation is
defined by its binary operation and it does not satisfy the
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involution. Hence we want to redefine the quasi-Boolean
algebras based on q-lattices. In addition, ideals and filters
play an important role in studying the algebraic structures
[9], [11], [13], [14]. These notions are dual in a Boolean
algebra [2], so in this paper, we also want to study ideals and
filters in a quasi-Boolean algebra. The paper is organized as
follows. In Section 2, we recall some definitions and results
of q-lattices. In Section 3, we introduce the notion of quasi-
Boolean algebras. We also define ideals and filters of quasi-
Boolean algebras and investigate the related properties. In
Section 4, we present the relationship between quasi-Boolean
algebras and Boolean quasi-rings.

II. PRELIMINARY

In this section, we recall some definitions and results in
[4], [5].

Recall that an algebra (Ξ;t,u) of type (2, 2) is called
a q-lattice, if it satisfies the following conditions for any
$, %, ς ∈ Ξ,

(QL1) $ t % = % t$ and $ u % = % u$;
(QL2) $t(%tς) = ($t%)tς and $u(%uς) = ($u%)uς;
(QL3) $ t (%u$) = $ t$ and $ u (%t$) = $ u$;
(QL4) $ t % = $ t (% t %) and $ u % = $ u (% u %);
(QL5) $ t$ = $ u$.
On any q-lattice (Ξ;t,u), one can define $ � % by $ u

% = $ u $, or $ t % = % t %. Then the relation � is
quasi-ordering. A q-lattice (Ξ;t,u) is called distributive, if
it satisfies (D1) $ t (% u ς) = ($ t %) u ($ t ς) and (D2)
$u (%t ς) = ($u%)t ($u ς). Similarly to lattices, we can
show that a q-lattice satisfies (D1) if and only if it satisfies
(D2). A bounded q-lattice (Ξ;t,u) means that there exist
elements 0 and 1 in Ξ such that $u0 = 0 and $t1 = 1 for
any $ ∈ Ξ. Let (Ξ;t,u) be a bounded q-lattice and $ ∈ Ξ.
An element % ∈ Ξ is called a complement of $, if $u% = 0
and $t% = 1. For any $ ∈ Ξ, if it has a complement, then
(Ξ;t,u) is called a complemented q-lattice.

Let (Ξ;t,u) be a complemented distributive q-lattice.
Define a unary operation ? on (Ξ;t,u) by $ 7→ $? with
$? = % t %, where % is a complement of $.

Lemma 1: [5] Let (Ξ;t,u) be a complemented distribu-
tive q-lattice and $ ∈ Ξ. Then $? is a complement of $.

Proposition 1: [5] Let (Ξ;t,u) be a complemented
distributive q-lattice. Then for any $, % ∈ Ξ, we have

(1) if $ t % = 1 and $ u % = 0, then ($ u$)? = % u %;
(2) ($ u %)? = $? t %? and ($ t %)? = $? u %?;
(3) if $ � %, then %? � $?.
An algebra (Ξ;t,u,? , 0, 1) is called an algebra of qua-

siordered logic, if its reduct (Ξ;t,u) is a complemented
distributive q-lattice, 0 and 1 are a zero and a unit of
(Ξ;t,u), respectively, and ? is a unary operation defined
as above.
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III. QUASI-BOOLEAN ALGEBRA AND IDEALS

In this section, we give the definition of quasi-Boolean
algebras and discuss some basic properties of quasi-Boolean
algebras. We also investigate the properties of ideals and
filters in a quasi-Boolean algebra.

Definition 1: An algebra Ω = (Ω;t,u,? , 0, 1) of type
(2, 2, 1, 0, 0) is called a generalized quasi-Boolean algebra,
if the following conditions are satisfied:

(1) (Ω;t,u) is a distributive q-lattice;
(2) $ u 0 = 0 and $ t 1 = 1;
(3) $ u$? = 0 and $ t$? = 1;
(4) ($ u$)? = $? t$?.
A generalized quasi-Boolean algebra Ω =(Ω;t,u,? , 0, 1)

with the condition (5) $?? = $ is called a quasi-Boolean
algebra.

Following from the definition, a generalized quasi-Boolean
algebra is a complemented distributive q-lattice with the
unary operation satisfying ($ u $)? = $? t $?, while a
quasi-Boolean algebra is a generalized quasi-Boolean algebra
satisfying the unary operation with involution.

Remark 1: It is easy to see that an algebra of quasiordered
logic (Ξ;t,u,? , 0, 1) is a generalized quasi-Boolean algebra,
since $?t$? = ($u$)? for $ ∈ Ξ. Moreover, an algebra
of quasiordered logic (Ξ;t,u,? , 0, 1) with $?? = $ is a
quasi-Boolean algebra.

Remark 2: In any quasi-Boolean algebra Ω = (Ω;t,u,
?, 0, 1), its reduct (Ω;t,? , 0) or (Ω;u,? , 1) is a quasi-MV
algebra.

Proposition 2: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-
Boolean algebra. Then for any $, %, κ, ι ∈ Ω, we have

(1) $ � $ t % and $ u % � $;
(2) if $ � % and κ � ι, then $ u κ � %u ι and $ t κ �

% t ι;
(3) ($ t %)? = $? u %? and ($ u %)? = $? t %?;
(4) if $ � %, then %? � $?.
Definition 2: An algebra (Ξ;t,u,? , 0, 1) of type

(2, 2, 1, 0, 0) is called a quasi-De Morgan algebra, if the
following conditions are satisfied:

(1) (Ξ;t,u) is a distributive q-lattice;
(2) ($ u %)? = $? t %? and ($ t %)? = $? u %?;
(3) $?? = $.
Hence any quasi-Boolean algebra is a quasi-De Morgan

algebra.
Below we see the relationship between quasi-Boolean

algebras and Boolean algebras. Obviously, any Boolean al-
gebra is a quasi-Boolean algebra. However, a quasi-Boolean
algebra is not a Boolean algebra in general. It is easy to show
the following result.

Proposition 3: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-
Boolean algebra. Then the following conditions are equiv-
alent:

(1) (Ω;t,u,? , 0, 1) is a Boolean algebra;
(2) (Ω;t,u) is a lattice;
(3) the induced quasiorder � is a partial order.
Let Ω = (Ω;t,u,? , 0, 1) be a quasi-Boolean algebra.

Denote R(Ω) = {$ ∈ Ω|$ u $ = $}. Obviously,
0, 1 ∈ R(Ω) and then R(Ω) is a non-empty subset of Ω,
so (R(Ω);t,u,? , 0, 1) is a Boolean algebra.

Definition 3: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-
Boolean algebra. A subset Σ of Ω is called an ideal of Ω,
if the following conditions are satisfied:

(1) 0 ∈ Σ;
(2) if $, % ∈ Σ, then $ t % ∈ Σ;
(3) if $ ∈ Σ and % � $, then % ∈ Σ.
A subset Φ of Ω is called a filter of Ω, if the following

conditions are satisfied:
(1) 1 ∈ Φ;
(2) if $, % ∈ Φ, then $ u % ∈ Φ;
(3) if $ ∈ Φ and $ � %, then % ∈ Φ.
Definition 4: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-

Boolean algebra. A subset Σ of Ω is called a weak ideal
of Ω, if the following conditions are satisfied:

(1) 0 ∈ Σ;
(2) if $, % ∈ Σ, then $ t % ∈ Σ;
(3) if $ ∈ Σ and % � $, then % u % ∈ Σ.
A subset Φ of Ω is called a weak filter of Ω, if the

following conditions are satisfied:
(1) 1 ∈ Φ;
(2) if $, % ∈ Φ, then $ u % ∈ Φ;
(3) if $ ∈ Φ and $ � %, then % t % ∈ Φ.
Proposition 4: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-

Boolean algebra. Then any ideal (filter) is a weak ideal (weak
filter).

Proposition 5: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-
Boolean algebra. Then the set of ideals (filters) of a quasi-
Boolean algebra is closed under arbitrary intersection.

Let Ω = (Ω;t,u,? , 0, 1) be a quasi-Boolean algebra and
Γ be a non-empty subset of Ω. The ideal generated by Γ is
the least ideal containing Γ and is denoted by (Γ]. Dually,
the filter generated by Γ is the least filter containing Γ and
is denoted by [Γ).

Lemma 2: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-Boolean
algebra and Γ be a non-empty subset of Ω. Then

(1) (Γ] = {$ ∈ Ω|$ � $1 t $2 t · · · t
$n, for some $1, $2, . . . , $n ∈ Γ};

(2) [Γ) = {$ ∈ Ω|$1 u $2 u · · · u $n �
$, for some $1, $2, . . . , $n ∈ Γ}.

Proposition 6: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-
Boolean algebra. Then

(1) For any Σ ⊆ Ω, Σ is a (weak) ideal if and only if Σ?

is a (weak) filter;
(2) For any Φ ⊆ Ω, Φ is a (weak) filter if and only if Φ?

is a (weak) ideal.
Proof: Let Σ be an ideal of Ω. Then 0 ∈ Σ and then

1 = 0? ∈ Σ?. If $?, %? ∈ Σ?, then $, % ∈ Σ and we have
$ t % ∈ Σ, it turns out that $? u %? = ($ t %)? ∈ Σ?

by Proposition 2. Let $? ∈ Σ? and % ∈ Ω with $? � %.
Then %? � $?? = $. Since Σ is an ideal of Ω, we have
%? ∈ Σ, so % = %?? ∈ Σ?. Hence Σ? is a filter of Ω.
Conversely, if Σ? is a filter of Ω, then 1 ∈ Σ? and then
0 = 1? ∈ Σ?? = Σ. If $, % ∈ Σ, then $?, %? ∈ Σ? and
$ t % = ($? u %?)?. Since Σ? is a filter of Ω, we have
$? u %? ∈ Σ?, so $ t % = ($? u %?)? ∈ Σ?? = Σ. Let
$ ∈ Σ and % ∈ Ω with % � $. Then $? � %?, it follows
that $? ∈ Σ? and then %? ∈ Σ?, so % = %?? ∈ Σ?? = Σ.
Hence Σ is an ideal of Ω. The rest can be proved similarly
or dually.

Since ideals and filters are dual in a quasi-Boolean algebra,
we only discuss the properties of ideals in the following.

Let Ω = (Ω;t,u,? , 0, 1) be a quasi-Boolean algebra and
ϑ be a binary relation on Ω. Then ϑ is called an ideal
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congruence, if ϑ is a congruence on Ω and 〈$u$, %u%〉 ∈ ϑ
implies 〈$, %〉 ∈ ϑ for any $, % ∈ Ω.

Lemma 3: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-Boolean
algebra and ϑ be an ideal congruence on Ω. Then the set
0/ϑ = {$ ∈ Ω|〈$, 0〉 ∈ ϑ} is an ideal of Ω.

Proof: Since 〈0, 0〉 ∈ ϑ, we have 0 ∈ 0/ϑ. If $, % ∈
0/ϑ, then 〈$, 0〉 ∈ ϑ and 〈%, 0〉 ∈ ϑ, it turns out that 〈$ t
%, 0〉 = 〈$t%, 0t0〉 ∈ ϑ, so $t% ∈ 0/ϑ. Let $ ∈ 0/ϑ and
% ∈ Ω with % � $. Then 〈$, 0〉 ∈ ϑ and then 〈$u%, 0u%〉 ∈
ϑ, it follows that 〈% u %, 0 u 0〉 ∈ ϑ. Note that ϑ is an ideal
congruence on Ω, we have 〈%, 0〉 ∈ ϑ, so % ∈ 0/ϑ. Hence
the set 0/ϑ is an ideal of Ω.

Lemma 4: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-Boolean
algebra and Σ be an ideal of Ω. Then the binary relation ϑ
defined by 〈$, %〉 ∈ ϑ if and only if ($u%?)t($?u%) ∈ Σ
is an ideal congruence on Ω.

Proof: For any $ ∈ Ω, since ($ u$?) t ($? u$) =
0 ∈ Σ, we have 〈$,$〉 ∈ ϑ. If 〈$, %〉 ∈ ϑ, then ($ u
%?) t ($? u %) ∈ Σ, so 〈%,$〉 = (% u $?) t (%? u $) =
($ u %?) t ($? u %) ∈ Σ. Let 〈$, %〉 ∈ ϑ and 〈%, ς〉 ∈ ϑ.
Then ($ u %?)t ($? u %) ∈ Σ and (%u ς?)t (%? u ς) ∈ Σ.
Since Σ is an ideal of Ω, we have (($ u %?) t ($? u %)) t
((%u ς?)t(%?u ς)) ∈ Σ. We calculate ($u ς?)t($?u ς) =
($uς?u(%t%?))t($?uςu(%t%?)) = ($uς?u%)t($uς?u
%?)t($?uςu%)t($?uςu%?) � (ς?u%)t($u%?)t($?u
%)t (ς u %?) = (($u %?)t ($? u %))t ((%u ς?)t (%? u ς))
by Proposition 2, so ($ u ς?) t ($? u ς) ∈ Σ and then
〈$, ς〉 ∈ ϑ. Hence the binary relation ϑ is an equivalent
relation on Ω. It is easy to see that if 〈$, %〉 ∈ ϑ, then
〈$?, %?〉 ∈ ϑ. For any 〈$, %〉 ∈ ϑ and 〈κ, ι〉 ∈ ϑ, then
($ u %?)t ($? u %) ∈ Σ and (κu ι?)t (κ? u ι) ∈ Σ. Since
(($tκ)u(%tι)?)t(($tκ)?u(%tι)) = (($tκ)u(%?uι?))t
(($?uκ?)u(%tι)) = ($u%?uι?)t(κu%?uι?)t($?uκ?u
%)t($?uκ?uι) � (($u%?)t($?u%))t((κuι?)t(κ?uι)),
it follows that (($tκ)u(%tι)?)t(($tκ)?u(%tι)) ∈ Σ, so
〈$ t κ, %t ι〉 ∈ ϑ. Similarly, we can prove 〈$ u κ, %u ι〉 ∈
ϑ. Hence the equivalent relation ϑ is a congruence on Ω.
Finally, if 〈$u$, %u%〉 ∈ ϑ, then (($u$)u(%u%)?)t(($u
$)?u (%u%)) ∈ Σ, it follows that ($u%?)t ($?u%) ∈ Σ,
so 〈$, %〉 ∈ ϑ. Hence the relation ϑ is an ideal congruence
on Ω.

Theorem 1: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-Boolean
algebra. Then there exists a one-to-one correspondence be-
tween the set of ideals and the set of ideal congruences on
Ω.

Proof: Let Σ be an ideal of Ω. Then ϑΣ defined in
Lemma 4 is an ideal congruence on Ω. Moreover, since $ �
$ t $ = $ u $ � $, we have ΣϑΣ = {$ ∈ Ω|〈$, 0〉 ∈
ϑΣ} = {$ ∈ Ω|$ u$ ∈ Σ} = Σ. Conversely, let ϑ be an
ideal congruence on Ω. Then Σϑ = 0/ϑ defined in Lemma 3
is an ideal of Ω. Moreover, ϑΣϑ

= {〈$, %〉|($u%?)t($?u
%) ∈ Σϑ} = {〈$, %〉|〈($ u %?) t ($? u %), 0〉 ∈ ϑ} = ϑ.
Indeed, for any 〈$, %〉 ∈ ϑ, we have 〈$ u %?, 0〉 = 〈$ u
%?, % u %?〉 ∈ ϑ and 〈$? u %, 0〉 = 〈$? u %,$? u $〉 ∈ ϑ,
so 〈($ u %?)t ($? u %), 0〉 ∈ ϑ and then 〈$, %〉 ∈ ϑΣϑ

. For
any 〈$, %〉 ∈ ϑΣϑ

, then 〈($ u %?) t ($? u %), 0〉 ∈ ϑ. We
calculate that 〈($ u %?)t ($? u %), 0〉 = 〈($ t$?)u (%? t
$?)u ($t%)u (%?t%), 0〉 = 〈($u%)?u ($t%), 0〉 ∈ ϑ, it
turns out that 〈($u%)t (($u%)?u ($t%)), ($u%)t0〉 =
〈$ t %,$ u %〉 ∈ ϑ, so 〈($ t %) u $, ($ u %) u $〉 =
〈$ u$,$ u %〉 ∈ ϑ. Similarly, we have 〈%u %,$ u %〉 ∈ ϑ.

Hence we have 〈$ u$, % u %〉 ∈ ϑ. Note that ϑ is an ideal
congruence on Ω, we get 〈$, %〉 ∈ ϑ.

IV. BOOLEAN QUASI-RINGS

It is well-known that Boolean algebras can be regards as
rings. Below we discuss the similar results for quasi-Boolean
algebras.

Definition 5: Let Λ = (Λ;⊕,	, 0) be an algebra of type
(2, 1, 0) and denote the set Λ⊕ 0 = {$ ⊕ 0|$ ∈ Λ}. Then
Λ is called a quasi-group if the following conditions are
satisfied for any $, % ∈ Λ:

(QG1) (Λ⊕ 0;⊕,	, 0) is a group with 0⊕ 0 = 0;
(QG2) 	(	$) = $;
(QG3) 	($ ⊕ 0) = (	$)⊕ 0;
(QG4) $ ⊕ % = ($ ⊕ 0)⊕ (%⊕ 0).
If Λ = (Λ;⊕,	, 0) is a quasi-group and for any $, % ∈ Λ,

we have $⊕ % = %⊕$, then Λ is commutative. Following
from the definition, we know that if (Λ ⊕ 0;⊕,	, 0) is a
commutative group, then Λ is a commutative quasi-group.

Lemma 5: Let Λ = (Λ;⊕,	, 0) be a quasi-group. Then
the following hold for any $, %, ς ∈ Λ:

(1) if $ ⊕ 0 ∈ Λ⊕ 0, then $ ⊕ 0 = 0⊕$;
(2) ($ ⊕ %)⊕ ς = $ ⊕ (%⊕ ς);
(3) (	$)⊕$ = $ ⊕ (	$) = 0;
(4) if $ ⊕ % = $ ⊕ ς , then 0⊕ % = 0⊕ ς ,

if %⊕$ = ς ⊕$, then %⊕ 0 = ς ⊕ 0.
Proof: (1) Since 0⊕ 0 = 0 ∈ Λ⊕ 0, we have $ ⊕ 0 =

0⊕ ($ ⊕ 0) = (0⊕ 0)⊕ ($ ⊕ 0) = 0⊕$ by (QG4).
(2) We have ($⊕%)⊕ς = (($⊕0)⊕(%⊕0)⊕0)⊕(ς⊕0) =

(($⊕0)⊕(%⊕0))⊕(ς⊕0) = ($⊕0)⊕((%⊕0)⊕(ς⊕0)) =
$ ⊕ (%⊕ ς) by (QG4) and (QG1).

(3) We have (	$) ⊕ $ = ((	$) ⊕ 0) ⊕ ($ ⊕ 0) =
(	($ ⊕ 0))⊕ ($ ⊕ 0) = 0 by (QG4), (QG3) and (QG1).

(4) If $⊕% = $⊕ς , then (	$)⊕$⊕% = (	$)⊕$⊕ς ,
we have 0 ⊕ % = 0 ⊕ ς . The other can be proved similarly.

Definition 6: Let Ψ = (Ψ;⊕,�,	, 0) be an algebra
of type (2, 2, 1, 0). Then Ψ is called a quasi-ring if the
following conditions are satisfied for any $, %, ς ∈ Ψ:

(QR1) (Ψ;⊕,	, 0) is a commutative quasi-group;
(QR2) (Ψ;�) is a semigroup;
(QR3) $ � % = ($ � %)⊕ 0;
(QR4) $�(%⊕ς) = ($�%)⊕($�ς) and (%⊕ς)�$ =

(%�$)⊕ (ς �$).
A quasi-ring Ψ = (Ψ;⊕,�,	, 0, 1) is called a quasi-ring

with quasi-identity if the following condition is satisfied for
any $, % ∈ Ψ: (QR5) $ ⊕ % = ($ ⊕ %)� 1 and 1� 1 = 1.

In the following, a quasi-ring Ψ = (Ψ;⊕,�,	, 0, 1)
always means a quasi-ring with quasi-identity. In addition,
we shall consider that the operation � has priority to the
operation ⊕.

Proposition 7: Let Ψ = (Ψ;⊕,�,	, 0, 1) be a quasi-
ring. Then the following hold for any $, %, ς ∈ Ψ:

(1) 0�$ = $ � 0 = 0;
(2) (	$)� % = $ � (	%) = 	($ � %);
(3) (	$)� (	%) = $ � %;
(4) ς�($	%) = ς�$	ς�% and ($	%)�ς = $�ς	%�ς

where $ 	 % = $ ⊕ (	%);
(5) $ � 1 = $ ⊕ 0 and $ � 1 = 1�$;
(6) $ � %� 1 = $ � %;
(7) 1⊕ 0 = 1.
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Proof: (1) Since 0�$ = (0⊕0)�$ = 0�$⊕0�$,
we have 0�$⊕ 0 = (0�$⊕ 0)⊕ (0�$⊕ 0). Note that
0�$⊕ 0 ∈ Λ⊕ 0, it turns out that 0�$ = 0�$⊕ 0 = 0.
Similarly, we have $ � 0 = 0.

(2) Since (	$)�%⊕$�% = (	$⊕$)�% = 0�% = 0
by (QR4) and (1), we have (	$)� %⊕ 0 = 	($ � %)⊕ 0
by Lemma 5, so (	$)� % = 	($� %). Similarly, we have
$ � (	%) = 	($ � %).

(3) We have (	$)� (	%) = 	($ � (	%)) = 	(	($ �
%)) = $ � % by (2) and (QG2).

(4) We have ς � ($ 	 %) = ς � ($ ⊕ (	%)) = ς �$ ⊕
ς � (	%) = ς �$⊕ (	(ς � %)) = ς �$	 ς � %. Similarly,
we have ($ 	 %)� ς = $ � ς 	 %� ς .

(5) We have $ ⊕ 0 = ($ ⊕ 0) � 1 = $ � 1 ⊕ 0 � 1 =
$ � 1 ⊕ 0 = $ � 1. Similarly, 0 ⊕ $ = 1 � $. Since
$ ⊕ 0 = 0⊕$ by Lemma 5, we have $ � 1 = 1�$.

(6) We have ($� %)� 1 = ($� %)⊕ 0 = $� % by (5).
(7) We have 1⊕ 0 = 1� 1 = 1.
Definition 7: A quasi-ring Ψ = (Ψ;⊕,�,	, 0, 1) is

Boolean, if Ψ satisfies $2 = $ � 1 for any $ ∈ Ψ.
Lemma 6: Let Ψ = (Ψ;⊕,�,	, 0, 1) be a Boolean

quasi-ring. For any $, % ∈ Ψ, we have $ ⊕ $ = 0 and
$ � % = %�$.

Proof: For any $ ∈ Ψ, we have ($ ⊕ $)2 = ($ ⊕
$)� 1 = $ ⊕$ and ($ ⊕$)2 = $2 ⊕$2 ⊕$2 ⊕$2 =
$� 1⊕$� 1⊕$� 1⊕$� 1 = ($⊕$⊕$⊕$)� 1 =
$⊕$⊕$⊕$, it turns out that $⊕$⊕$⊕$ = $⊕$,
so $⊕$ = 0. For any $, % ∈ Ψ, on the one hand, we have
($⊕%)2 = ($⊕%)�1 = $⊕%, on the other hand, we have
($⊕%)2 = $2⊕$�%⊕%�$⊕%2 = $�1⊕$�%⊕%�$⊕
%�1 = $⊕0⊕$�%⊕%�$⊕%⊕0 = $⊕$�%⊕%�$⊕%,
it turns out that $ ⊕ $ � % ⊕ % � $ ⊕ % = $ ⊕ %, so
$�%⊕%�$ = 0. Since $�%⊕$�% = 0 = $�%⊕%�$,
we have $�%⊕0 = %�$⊕0 by Lemma 5, so $�% = %�$.

Theorem 2: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-Boolean
algebra. Define Ω⊗ to be the algebra (Ω;⊕,�,	, 0, 1) where
for any $, % ∈ Ω, $⊕% = ($u%?)t($?u%), $�% = $u%
and 	$ = $. Then Ω⊗ is a Boolean quasi-ring.

Proof: Firstly, we show that (Ω;⊕,	, 0) is a com-
mutative quasi-group. For any $ ∈ Ω, since $ ⊕ 0 =
($ u 0?) t ($? u 0) = ($ u$) t 0 = $ u$, it is easy to
see that (Ω⊕ 0;⊕,	, 0) is a group and 0⊕ 0 = 0 u 0 = 0.
Meanwhile, (QG2) we have (	(	$)) = 	$ = $; (QG3)
since 	($ ⊕ 0) = $ ⊕ 0 and (	$)⊕ 0 = $ ⊕ 0, we have
	($⊕0) = (	$)⊕0; (QG4) we have ($⊕0)⊕ (%⊕0) =
($u$)⊕(%u%) = (($u$)u(%u%)?)t(($u$)?u(%u%)) =
(($u$)u(%?t%?))t(($?t$?)u(%u%)) = (($u$)u(%?u
%?))t (($?u$?)u (%u%)) = ($u%?)t ($?u%) = $⊕%.
Moreover, we have $ ⊕ % = ($ u %?) t ($? u %) =
(% u $?) t (%? u $) = % ⊕ $. So (Ω;⊕,	, 0) is a
commutative quasi-group. Secondly, for any $ ∈ Ω, we have
($�%)�ς = ($u%)uς = $u(%uς) = $�(%�ς) which
implies that (Ω;�) is a semigroup. Moreover, ($�%)⊕0 =
($ � %) u ($ � %) = ($ u %) u ($ u %) = $ u % = $ � %.
Thirdly, on the one hand, we have $�(%⊕ς) = $u(%⊕ς) =
$u((%u ς?)t(%?u ς)) = ($u%u ς?)t($u%?u ς), on the
other hand, we have ($�%)⊕($�ς) = ($u%)⊕($uς) =
(($u%)u($u ς)?)t(($u%)?u($u ς)) = ($u%u($?t
ς?))t (($?t%?)u ($u ς)) = ($u%u$?)t ($u%u ς?)t
($?u$u ς)t (%?u$u ς) = ($u%u ς?)t (%?u$u ς), so

$� (%⊕ ς) = ($� %)⊕ ($� ς). Since $� % = $ u % =
% u $ = % � $, we have (% ⊕ ς) � $ = % � $ ⊕ ς � $.
Finally, ($ ⊕ %) � 1 = ($ ⊕ %) u 1 = $ ⊕ % and
1 � 1 = 1 u 1 = 1. Thus Ω⊗ is a quasi-ring with quasi-
identity. Note that $2 = $�$ = $u$ = $u1 = $�1,
we have that Ω⊗ is a Boolean quasi-ring.

Theorem 3: Let Ψ = (Ψ;⊕,�,	, 0, 1) be a Boolean
quasi-ring. Define Ψ⊗ to be the algebra (Ψ;t,u,? , 0, 1)
where for any $, % ∈ Ψ, $t% = $⊕%⊕$�%, $u% = $�%
and $? ∈ Ψ with $? ⊕ 0 = ($ ⊕ 0)? = 1 ⊕$. Then Ψ⊗

is a generalized quasi-Boolean algebra.
Proof: Firstly, we show that (Ψ;t,u) is a q-lattice. For

any $, %, ς ∈ Ψ, (QL1) we have $t% = $⊕%⊕ ($�%) =
%⊕$⊕(%�$) = %t$ and $u% = $�% = %�$ = %u$
by Lemma 6. (QL2) We have $t(%tς) = $⊕(%tς)⊕$�
(%tς) = $⊕%⊕ς⊕%�ς⊕$�(%⊕ς⊕%�ς) = $⊕%⊕ς⊕%�
ς⊕$�%⊕$�ς⊕$�%�ς . The value of this last expression
does not change if we permute $, % and ς , so $t (%t ς) =
ςt($t%) and then $t(%tς) = ($t%)tς . Meanwhile, we
have ($u%)u ς = ($�%)� ς = $� (%� ς) = $u (%u ς).
(QL3) We have $t$ = $⊕$⊕$�$ = 0⊕$�1 = $�1
and $t(%u$) = $⊕(%u$)⊕$�(%u$) = $⊕%�$⊕$�
(%�$) = $⊕%�$⊕$�%�$ = $⊕%�$⊕$�$�% =
$ ⊕ ($ � %⊕ %�$) = $ ⊕ ($ � %⊕$ � %) = $ ⊕ 0 =
$ � 1. Thus $ t (% u $) = $ t $. Similarly, we have
$ u (% t $) = $ u $. (QL4) We have $ t (% t %) =
$t(%�1) = $⊕%�1⊕$�%�1 = $⊕%⊕$�% = $t%
and $ u (%u %) = $� (%� %) = $� (%� 1) = ($� %)�
1 = $ � % = $ u %. (QL5) We have $ t $ = $ � 1 =
$ �$ = $ u$. Hence (Ψ;t,u) is a q-lattice. Secondly,
since $t (%u ς) = $t (%� ς) = $⊕%� ς⊕$�%� ς and
($ t %)u ($ t ς) = ($⊕ %⊕$� %)� ($⊕ ς ⊕$� ς) =
$�$⊕$� ς ⊕$�$� ς ⊕ %�$⊕ %� ς ⊕ %�$� ς ⊕
$�%�$⊕$�%� ς⊕$�%�$� ς = $�1⊕ ($� ς⊕
$�$� ς)⊕ (%�$⊕$� %�$)⊕ (%�$� ς ⊕$� %�
$� ς)⊕%� ς⊕$�%� ς = $⊕%� ς⊕$�%� ς , we have
$t(%uς) = ($t%)u($tς). Similarly, we have $u(%tς) =
($u%)t($uς). Moreover, we have $u0 = $�0 = 0 and
$t1 = $⊕1⊕$�1 = $⊕1⊕$⊕0 = 1. Finally, we have
$t$? = $⊕$?⊕$�$? = $⊕($?⊕0)⊕$�($?⊕0) =
$⊕(1⊕$)⊕$�(1⊕$) = $⊕1⊕$⊕$�1⊕$�$ = 1
and $ u$? = $�$? = $� ($? ⊕ 0) = $� (1⊕$) =
$�1⊕$�$ = $�1⊕$�1 = 0. Hence (Ψ;t,u,? , 0, 1)
is a complemented distributive q-lattice. Note that for any
$ ∈ Ψ, $? u $? = $? � $? = ($? ⊕ 0) � ($? ⊕ 0) =
(1⊕$)�(1⊕$) = (1⊕$)�1 = 1⊕$ and ($t$)? = ($�
1)? = ($⊕0)? = 1⊕$, we get ($t$)? = $?u$? which
implies that Ψ⊗ is a generalized quasi-Boolean algebra.

Corollary 1: Let Ψ = (Ψ;⊕,�,	, 0, 1) be a Boolean
quasi-ring and Ψ⊗ be defined in Theorem 3. If the unary
operation ? satisfies an additional condition $?? = $ for
any $ ∈ Ψ, then Ψ⊗ is a quasi-Boolean algebra. Moreover,
Ψ⊗⊗ = Ψ under this case.

Corollary 2: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-
Boolean algebra and Ω⊗ be defined in Theorem 2. If the
unary operation ? defined in Ω⊗⊗ is same to Ω, then
Ω⊗⊗ = Ω.

Given a quasi-ring Ψ = (Ψ;⊕,�,	, 0, 1), we define an
ideal Σ of Ψ, if the following conditions are satisfied for
any $, %, ε ∈ Ψ, $, % ∈ Σ imply $ 	 % ∈ Σ, ε � $ ∈ Σ
and $ � ε ∈ Σ.
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Theorem 4: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-Boolean
algebra and Σ be a weak ideal of Ω. Then Σ is an ideal of
Ω⊗.

Proof: Let Σ be a weak ideal of Ω. For any $, % ∈ Σ,
since $u %? � $ and $? u % � % and Σ is a weak ideal of
Ω, we have $ u %? ∈ Σ and $? u % ∈ Σ, it turns out that
$ ⊕ % = ($ u %?) t ($? u %) ∈ Σ. Meanwhile, we have
	% = % ∈ Σ, so $	% ∈ Σ. Since ε�$ = εu$ = $�ε �
$, we have ε�$ ∈ Σ and $� ε ∈ Σ. Hence Σ is an ideal
of Ω⊗.

Theorem 5: Let Ψ = (Ψ;⊕,�,	, 0, 1) be a Boolean
quasi-ring and Σ be an ideal of Ψ. Then Σ is a weak ideal
of Ψ⊗.

Proof: Let Σ be an ideal of Ψ. For any $ ∈ Σ, 0 =
0�$ ∈ Σ. If $, % ∈ Σ, then $⊕ % ∈ Σ and $� % ∈ Σ, it
follows that $ t % = $⊕ %⊕$� % ∈ Σ. Finally, if $ ∈ Σ
and % ∈ Ψ with % � $, then % u % = $ u % = $ � % ∈ Σ.
Hence Σ is a weak ideal of Ψ⊗.

Corollary 3: Let Ω = (Ω;t,u,? , 0, 1) be a quasi-
Boolean algebra and Ω = Ω⊗⊗. Then Σ is a weak ideal
of Ω if and only if Σ is an ideal of Ω⊗.
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