Exact Run Length Evaluation on Extended EWMA Control Chart for Seasonal Autoregressive Process

Kotchaporn Karoon, Yupaporn Areepong* and Saowanit Sukparungsee

Abstract

Herein, we derive explicit formulas for the average run length (ARL) on an extended exponentially weighted moving average (EWMA) chart running a seasonal autoregressive process of order $\boldsymbol{p}\left(\mathbf{S A R}(\mathrm{p})_{\mathrm{L}}\right)$ with exponential white noise. The observations are from $\operatorname{SAR}(p)_{L}$ process. The accuracy of the explicit formulas-derived $A R L$ the numerical integral equation method. Although their accuracies were hardly different, the explicit formulas method required a much shorter CPU time to perform the calculation. Furthermore, the efficiency of the extended EWMA control chart was also compared with that of the conventional EWMA control chart utilizing the explicit formulas technique for the ARL. The results show that for a small shift size in the process mean, detection on the extended EWMA control chart was much earlier than on the standard EWMA control chart. Moreover, the proposed method was applied to the SAR(p)L process with real-world data running on the extended EWMA control chart to demonstrate its efficacy.

Index Terms- average run length, explicit formula, extended EWMA control chart, seasonal autoregressive process

I. INTRODUCTION

STATISTICAL process control (SPC) is a significant and effective technique for monitoring and enhancing processes in many fields. Control charts, one of the SPC techniques, have been used in a variety of fields, including economics [1], business [2], and health and medical [3]. The Shewhart control chart, which can detect major changes in process parameters, was created by Shewhart [4]. Later, the cumulative sum (CUSUM) [5] and the exponentially weighted moving average (EWMA) control charts [6] became widely used for monitoring small-to-moderate shifts in the mean of a process since they have excellent performance.

Manuscript received January 06, 2022; revised September 23, 2022. This work was supported in part by Department of Applied Statistics, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.

This work was supported in part by Thailand Science Research and Innovation Fund, and King Mongkut's University of Technology North Bangkok contract no. KMUTNB-FF-66-04.

Kotchaporn Karoon is a PhD candidate of Applied Statistics Department, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand, (e-mail: kotchaporn.fern@gmail.com).

Yupaporn Areepong is a Professor of Applied Statistics Department, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand, (corresponding author to provide e-mail: yupaporn.a@sci.kmutnb.ac.th).

Saowanit Sukparungsee is a Professor of Applied Statistics Department, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand, (e-mail: saowanit.s@ sci.kmutnb.ac.th).

Moreover, Khan et al. [7] further extended the modified exponentially weighted moving average (modified EWMA) control chart, which was first proposed by Patel and Divecha [8] for processes where the observations are both autocorrelated and from an independently normal distribution. Naveed et al. [9] presented the extended exponentially weighted moving average (extended EWMA) control chart, which is capable of accurately detecting minute changes in a process parameter. Evaluating the capability of a control chart is accomplished by using a well-known measurement, the average run length ($A R L$), comprises two components: $A R L_{0}$, should be as high as feasible, is the mean number of times the observations fall in the control region before they fall out of the control region, and $A R L_{1}$, should be as low as feasible, refers to the mean number of times the observations fall out-of-control region control. Several approaches have been used to estimate the $A R L$, including Markov chain [10], Monte Carlo simulation [11], Martingale [12], and the numerical integral equation (NIE) method [13]. Many researchers have computed the $A R L$ with explicit formulas and checked their accuracy by using these methods. For instance, Sukparungsee and Areepong [14] provided explicit formulas for the $A R L$ on the EWMA control chart and compared the accuracy of the numerical results via Monte Carlo simulations. Suriyakat et al. [15],[16] derived the ARL on the EWMA control chart running the first-order autoregressive process with and without trend with exponential white noise distribution. Petcharat et al. [17] constructed explicit formulas for the $A R L$ on the CUSUM control chart running the first-order moving average process and compared it with the NIE method. Later, Petcharat [18] derived the $A R L$ based on explicit formulas on the EWMA control chart running a seasonal moving average process of order $q\left(\mathrm{SMA}(\mathrm{q})_{\mathrm{L}}\right)$ with exponential white noise. Zhang and Busababodhin [19] derived explicit formulas for the ARL on the CUSUM control chart running an ARIMA process with exponential white noise. Peerajit et al. [20] compared the efficiency of $A R L$ methods based on explicit formulas and the NIE method for the CUSUM control chart running a seasonal ARFIMA process. Next, Supharakonsakun et al. [21] proposed the exact solution for the $A R L$ on the modified EWMA control chart running a MA(1) process. Phanthuna et al. [22] proposed explicit formulas for evaluating the $A R L$ on a two-sided modified EWMA control chart running an AR(1) process with exponential white noise. In the same year, Phanthuna et al. [23] provided the analytical expression of the ARL on the modified EWMA control chart with the AR process containing exponential white noise. Recently, the ARL on explicit formulas on a modified EWMA control chart
running a seasonal $\mathrm{AR}(\mathrm{p})$ process was recently provided by Phanthuna and Areepong [24]. To our knowledge, no one has ever published explicit formulas for the ARL on an extended EWMA control chart running a $\operatorname{SAR}(\mathrm{p})_{\mathrm{L}}$ process with white noise exponential distribution. However, there has been much previous research that used the time series model with seasonality for engineering analysis. The double SARIMA model for predicting electrical power consumption was proposed by Mado et al. [29]. The SARIMA model for forecasting water consumption was published by Oliveira et al. [30]. So we derive them here for the $A R L$ on an extended EWMA control chart for both $\operatorname{SAR}(1)_{12}$ and $\operatorname{SAR}(2)_{12}$ processes. Additionally, for processes using both simulated and real-world data, the efficiency of the explicit formula solutions for the ARL on the extended and standard EWMA control charts is contrasted.

II. MATERIALS AND METHODS

A. Exponentially Weighted Moving Average Control Chart

Robert [6] was the one who first suggested the exponentially weighted moving average (EWMA) control chart. It's suitable for detecting small process shifts. The following formula is used to calculate the EWMA statistic: $Z_{t}=(1-\lambda) Z_{t-1}+\lambda Y_{t}, t=1,2, \ldots$
where Y_{t} is the process with the mean, the smoothing constant λ is that $0<\lambda \leq 1$. The initial value of the EWMA statistic Z_{0} is equal to u. The control limits for the EWMA control chart are as follows:
$U C L=\mu_{0}+W_{Z} \sigma \sqrt{\frac{\lambda}{2-\lambda}}$, and $L C L=\mu_{0}-W_{Z} \sigma \sqrt{\frac{\lambda}{2-\lambda}}$,
where μ_{0} is the target mean, σ is the process standard deviation, and W_{Z} is width of the control limits. The stopping time is given by $\tau_{Z}=\inf \left\{t \geq 0: Z_{t}<h, Z_{t}>k\right\}$ and then k is $U C L$ and h is $L C L$.

B. Extended Exponentially Weighted Moving Average Control Chart

The Extended Exponentially Weighted Moving Average (extended EWMA or EEWMA) control chart was suggested by Naveed et al. [9]. It is developed from the EWMA control chart. The EEWMA statistic is calculated as:
$E_{t}=\lambda_{1} Y_{t}-\lambda_{2} Y_{t-1}+\left(1-\lambda_{1}+\lambda_{2}\right) E_{t-1}, t=1,2, \ldots$
where the smoothing constant λ_{1} and λ_{2} are that $\left(0<\lambda_{1} \leq 1\right)$ and $\left(0 \leq \lambda_{2}<\lambda_{1}\right)$, respectively. The initial value of the extended EWMA statistic E_{0} is equal to \boldsymbol{u}. The control limits for the extended EWMA control chart are as follows:
$U C L=\mu_{0}+W_{E} \sigma \sqrt{\frac{\lambda_{1}^{2}+\lambda_{2}^{2}-2 \lambda_{1} \lambda_{2}\left(1-\lambda_{1}+\lambda_{2}\right)}{2\left(\lambda_{1}-\lambda_{2}\right)-\left(\lambda_{1}-\lambda_{2}\right)^{2}}}$
$L C L=\mu_{0}-W_{E} \sigma \sqrt{\frac{\lambda_{1}^{2}+\lambda_{2}^{2}-2 \lambda_{1} \lambda_{2}\left(1-\lambda_{1}+\lambda_{2}\right)}{2\left(\lambda_{1}-\lambda_{2}\right)-\left(\lambda_{1}-\lambda_{2}\right)^{2}}}$
where W_{E} is width of the control limits. The stopping time is provided by $\tau_{E}=\inf \left\{t \geq 0: E_{t}<a, E_{t}>b\right\}$ and then b is $U C L$ and a is $L C L$.

III. EXACT SOLUTIONS OF ARL ON THE EXTENDED EWMA CONTROL CHART

When a random variable sequence is used, Y_{t} is the observation with $\operatorname{SAR}(\mathrm{p})_{\mathrm{L}}$ process. A seasonal $\operatorname{AR}(\mathrm{p})$ or $\operatorname{SAR}(\mathrm{p})_{\mathrm{L}}$ process can be expressed as follows:
$Y_{t}=\eta+\phi_{1} Y_{t-L}+\phi_{2} Y_{t-2 L}+\ldots+\phi_{p} Y_{t-p L}+\varepsilon_{t}$
or
$Y_{t}=\eta+\sum_{i=1}^{p} \phi_{i} Y_{t-i L}+\varepsilon_{t}$
where η is an appropriate constant, ϕ_{i} is an autoregressive coefficient of autoregressive at $i=1,2, \ldots, p$ or $\left|\phi_{p}\right|<1, L$ is a seasonal period time, and ε_{t} is white noise sequence of exponential $\quad\left(\varepsilon_{t} \sim \operatorname{Exp}(\alpha)\right)$. The extended
EWMA statistic based on $\operatorname{SAR}(\mathrm{p})_{\mathrm{L}}$ process can be expression as:
$E_{1}=\lambda_{1}\left(\eta+\sum_{i=1}^{p} \phi_{i} Y_{1-i L}+\varepsilon_{1}\right)-\lambda_{2} Y_{1-L}+\left(1-\lambda_{1}+\lambda_{2}\right) E_{0}$
$E_{1}=\lambda_{1} \eta+\left(1-\lambda_{1}+\lambda_{2}\right) E_{0}+\left(\lambda_{1} \phi_{1}-\lambda_{2}\right) Y_{1-L}$
$+\lambda_{1} \sum_{i=2}^{p} \phi_{i} Y_{1-i L}+\lambda_{1} \varepsilon_{1}$
When Y_{t-L} is a initial constant of Y_{t} observations and $E_{0}=u$ is an initial value in the process mean.

The error term ε_{1} can be reformed as an in-control process and refers to E_{1} that is written as:
$\frac{a-\left(1-\lambda_{1}+\lambda_{2}\right) u-\left(\lambda_{1} \phi_{1}-\lambda_{2}\right) Y_{1-L}}{\lambda_{1}}-\sum_{i=2}^{p} \phi_{i} Y_{1-i L}-\eta<\varepsilon_{1}$
$<\frac{b-\left(1-\lambda_{1}+\lambda_{2}\right) u-\left(\lambda_{1} \phi_{1}-\lambda_{2}\right) Y_{1-L}}{\lambda_{1}}-\sum_{i=2}^{p} \phi_{i} Y_{1-i L}-\eta$
On the extended EWMA control chart, the ARL for the $\mathrm{SAR}(\mathrm{p}) \mathrm{L}$ process is determined by an initial value as follows.
$A R L=A R L_{E}(u)=E_{\infty}\left(\tau_{E}\right) \geq T$
Let $A R L_{E}(u)$ denote the $A R L$ on the extended EWMA control chart for $\operatorname{SAR}(\mathrm{p})_{\mathrm{L}}$ process. The Fredholm integral equation of the second kind can be used to construct the function ARL [25]. ARL is characterized as follows:
$A R L_{E}(u)=1+\int A R L_{E}\left(E_{1}\right) f\left(\varepsilon_{1}\right) d \varepsilon_{1}$
If
$s=\left(1-\lambda_{1}+\lambda_{2}\right) u+\left(\lambda_{1} \phi_{1}-\lambda_{2}\right) Y_{1-L}+\lambda_{1} \sum_{i=2}^{p} \phi_{i} Y_{1-i L}+\lambda_{1} \eta+\lambda_{1} \varepsilon_{1}$
The function $A R L_{E}(u)$ is rearranged as follows when the integration variable is changed:
$A R L_{E}(u)=1+$
$\frac{1}{\lambda_{1}} \int_{a}^{b} \operatorname{ARL}_{E}(s) f\binom{\frac{s-\left(1-\lambda_{1}+\lambda_{2}\right) u-\left(\lambda_{1} \phi_{1}-\lambda_{2}\right) Y_{1-L}}{\lambda_{1}}}{-\sum_{i=2}^{p} \phi_{i} Y_{1-i L}-\eta} d s$
when $\varepsilon_{1} \sim \operatorname{Exp}(\alpha)$, then
$\left.1+\frac{1}{\lambda_{1} \alpha} \cdot e^{\left(\frac{\left(1-\lambda_{1}+\lambda_{2}\right) u}{\lambda_{1} \alpha}+\frac{\left(\lambda_{1} \phi_{1}-\lambda_{2}\right) Y_{1-L}}{\lambda_{1} \alpha}+\frac{\sum_{i=2}^{p} \phi_{i} Y_{1-i L}+\eta}{\alpha}\right.}\right)$
$\int_{a}^{b} A R L_{E}(s) e^{-\frac{s}{\lambda_{1} \alpha}} d s$
(10)

In next step, Equation (9) is demonstrated to be accurate by using Banach's fixed point theorem [26] to confirm the consistency and uniqueness of the ARL solution on the extended EWMA control chart for the $\operatorname{SAR}(\mathrm{p}) \mathrm{L}$ process. The procedure is presented as follows.

By using Banach's fixed-point theorem, the $A R L$ solution demonstrates that the integral equation for explicit formulas exists only once. Assume that T belongs to the class of all continuous functions.
$T\left(A R L_{E}(u)\right)=1+\frac{1}{\lambda_{1}}$
$\int_{a}^{b} \operatorname{ARL}_{E}(s) f\binom{\frac{s-\left(1-\lambda_{1}+\lambda_{2}\right) u-\left(\lambda_{1} \phi_{1}-\lambda_{2}\right) Y_{1-L}}{\lambda_{1}}}{-\sum_{i=2}^{p} \phi_{i} Y_{1-i L}-\eta} d s$
A single solution exists for the fixed-point problem $T\left(A R L_{E}(u)\right)=A R L_{E}(u)$ if operator T is a contraction.
Theorem can be applied as shown in the examples below to prove that (11) exists and has a unique solution.

Theorem 1 Banach's Fixed-point Theorem: Let's assume that Y represents a complete metric space and $T: Y \rightarrow Y$ is a mapping of contractions with $r \in[0,1)$ being a continuous contraction so that $\left\|T\left(A R L_{E 1}\right)-T\left(A R L_{E 2}\right)\right\| \leq r\left\|A R L_{E 1}-A R L_{E 2}\right\|$, $\forall A R L_{E 1}, A R L_{E 2} \in Y$.
Then an exclusive $A R L_{E}(\cdot) \in Y$ exists such that $T\left(A R L_{E}(u)\right)=A R L_{E}(u)$, i.e., a unique fixed-point in Y.

Proof: Let T, as specified in (13) be a mapping for contractions for $A R L_{E 1}, A R L_{E 2} \in u[a, b]$.

$$
\begin{aligned}
& \left\|T\left(A R L_{E 1}\right)-T\left(A R L_{E 2}\right)\right\|_{\infty}=\sup _{u \in[a, b]}\left|A R L_{E 1}(u)-A R L_{E 2}(u)\right| \\
& =\sup _{u \in[a, b]}\left|\begin{array}{l}
\left\{\left.\begin{array}{l}
\frac{\left(1-\lambda_{1}+\lambda_{2}\right) u+\left(\lambda_{1} \phi_{1}-\lambda_{2}\right) Y_{1-L}}{\lambda_{1} \alpha} \\
\frac{\sum_{i=2}^{n} \phi_{i} Y_{1-i L}+\eta}{\left(+\frac{\alpha}{2}\right.}
\end{array} \right\rvert\,\right. \\
\int_{a}^{b}\left(A R L_{E 1}(s)-A R L_{E 2}(s)\right) e^{-\frac{s}{\lambda_{1} \alpha}} d s
\end{array}\right|
\end{aligned}
$$

$\leq \sup _{u \in[a, b]}\left|\begin{array}{l}\left\|A R L_{E 1}-A R L_{E 2}\right\| \frac{1}{\lambda_{1} \alpha} \\ \left(-\lambda_{1} \alpha\right)\left(e^{-\frac{b}{\lambda_{1} \alpha}}-e^{-\frac{a}{\lambda_{1} \alpha}}\right) \\ \left\{\begin{array}{l}\frac{\left(1-\lambda_{1}+\lambda_{2}\right) u+\left(\lambda_{1} \phi_{1}-\lambda_{2}\right) Y_{1-L}}{\lambda_{1} \alpha} \\ \left\{\begin{array}{l}\sum_{i=2}^{p} \phi_{i} Y_{1-i L}+\eta \\ \alpha\end{array}\right.\end{array}\right\}\end{array}\right|$
$=\left\|A R L_{E 1}-A R L_{E 2}\right\|_{\infty}$
$\sup _{u \in[a, b]}\left|e^{\frac{\left(1-\lambda_{1}+\lambda_{2}\right) u+\left(\lambda_{1} \phi_{1}-\lambda_{2}\right) Y_{1-L}}{\lambda_{1} \alpha}+\frac{\sum_{i=2}^{p} \phi_{1} Y_{1-i L}+\eta}{\alpha}}\right|\left|e^{-\frac{a}{\lambda_{1} \alpha}}-e^{-\frac{b}{\lambda_{1} \alpha}}\right|$
$\leq r\left\|A R L_{E 1}-A R L_{E 2}\right\|_{\infty}$

A. The Explicit Formulas of the ARL

After checking the uniqueness of the $A R L$, Equation (9) can be changed by adding different variables with the following values that are shown as below:
$A R L_{E}(u)=1+\frac{Q(u)}{\lambda_{1} \alpha} \cdot H$
where
$Q(u)=e^{\frac{\left(1-\lambda_{1}+\lambda_{2}\right) u+\left(\lambda_{1} \phi_{1}-\lambda_{2}\right) Y_{1-L}}{\lambda_{1} \alpha}+\frac{\sum_{i=2}^{p} \phi_{1} Y_{1-i L}+\eta}{\alpha}}$,
$H=\int_{a}^{b} A R L_{E}(s) e^{-\frac{s}{\lambda_{1} \alpha}} d s$
Taking the constant H and turning $A R L_{E}(s)$ with (12),

Substituting constant H from (13) into (12), then $A R L_{E}(u)$ can be rearranged follows (14) as
$A R L_{E}(u)=$

Finally, the solution to (14) is an explicit formula of ARL for the $\operatorname{SAR}(\mathrm{p})_{\mathrm{L}}$ process on the extended EWMA control chart.
B. The NIE Method of the ARL

The composite midpoint quadrature rule [13] on the interval $[a, b]$ is used to estimate the $A R L$ of the NIE technique $\left(A R L_{N}(u)\right)$ based on (9). So, the solution of the numerical integral equation can be explained as

$$
\begin{align*}
& A R L_{N}(u)=1+\frac{1}{\lambda_{1}} \\
& \sum_{j=1}^{m} w_{j} A R L_{E}\left(s_{j}\right) f\binom{\frac{s_{j}-\left(1-\lambda_{1}+\lambda_{2}\right) u-\left(\lambda_{1} \phi_{1}-\lambda_{2}\right) Y_{1-L}}{\lambda_{1}}}{-\sum_{i=2}^{p} \phi_{i} Y_{1-i L}-\eta} \tag{15}
\end{align*}
$$

where S_{j} is a set of the division point on the interval $[a, b]$ as $s_{j}=\left(j-\frac{1}{2}\right) w_{j}+a, j=1,2, \ldots, m$ and w_{j} represents a weight of the composite midpoint formula $w_{j}=\frac{b-a}{m}$.

IV. Numerical results

The $A R L$ solutions, which are the NIE method with $\mathrm{m}=500$ and the explicit formula, are compared on the extended EWMA control chart by using computation time (CPU time). For the $\operatorname{SAR}(\mathrm{p})_{\mathrm{L}}$ process, the initial parameter values are examined at $A R L_{0}=370$ on the extended EWMA control chart. These are the $\operatorname{SAR}(1)_{12}$ and the $\operatorname{SAR}(2)_{12}$ processes. $\alpha=\alpha_{0}$ with shift size $(\delta=0)$ was the parameter value that was supplied to the in-control procedure. On the other hand, the parameter values for the out-of-control process were displayed as $\alpha_{1}=(1+\delta) \alpha_{0}$ with shift sizes (δ) equal to $0.001,0.002,0.003,0.005,0.010,0.030,0.050$, $0.100,0.500$, and 1.000 . Following is a synopsis of the process:

Step 1: Input parameters $\lambda_{1}, \lambda_{2}, \phi_{i}, \eta, Y_{1-i L}, \alpha_{0}$.
Step 2: In order to calculate UCL, determine the beginning values $A R L_{0}=370$.
Step 3: Calculate UCL using the NIE method (15) or the explicit formula (14).
Step 4: From the UCL solution in Step 3, compute $A R L_{1}$ by shifting mean $\alpha_{1}=(1+\delta) \alpha_{0}$.

Additionally, the CPU time (PC System: windows10, 64bit, Intel® Core ${ }^{\text {TM }}$ i5-8250U 1.60 GHz 1.80 GHz , RAM 4 GB) was also supplied to compute the speed test results in seconds. MATHEMATICA ${ }^{\oplus}$ was used to compute the analytical outcomes.

In Table. I and Table. II, the explicit formula and the NIE method with varie λ_{1} and ϕ_{i} for the $\operatorname{SAR}(1)_{12}$ and $\operatorname{SAR}(2)_{12}$ processes, respectively, are used to compute the $A R L$ in case of the extended EWMA control chart at $a=0$. The findings demonstrate that, with an APRE (\%) of less than 0.000014%, the analytical findings are consistent with the NIE approximations. The explicit formulas take very little CPU time compared to the $2-3$ seconds required by the NIE method.

V. Performance comparing the arl results

The absolute percentage relative error (APRE), which can be determined as follows,
$\operatorname{APRE}(\%)=\frac{\left|A R L_{E}(u)-A R L_{N}(u)\right|}{A R L_{E}(u)} \times 100$,
allows for a performance comparison of the ARL between the explicit formula and the NIE approach.

Moreover, the relative mean index ($R M I$) [28] is used to test the performance of the $A R L$ on control charts under different conditions, which can be computed as
$R M I=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{A R L_{i}(c)-A R L_{i}(s)}{A R L_{i}(s)}\right]$
where $A R L_{i}(c)$ is the control chart's ARL for the shift size of row i and $A R L_{i}(s)$ is the control chart's lowest ARL overall. The RMI value for the control chart was the lowest. The results indicate that the control performed the best at detecting changes.

The efficiencies of the control charts were compared by calculating their ARLs for specific processes. The ARL results for a $\operatorname{SAR}(1)_{1}$ process (Table III and Fig.1) and a $\operatorname{SAR}(2)_{12}$ process (Table IV and Fig.2) show that the proposed method detected a process change more rapidly on the extended EWMA control chart than on the standard EWMA control chart for minute changes in the process mean. Moreover, the RMI for the extended EWMA control chart was lower than that for the standard EWMA control chart even when λ_{2} was increased.

The outcomes show that, in descending order, the control charts' performances were the extended EWMA control chart with $\lambda_{2}=0.04$ (EEWMA04), $\lambda_{2}=0.03$ (EEWMA03), $\lambda_{2}=0.02$ (EEWMA02), or $\lambda_{2}=0.01$ (EEWMA01), and the standard EWMA control chart, respectively (Figs. 1 and 2). In addition, the outcome of using three different values of λ_{1} ($0.05,0.10$, or 0.20) for $A R L_{1}$ of the extended EWMA control chart shows that $\lambda_{2}=0.04$ provided the lowest λ_{1} for detecting process shifts in $\operatorname{SAR}(1)_{12}$ and $\operatorname{SAR}(2)_{12}$ processes quickly (Fig. 3).

VI. APPLICATION FOR REAL DATA

On the extended EWMA control chart, the efficiency of the ARL was calculated using explicit formulas. The $A R L_{0}$ of 370 was determined with different $\lambda_{1}(0.05,0.10,0.20)$ and λ_{2} ($0.01,0.02,0.03,0.04$) values that were compared with that of the standard EWMA $\left(\lambda_{2}=0\right)$ control chart. The percentages of Internet Explorer 8 and Firefox users in Thailand are determined using two real-world datasets. Those are observations made monthly from January 2013 to December 2019 and from January 2014 to December 2020, respectively. By examining the autocorrelation function (ACF) and partial autocorrelation function, it can be determined that this data represents a stationary time series (PACF). The researchers confirmed that an exponential distribution follows white noise.
For the $\operatorname{SAR}(1)_{12}$ process, dataset 1 is the percentages of web browser users by Internet Explorer 8. The $\operatorname{SAR}(1)_{12}$ process can be written as $Y_{t}=4.639+0.829 Y_{t-L}+\varepsilon_{t}$ where $\varepsilon_{t} \sim \operatorname{Exp}(7.1064)$.

For the $\operatorname{SAR}(2)_{12}$ process, dataset 2 is the percentages of web browser users by Firefox. The $\operatorname{SAR}(2)_{12}$ process can be written as $Y_{t}=7.999+0.985 Y_{t-L}-0.391 Y_{t-2 L}+\varepsilon_{t} \quad$ where $\varepsilon_{t} \sim \operatorname{Exp}(4.4307)$.

Dataset 1 , the $A R L$ is analyzed in Table. V, and then dataset 2 is evaluated in Table. VI. The results of two datasets appear in the results similar to simulated data. The extended EWMA control chart's outcomes enable faster detection of tiny shift sizes than the EWMA control chart and provide better performance when λ_{2} is enlarged.

VII. DISCUSSIONS AND CONCLUSIONS

Using the ARL, control chart was evaluated. For both the $\operatorname{SAR}(1)_{12}$ and $\operatorname{SAR}(2)_{12}$ processes, the explicit formulas are a feasible alternative to be used to evaluate the $A R L$. Although the $A R L$ results of the explicit formulas agree with the NIE method that has an APRE (\%) of less than 0.000014%, the explicit formula is effective in reducing CPU time.

For small shift sizes, the $A R L$ using the explicit formulas on the extended EWMA control chart with different λ_{2} values ($\lambda_{2}=0.01,0.02,0.03,0.04$) performed better than on the standard EWMA control chart for both SAR (1) $)_{12}$ and $\operatorname{SAR}(2)_{12}$ processes. Moreover, the performance of the proposed method on an extended EWMA control chart improved when λ_{2} was increased. Following that, different λ_{1} values $(0.05,0.10$, and 0.20$)$ were used to test $A R L_{1}$ on the extended EWMA control chart was tested; the $A R L$ results indicate its excellent performance for a low λ_{1} value. The $R M I$ was used to test the performance of the $A R L$ on the two control charts for various λ_{1} settings. Moreover, the explicit formulas method was applied to a $\operatorname{SAR}(\mathrm{p})_{\mathrm{L}}$ process with real data, the results of which are in agreement with those using simulated data.

TABLE I
ARL VALUES OF EXPLICIT FORMULA VALUES ON THE EXTENDED EWMA CONTROL CHART FOR THE SAR $(1)_{12}$ PROCESS COMPARED TO ARL VALUES THE NIE METHOD WITH

$$
\lambda_{1}=0.05, \lambda_{2}=0.01, \eta=0, a=0, A R L_{0}=370
$$

δ	$\phi_{1}=0.1(b=0.03390497)$			$\phi_{1}=-0.1(b=0.01511539)$		
	Explicit	NIE (CPU time)	APRE $(\%)$	Explicit	NIE (CPU time)	APRE(\%)
0.000	370.009431	$370.009380(2.172)$	0.000014	370.078681	$370.078671(2.234)$	0.000003
0.001	218.573326	$218.573301(2.172)$	0.000011	191.750044	$191.750040(2.218)$	0.000002
0.002	155.286039	$155.286023(2.171)$	0.000010	129.593802	$129.593800(2.344)$	0.000002
0.003	120.532733	$120.532722(2.219)$	0.000010	97.9806684	$97.9806667(2.375)$	0.000002
0.005	83.4254265	$83.4254191(2.187)$	0.000009	66.0026596	$66.0026585(2.218)$	0.000002
0.010	47.4409181	$47.4409142(2.249)$	0.000008	36.6098897	$36.6098891(2.265)$	0.000002
0.030	17.9707248	$17.9707236(2.250)$	0.000007	13.6411885	$13.6411883(2.219)$	0.000001
0.050	11.4170395	$11.4170387(2.233)$	0.000006	8.66321803	$8.66321792(2.313)$	0.000001
0.100	6.33636188	$6.33636154(2.219)$	0.000005	4.83914687	$4.83914682(2.234)$	0.000001
0.500	2.14394338	$2.14394334(2.344)$	0.000002	1.73422155	$1.73422154(2.281)$	0.000000
1.000	1.59662030	$1.59662029(2.234)$	0.000001	1.35237320	$1.35237320(2.234)$	0.000000

TABLE II
ARL VALUES OF EXPLICIT FORMULA VALUES ON THE EXTENDED EWMA CONTROL CHART FOR THE SAR (1) ${ }_{12}$ PROCESS COMPARED TO ARL VALUES THE NIE METHOD WITH

$$
\lambda_{1}=0.05, \lambda_{2}=0.01, \eta=0, a=0, A R L_{0}=370
$$

δ	$\phi_{1}=\phi_{2}=0.1(b=0.03322422)$			$\phi_{1}=0.1, \phi_{2}=-0.1(b=0.03459988)$		
	Explicit	NIE (CPU time)	APRE(\%)	Explicit	NIE (CPU time)	APRE(\%)
0.000	370.035004	$370.034955(2.328)$	0.000013	370.051674	$370.051621(2.375)$	0.000014
0.001	217.798894	$217.798871(2.422)$	0.000011	219.380291	$219.380265(2.375)$	0.000012
0.002	154.503209	$154.503194(2.344)$	0.000010	156.092110	$156.092093(2.360)$	0.000011
0.003	119.826529	$119.826519(2.359)$	0.000009	121.257483	$121.257471(2.391)$	0.000010
0.005	82.8644127	$82.8644057(2.375)$	0.000008	83.9998818	$83.9998740(2.344)$	0.000009
0.010	47.0830573	$47.0830537(2.468)$	0.000008	47.8068607	$47.8068567(2.374)$	0.000008
0.030	17.8249041	$17.8249029(2.391)$	0.000007	18.1197143	$18.1197129(2.328)$	0.000007
0.050	11.3239945	$11.3239938(2.390)$	0.000006	11.5120773	$11.5120765(2.375)$	0.000007
0.100	6.28572724	$6.28572691(2.407)$	0.000005	6.38805435	$6.38805399(2.437)$	0.000006
0.500	2.13006251	$2.13006247(2.452)$	0.000002	2.15809279	$2.15809275(2.438)$	0.000002
1.000	1.58826827	$1.58826826(2.501)$	0.000001	1.60513193	$1.60513192(2.390)$	0.000001

TABLE III
COMPARING ARL VALUES ON THE EWMA AND THE EXTENDED EWMA CONTROL CHARTS FOR THE $\operatorname{SAR}(1)_{12}$ PROCESS GIVEN $\eta=0.2, \phi_{1}=0.2, a=0.05, A R L_{0}=370$

λ_{1}	δ	EWMA$\left(\lambda_{2}=0\right)$	Extended EWMA			
			$\lambda_{2}=0.01$	$\lambda_{2}=0.02$	$\lambda_{2}=0.03$	$\lambda_{2}=0.04$
		$b=0.15062911$	$b=0.09331915$	$b=0.0690463$	$b=0.05843824$	$b=0.053748771$
0.05	0.000	370	370	370	370	370
	0.001	227.127	142.067	113.340	94.108	79.500
	0.002	164.075	88.285	67.301	54.292	44.924
	0.003	128.561	64.238	48.053	38.340	31.495
	0.005	89.922	41.829	30.798	24.370	19.926
	0.010	51.720	22.741	16.592	13.095	10.716
	0.030	19.886	8.731	6.440	5.160	4.301
	0.050	12.740	5.791	4.338	3.529	2.990
	0.100	7.188	3.551	2.743	2.295	2.000
	0.500	2.602	1.706	1.434	1.287	1.197
	1.000	1.980	1.441	1.251	1.152	1.095
$\operatorname{RMI}\left(\lambda_{1}\right)$		0	0	0	0	0
$\operatorname{RMI}\left(\lambda_{2}\right)$		2.399	0.772	0.382	0.155	0
		$b=0.26245334$	$b=0.18557995$	$b=0.13815057$	$b=0.10791962$	$b=0.08829093$
0.10	0.000	370	370	370	370	370
	0.001	282.584	218.774	189.741	170.921	156.257
	0.002	228.624	155.542	127.864	111.414	99.340
	0.003	192.014	120.813	96.579	82.802	72.975
	0.005	145.518	83.726	65.059	54.911	47.872
	0.010	90.829	47.757	36.199	30.160	26.072
	0.030	36.718	18.295	13.716	11.378	9.820
	0.050	23.293	11.740	8.849	7.368	6.382
	0.100	12.521	6.655	5.105	4.297	3.757
	0.500	3.530	2.420	2.007	1.770	1.609
	1.000	2.389	1.830	1.578	1.427	1.324
$\operatorname{RMI}\left(\lambda_{1}\right)$		0.499	0.725	0.779	0.851	0.925
$\operatorname{RMI}\left(\lambda_{2}\right)$		1.635	0.597	0.287	0.117	0
		$b=0.532407$	$b=0.420767$	$b=0.339926$	$b=0.2793545$	$b=0.2329197$
0.20	0.000	370	370	370	370	370
	0.001	330.198	279.850	251.107	231.853	217.607
	0.002	297.995	225.113	190.182	169.017	154.332
	0.003	271.429	188.353	153.157	133.101	119.695
	0.005	230.172	142.096	110.402	93.586	82.798
	0.010	166.244	88.296	65.358	54.061	47.100
	0.030	77.193	35.686	25.508	20.767	17.925
	0.050	49.403	22.716	16.251	13.245	11.443
	0.100	25.303	12.310	8.968	7.380	6.417
	0.500	5.183	3.519	2.861	2.493	2.248
	1.000	3.029	2.362	2.032	1.828	1.685
$\operatorname{RMI}\left(\lambda_{1}\right)$		1.451	1.810	1.850	1.958	2.104
$\operatorname{RMI}\left(\lambda_{2}\right)$		1.700	0.615	0.282	0.110	0

TABLE IV
COMPARING ARL VALUES ON THE EWMA AND THE EXTENDED EWMA CONTROL CHARTS FOR THE $\operatorname{SAR}(2)_{12}$ PROCESS GIVEN $\eta=0.2, \phi_{1}=0.2, \phi_{2}=-0.2, a=0.05, A R L_{0}=370$

λ_{1}	δ	EWMA$\left(\lambda_{2}=0\right)$	Extended EWMA			
			$\lambda_{2}=0.01$	$\lambda_{2}=0.02$	$\lambda_{2}=0.03$	$\lambda_{2}=0.04$
		$b=0.1549604$	$b=0.0951198$	$b=0.06982836$	$b=0.05878324$	$b=0.05390183$
0.05	0.000	370	370	370	370	370
	0.001	237.881	143.966	114.416	94.884	80.119
	0.002	175.426	89.740	68.050	54.806	45.308
	0.003	139.064	65.384	48.619	38.720	31.772
	0.005	98.485	42.625	31.177	24.619	20.104
	0.010	57.286	23.192	16.800	13.229	10.810
	0.030	22.104	8.900	6.517	5.209	4.335
	0.050	14.101	5.898	4.387	3.560	3.012
	0.100	7.860	3.610	2.770	2.312	2.011
	0.500	2.720	1.725	1.443	1.293	1.201
	1.000	2.038	1.454	1.257	1.156	1.097
$\operatorname{RMI}\left(\lambda_{1}\right)$		0	0	0	0	0
$\operatorname{RMI}\left(\lambda_{2}\right)$		2.657	0.788	0.386	0.157	0
		$b=0.272166$	$b=0.1914835$	$b=0.1418852$	$b=0.1103348$	$b=0.088987285$
0.10	0.000	370	370	370	370	370
	0.001	293.571	222.605	191.947	172.474	157.520
	0.002	243.241	159.417	129.833	112.724	100.355
	0.003	207.657	124.315	98.250	83.881	73.792
	0.005	160.679	86.514	66.307	55.694	48.452
	0.010	102.700	49.535	36.950	30.619	26.405
	0.030	42.228	19.011	14.010	11.555	9.946
	0.050	26.734	12.192	9.035	7.480	6.462
	0.100	14.184	6.894	5.206	4.358	3.801
	0.500	3.759	2.478	2.036	1.788	1.622
	1.000	2.485	1.863	1.596	1.439	1.332
$\operatorname{RMI}\left(\lambda_{1}\right)$		0.523	0.747	0.791	0.859	0.932
$\operatorname{RMI}\left(\lambda_{2}\right)$		1.873	0.626	0.295	0.119	0
		$b=0.5580535$	$b=0.439007$	$b=0.3535373$	$b=0.2897414$	$b=0.240989$
0.20	0.000	370	370	370	370	370
	0.001	344.289	286.997	255.474	234.960	219.966
	0.002	321.680	234.473	195.239	172.314	156.711
	0.003	301.696	198.253	158.092	136.163	121.840
	0.005	267.975	151.552	114.678	96.097	84.501
	0.010	208.142	95.594	68.325	55.711	48.185
	0.030	105.336	39.091	26.783	21.450	18.365
	0.050	67.826	24.883	17.060	13.678	11.722
	0.100	33.610	13.411	9.391	7.611	6.567
	0.500	5.841	3.707	2.953	2.549	2.288
	1.000	3.241	2.449	2.081	1.861	1.709
$\operatorname{RMI}\left(\lambda_{1}\right)$		1.763	1.952	1.926	2.008	2.142
$\operatorname{RMI}\left(\lambda_{2}\right)$		2.243	0.687	0.303	0.116	0

TABLE V
COMPARING ARL VALUES ON THE EWMA AND THE EXTENDED EWMA CONTROL CHARTS FOR THE SAR(1) ${ }_{12}$ PROCESS WITH THE PERCENTAGES OF WEB BROWSER USERS BY INTERNET EXPLORER 8 GIVEN $\eta=4.639, \phi_{1}=0.829, a=0.05, A R L_{0}=370$

λ_{1}	δ	EWMA$\left(\lambda_{2}=0\right)$	Extended EWMA			
			$\lambda_{2}=0.01$	$\lambda_{2}=0.02$	$\lambda_{2}=0.03$	$\lambda_{2}=0.04$
		$b=0.7133693$	$b=0.5334708$	$b=0.4048662$	$b=0.3116668$	$b=0.02435206$
0.05	0.000	370	370	370	370	370
	0.001	277.896	243.954	223.553	208.937	197.177
	0.002	222.601	182.129	160.357	145.783	134.617
	0.003	185.729	145.420	125.143	112.075	102.323
	0.005	139.627	103.816	87.136	76.817	69.323
	0.010	86.326	60.798	49.811	43.273	38.643
	0.030	34.780	23.588	19.029	16.381	14.537
	0.050	22.133	15.037	12.142	10.457	9.284
	0.100	12.003	8.333	6.789	5.877	5.238
	0.500	3.462	2.724	2.341	2.093	1.912
	1.000	2.339	1.960	1.739	1.588	1.477
$\operatorname{RMI}\left(\lambda_{1}\right)$		0	0	0	0	0
$\operatorname{RMI}\left(\lambda_{2}\right)$		0.872	0.424	0.219	0.092	0
		$b=1.4449415$	$b=1.2249445$	$b=1.0446555$	$b=0.8953217$	$b=0.770601$
0.10	0.000	370	370	370	370	370
	0.001	292.680	270.247	254.064	241.725	231.785
	0.002	242.138	212.952	193.602	179.665	168.933
	0.003	206.522	175.784	156.487	143.073	133.014
	0.005	159.651	130.435	113.276	101.831	93.498
	0.010	101.929	79.498	67.259	59.442	53.915
	0.030	42.144	31.692	26.313	22.983	20.675
	0.050	26.837	20.171	16.749	14.631	13.164
	0.100	14.400	10.995	9.210	8.091	7.307
	0.500	3.860	3.259	2.887	2.629	2.434
	1.000	2.511	2.228	2.035	1.892	1.780
$\operatorname{RMI}\left(\lambda_{1}\right)$		0.126	0.217	0.252	0.272	0.290
$\operatorname{RMI}\left(\lambda_{2}\right)$		0.626	0.343	0.183	0.077	0
		$b=3.18193$	$b=2.873164$	$b=2.605533$	$b=2.371305$	$b=2.164673$
0.20	0.000	370	370	370	370	370
	0.001	317.962	300.716	286.933	275.639	266.119
	0.002	278.689	253.297	234.387	219.709	207.901
	0.003	248.030	218.823	198.162	182.722	170.670
	0.005	203.260	172.053	151.469	136.820	125.801
	0.010	139.829	112.151	95.443	84.220	76.120
	0.030	62.022	47.254	39.057	33.821	30.169
	0.050	39.740	30.151	24.876	21.522	19.190
	0.100	20.904	16.107	13.417	11.685	10.471
	0.500	4.810	4.139	3.693	3.372	3.129
	1.000	2.897	2.625	2.425	2.271	2.149
$\operatorname{RMI}\left(\lambda_{1}\right)$		0.432	0.585	0.639	0.667	0.689
$\operatorname{RMI}\left(\lambda_{2}\right)$		0.586	0.336	0.182	0.077	0

TABLE VI
COMPARING ARL VALUES ON THE EWMA AND THE EXTENDED EWMA CONTROL CHARTS FOR THE SAR(2) ${ }_{12}$ PROCESS WITH THE PERCENTAGES OF WEB BROWSER USERS BY FIREFOX GIVEN

$$
\eta=7.999, \phi_{1}=0.985, \phi_{2}=-0.391, a=0.05, A R L_{0}=370
$$

λ_{1}	δ	EWMA$\left(\lambda_{2}=0\right)$	Extended EWMA			
			$\lambda_{2}=0.01$	$\lambda_{2}=0.02$	$\lambda_{2}=0.03$	$\lambda_{2}=0.04$
		$b=0.4545152$	$b=0.2954128$	$b=0.2005925$	$b=0.1429614$	$b=0.1075663$
0.05	0.000	370	370	370	370	370
	0.001	269.450	223.307	199.200	181.775	167.158
	0.002	210.970	159.106	135.552	119.796	107.354
	0.003	174.121	124.327	103.422	89.980	79.667
	0.005	128.803	86.400	70.093	60.030	52.529
	0.010	78.532	49.516	39.269	33.176	28.751
	0.030	31.252	18.936	14.820	12.432	10.731
	0.050	19.894	12.103	9.488	7.971	6.895
	0.100	10.859	6.793	5.377	4.549	3.964
	0.500	3.264	2.377	1.988	1.750	1.585
	1.000	2.253	1.773	1.535	1.387	1.287
$\operatorname{RMI}\left(\lambda_{1}\right)$		0	0	0	0	0
$\operatorname{RMI}\left(\lambda_{2}\right)$		1.209	0.532	0.274	0.116	0
		$b=0.8995705$	$b=0.700295$	$b=0.552112$	$b=0.4400333$	$b=0.3542569$
0.10	0.000	370	370	370	370	370
	0.001	287.161	256.127	236.411	222.132	210.796
	0.002	233.734	194.954	172.835	157.885	146.589
	0.003	197.811	158.146	136.968	123.201	113.074
	0.005	150.992	114.601	96.647	85.475	77.493
	0.010	95.312	68.387	56.167	48.881	43.817
	0.030	38.954	26.798	21.616	18.615	16.566
	0.050	24.794	17.061	13.769	11.861	10.558
	0.100	13.359	9.381	7.640	6.617	5.912
	0.500	3.691	2.936	2.533	2.270	2.079
	1.000	2.438	2.066	1.842	1.688	1.573
$\operatorname{RMI}\left(\lambda_{1}\right)$		0.148	0.269	0.309	0.342	0.377
$\operatorname{RMI}\left(\lambda_{2}\right)$		0.829	0.412	0.212	0.088	0
		$b=1.951367$	$b=1.675326$	$b=1.4495531$	$b=1.2619535$	$b=1.104174$
0.20	0.000	370	370	370	370	370
	0.001	312.738	289.158	272.059	258.6440	247.947
	0.002	269.982	236.418	214.130	197.901	185.539
	0.003	238.143	200.689	177.310	161.038	148.999
	0.005	192.268	153.795	131.686	117.118	106.712
	0.010	130.039	97.537	80.630	70.135	62.912
	0.030	56.587	40.042	32.176	27.523	24.412
	0.050	36.188	25.507	20.470	17.503	15.521
	0.100	19.129	13.739	11.138	9.586	8.540
	0.500	4.575	3.752	3.267	2.942	2.705
	1.000	2.806	2.453	2.220	2.052	1.923
$\operatorname{RMI}\left(\lambda_{1}\right)$		0.454	0.668	0.735	0.782	0.835
$\operatorname{RMI}\left(\lambda_{2}\right)$		0.748	0.394	0.205	0.085	0

Fig. 1. ARL values on the EWMA and the extended EWMA control charts for the $\operatorname{SAR}(1)_{12}$ process with $A R L_{0}=370$ and (a) : $\lambda_{1}=0.05$, (b) : $\lambda_{1}=0.10$, (c) : $\lambda_{1}=0.20$.

(a)

Fig. 2. ARL values on the EWMA and the extended EWMA control charts for the $\operatorname{SAR}(2)_{12}$ process with $A R L_{0}=370$ and (a) : $\lambda_{1}=0.05$, (b) : $\lambda_{1}=0.10$, (c) : $\lambda_{1}=0.20$.

Fig. 3. $A R L$ values on the EWMA and the extended EWMA control charts ($\lambda_{2}=0.04$) with $A R L_{0}=370$ for the $\operatorname{SAR}(\mathrm{p})_{\mathrm{L}}$ processes (a): SAR(1) ${ }_{12}$, (b) : $\operatorname{SAR}(2)_{12}$.

REFERENCES

[1] M. Alsaid, R.M. Kamal and M.M. Rashwan, "The performance of control charts with economics-statistical design when parameters and estimated," Review of Economics and Political Science, vol. 6, no. 2, pp. 142-160, 2021.
[2] S.M. Anwar, M. Aslam, S. Ahmad and M. Riaz, "A modifiedmxEWMA location chart for the improved process monitoring using auxiliary information and its application in wood industry," Quality Technology and Quantitative Management, vol. 17, no. 5, pp. 561579, 2020.
[3] S. Ozilgen, "Statistical quality control charts: New tools for studying the body mass index of populations form the young to the elderly," Nutrition, Health \& Aging, vol. 15, no. 5, pp. 333-334.B, 2011.
[4] W. A. Shewhart, "Economic control of quality of manufactured product," D. Van Nostrand Company, New York, pp. 501, 1931.
[5] E. S. Page, "Continuous inspection schemes," Biometrika, vol. 41, no. 1-2, pp. 100-115, 1954.
[6] W. S. Roberts, "Control chart tests based on geometric moving averages," Technometrics, vol. 1, no. 3, pp. 239-250, 1959.
[7] N. Khan, M. Alsam, C.H. Jun, "Design of a control chat using a modified EWMA statistic," Quality and Reliability Engineering International, vol.33, no. 5, pp. 1095-1104, 2017.
[8] A.K. Patel and J. Divecha, "Modified exponentially weighted moving average (EWMA) control chart for an analytical process data," Chemical Engineering and Materials Science, vol. 2, pp. 12-20, 2011.
[9] M. Naveed, M. Azam, N. Khan and M. Aslam, "Design a control chart using extended EWMA statistic," Technologies, vol. 6, no. 4, pp. 108122, 2018.
[10] C. Chananet, Y. Areepong and S. Sukparungsee, "A Markov chain approach for average run length of EWMA and CUSUM control chart based on ZINB Model," International Journal of Applied Mathematics and Statistics, vol. 53, no. 1, pp. 126-137, 2015.
[11] J. Zhang, Z. Li and Z. Wang, "Control chart based on likelihood ratio for monitoring linear profiles," Computational Statistics and Data Analysis, vol. 53, pp. 1440-1448, 2009.
[12] Y. Areepong and A. Novikov, "Martingale approach to EWMA control chart for changes in exponential distribution," Journal of Quality Measurement and analysis, vol. 4, no. 1, pp. 197-203, 2008.
[13] K. Karoon, Y. Areepong and S. Sukparungsee, "Numerical Integral Equation Methods of Average Run Length on Extended EWMA Control Chart for Autoregressive Process," in Proceedings of International Conference on Applied and Engineering Mathematics, London, England, pp. 51-56, 2021.
[14] S. Sukparungsee and Y. Areepong, "A study of the performance of EWMA chart with transformed Weibull observations," Thailand Statistician, vol.7, pp. 179-191, 2009.
[15] W. Suriyakit, Y. Areepong, S. Sukparungsee and G. Mititelu, "On EWMA procedure for $\operatorname{AR}(1)$ observations with exponential white noise," International Journal of Pure and Applied Mathematics, vol. 77, pp. 73-83, 2012.
[16] W. Suriyakit, Y. Areepong, S. Sukparungsee and G. Mititelu, "Analytical method of average run length for trend exponential AR(1) process in EWMA procedure," IAENG International Journal of Applied Mathematics, vol. 42, no. 4, pp. 250-253, 2012.
[17] K. Petcharat, Y. Areepong, S. Sukparungsee, and G. Mititelu, "Exact solution for average run length of CUSUM chart for MA(1) process," Chiang Mai Journal of Science, vol.41, no. 5.2, pp. 1449-1456, 2014.
[18] K. petcharat, "Explicit formula of ARL for SMA(Q)L with exponential white noise on EWMA chart," International Journal of Applied Physics and Mathematics, vol. 6, no. 4, pp. 218-225, 2016.
[19] L. Zhang and P. Busababodhin, "The ARIMA(p,d,q) on upper sided of CUSUM procedure," Lobachevskii Journal of Mathematics, vol. 39, no. 3, pp. 424-432, 2018.
[20] W. Peerajit, Y. Areepong and S. Sukparungsee, "Explicit analytical solutions of ARL of CUSUM chart for a long-memory SARFIMA model," Communication in Statistics- Simulation and Computation, vol. 48, pp. 1176-1190, 2019.
[21] Y. Supharakonsakun, Y. Areepong and S. Sukparungsee, "The exact solution of the average run length on a modified EWMA control chart for the first-order moving average process," ScienceAsia, vol. 46, no. 1, pp. 109-118, 2020.
[22] P. Phanthuna, Y. Areepong and S. Sukparungsee, "Exact Run Length Evaluation on a Two-Sided Modified Exponentially Weighted Moving Average Chart for Monitoring Process Mean," Computer Modeling in Engineering and Sciences, vol. 127, no. 1, pp. 23-4, 2021.
[23] P. Phanthuna, Y. Areepong and S. Sukparungsee, "Run length distribution for a modified EWMA scheme fitted with a stationary AR(p) model," Communications in Statistics-Simulation and Computation, 2021. DOI:10.1080/03610918.2021.1958847.
[24] P. Phanthuna and Y. Areepong, "Analytical Solutions of ARL for SAR(p)L model on a modified EWMA chart," Mathematics and Statistics, vol. 9, no. 5, pp. 685-696, 2021.
[25] C.W. Champ and S.E. Rigdon, "A comparison of the Markov chain and the integral equation approaches for evaluating the run length distribution of quality control charts," Communications in StatisticsSimulation and Computation, vol. 20, no. 1, pp. 191-203, 1991.
[26] S. Shukla, S. Balasubramanian and M.A. Pavlovic, "Generalized Banach fixed point theorem," Bulletin of the Malaysian Mathematical Sciences Society, vol. 39, pp.1529-1539, 2016.
[27] Q.T. Nguyen, K.P. Tran, P. Castagliola, G. Celano and S. Lardiane, "One-sided synthetic control charts for monitoring the multivariate coefficient of variation," Journal of Statistical Computation and Simulation, vol. 89, no. 1, pp. 1841-1862, 2019.
[28] A. Tang, P. Castagliola, J. Sun and X. Hu, "Optimal design of the adaptive EWMA chart for the mean based on median run length and expected median run length," Quality Technology and Quantitative Management, vol. 16, no. 4, pp. 439-458, 2018.
[29] I. Mado, A. Soeprijanto and Suhartono, "Applying of Double Seasonal ARIMA Model for Electrical Power Demand Forecasting at PT. PLN Gresik Indonesia," International Journal of Electrical and Computer Engineering, vol. 8, no. 6, pp. 4892-4901, 2018.
[30] P. J. Oliveira, J. L. Steffen and P. Cheung, "Parameter Estimation of Seasobal Arima Models for Water Demand Forecasting using the Harmony Search Algorithm," Procedia Engineering, vol. 186, pp. 177-185, 2017.

