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Abstract—An adaptive element free Galerkin (EFG) method
is extended to the analysis of linear elasticity problems. The
error estimation of this adaptive analysis is based on the element
residual error. The residual-based posterior error estimation of
the finite element method (FEM) is directly implemented in the
adaptive EFG method, benefiting from the use of the arbitrary
polygonal influence domain technique in EFG method. Four
benchmark problems of elasticity are tested by this proposed
method. The numerical results are close to the exact solutions,
and the error estimates are consistent with those in the finite
element method.

Index Terms—element free Galerkin method, adaptive meth-
ods, a posteriori error estimator, element residual error, linear
elastic problem.

I. INTRODUCTION

THE finite element method is a widely used and ex-
tensively studied numerical method with simple and

compact expressions for nodes and elements. However, those
nodes and elements in the solution region must satisfy
topological validity and geometric efficiency. It limits its
application in some fields such as stress concentration, crack
propagation and large deformation, which solutions change
sharply in some subdomains.

The meshless method constructs a trial function based
on nodal approximation without dividing elements. It has
become a crucial numerical tool after the finite element
method [1]–[6]. The number and position of nodes are
relatively free in the meshless method, the shape function has
high-order continuity and flexible form. These characteristics
make the meshless method suitable for problems that FEM is
not good at, such as the adaptive calculation in high gradient,
large deformation and singularity.

The meshless methods are usually classified into two
types [4], depending on how the differential equations are
approximated. The Galerkin meshless method is developed
from the weak form of the governing equations. On the other
hand, the collocation method (or particle method) is built
using the strong form of the governing equations. Belytschko
et al. [1] analyzed the fracture and crack growth problems
by element-free Galerkin methods, which led to the rapid
development of the meshless method [7]–[9]. This paper
mainly focuses on the element-free Galerkin method. In
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particular, the moving least square (MLS) method is used
to generate the shape function. [10].

The adaptive analysis is an integral part of modern nu-
merical simulations, especially for problems that the solution
varies greatly in certain subdomains, such as stress concen-
tration, crack propagation, large deformation, etc. The adap-
tive analysis aims to obtain better accuracy with a fewer node
or to capture the local properties of the discussed problem.
It is different from the traditional numerical methods [11],
[12]. The meshless method allows for relatively unrestricted
configuration, addition, and deletion of field nodes, which
makes it easier to do adaptive analysis.

There are usually three types of adaptive analysis algo-
rithms. The first kind is the h-type analysis, which increases
the precision of the solution by reducing the size of the
elements and increasing the number of nodes. The second
kind is the p-type analysis, which increases precision through
using higher-order polynomial shape function. In contrast,
the third kind, the r-type technique yields a more accurate
result by altering the location of the nodes. Although a
combination of these can be utilized, the h-adaptive method
is the most common approach.

As a widely used numerical algorithm, the adaptive finite
element method has also been studied relatively early and
maturely. These adaptive analysis types and their various
hybrid forms were proposed initially and developed from the
finite element method [13]–[15]. A reliable error estimation
model is the first crucial issue to be considered in the
adaptive analysis [13]–[20]. Residual-based error estimation
and recovery-based error estimation are the two main types
of a posteriori error estimation. In residual-based techniques,
the integration element’s residual function is used to estimate
the error. While the error estimate in recovery-based methods
depends on the solution and its gradient.

The recovery error estimation, however, is the most
used error estimation in the adaptive element free Galerkin
approach. Recovery-based adaptive researches are widely
conducted in EFG [21]–[26]. Chung and Belytschko [21]
proposed the recovery error estimation by combining the
local and global error, Lee and Zhou [22] introduced a stress-
recovery posteriori error estimation, He et al. [24] established
the error estimation by the node stresses, Metsis et al. [27]
proposed a hierarchical method by introducing the recovered
stress [21] into the Z–Z error estimator [14], Kumar et
al. [28] proposed a recovery-based method by the natural
neighbor Galerkin mesh, Hajjout et al. [26] presented an h-
type adaptive method by the Z–Z error estimator, Jannesari
and Tatari [25] employed a gradient recovery as the error
estimate to solve MHD equations.

Comparatively, the adaptive element-free Galerkin tech-
nique based on element residual error has not received
much investigation, even though it can provide quantifiable
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information about the error. The high overlap support domain
in most EFG making the calculation of residual function is
complex. Another major obstacle is that in the new iterative
step of the adaptive EFG process, with the change of node
configuration, the support domain of each Gaussian integral
point must be modified, and the shape function and its
derivatives must be recalculated. Scholars have explored a
variety of strategies to overcome this limitation, but to the
authors’ knowledge, not many studies have been done, except
for Liu and Tu [29] proposed a residual method based on
background cells and Afshar et al. [30] presented a node
enrichment adaptive refinement in DLSM.

As mentioned, the residual-based type method is carried
out directly in integration elements, making it appropriate for
analysis using the finite element approach and has obtained
fruitful research findings. Zhang et al. tried to transplant
some mature technologies of FEM into the EFG method by
the so-called arbitrary convex polygonal influence domain
technique [31] and gained some desirable results for the
Poisson equation under the first boundary condition [32].
Inspired by these studies and to improve the method and
extend its application, we focused on developing this adap-
tive EFG method and applying it to elasticity problems with
mixed boundary conditions in this article.

The paper is structured as follows: Section II introduces
some basic equations about the improved MLS approxima-
tion for the elastic problem. Section III details the process of
applying adaptive analysis. Section IV demonstrates the ap-
plication of the method to four numerical examples. Section
V gives some conclusions about this method.

II. ELEMENT FREE GALERKIN METHOD

The EFG method, like other numerical methods, estab-
lishes the shape function and combines it with the variational
formulation of the governing problem to obtain the approxi-
mation of the solution. In particular, the variational equation
is addressed in Galerkin weak form, and the shape function is
constructed using the moving least square (MLS) technique.

A. The MLS technique

The approximation function uh (x)is written as follows:

uh (x) = pT (x)λ (x) (1)

where the pT (x) is the basis function and the coefficient
vector λ (x) is to be determined by the moving least-square
(MLS) technique.

In 2-D problems, the most common linear basis is:

pT (x) = [1, x, y] (2)

And the frequently used quadratic basis is:

pT (x) =
[
1, x, y, xy, x2, y2

]
(3)

According to the MLS theory, at any point x, the coeffi-
cient vector λ (x) is obtained from the minimum weighted
norm as follows:

J =
n∑
i=1

w (x,xi)
[
uh (xi)− ui

]2
(4)

where n is the number of points in the influence domain of x,
and ui is the nodal value of u at x = xi. The most essential

part is the weight function w (x,xi), which indicates the
contribution of each point in the influence domain of x.

The stationarity of J with respect to λ (x) leads to the
solution

λ (x) = A−1 (x)B (x)u (5)

where

A (x) =
n∑
i=1

w (x− xi)p (xi)p
T (xi) (6)

B (x) = [w (x− x1)p (x1) , · · · , w (x− xn)p (xn)] (7)

u = [u (x1) , u (x2) , · · · , u (xn)]
T (8)

Substituting Eq.(5) back into Eq.(1), the MLS approxima-
tion is expressed as

uh (x) = pT (x)A−1 (x)B (x)u = ΦTu (9)

where ΦT = pT (x)A−1 (x)B (x) is the shape function of
EFG method.

In the EFG method, the support domain of the Gauss
quadrature point has to be determined first. The next step is to
calculate the shape function of each meshless node included
in the influence domain. In contrast, the shape functions in
the finite element method are produced directly from the
meshed elements.

From the representation of Eq.(9), the approximate value
at an arbitrary node x∗ can be expressed as uh (x∗) =
ΦT (x∗)u =

∑n
i=1 Φi (x∗)u (xi), with u (xi) denoting

the node value, and Φi (x∗) presenting the value of the
corresponding shape function.

In general, unlike the FEM, the interpolation of MLS
shape function of EFG is not available at field nodes,
i.e., Φi (xj) 6= δij . Therefore, setting boundary conditions
requires the use of other technique. The commonly used
methods are: the Lagrange multiplier method [2], the direct
collocation method [33], the penalty method [34], and the
arbitrary convex polygonal influence domain technique [31]
[35], etc.

The definition of influence domain plays a crucial role in
the EFG method, as it determines the nodes contained in it.
Although a circle or a rectangle would typically be chosen,
this paper adopts the arbitrary convex polygonal influence
domain technique

Start with the weighting function to demonstrate this
method. For all instances in this work, the weighting function
is the broadly used cubic spline function, as shown in the
following:

w (x,xi) = w (s) =


2
3 − 4s2 + 4s3 if s ≤ 1

2
4
3 − 4s+ 4s2 − 3

4s
3 if 1

2 < s < 1
0 if s ≥ 1

(10)
The weight parameter s is introduced to normalize the
distance between x and node xi in 2-D and 3-D problems.

When the influence domain is rectangular, the weight
function of a 2-D problem is usually divided into horizontal
and vertical directions as follows:

w (x,xi) = w (s) = w (sx)w (sy) (11)
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where sx = dx/rxand sy = dy/ry , in which rx and ry
indicate the corresponding influence distance of the neigh-
borhood.

However, in the arbitrary convex polygonal influence do-
main technique, the variable s is modified as si = di/r (θ),
which have different values at different angles θ of the
influence domain. Fig.1 shows the diagrammatic sketch of
meshless node xi with a convex polygonal influence domain
ABCDE. Triangles ∆xiA

′B′, ∆xiB
′C′, ∆xiC

′D′, ∆xiD
′E′

and ∆xiE
′A′ are background integration cells covered by the

influence domain ABCDE.

Fig. 1: Schematic diagram of convex polygonal influence region of node
xi.

Taken triangle ∆xiC
′D′, in Fig.1 as the integration cell,

where x is a point within the triangle (often the Gaussian
point) [31]. The following steps sketch the construction of
the shape function:
• Scale up the integration element to obtain the influence

domain.
• Express the influence radius as r (θ) = |xiF | =
α |xiF ′| in the direction of −→xix, with α denoting the
scale factor.

• Obtain rx and ry from the projected length of
−−→
xiF .

• Compute the weight function value w (s) from Eq.(11)
by the obtained rx and ry .

• Calculate the Φ (x) of point x expressed as Eq.(9).
The influence domain parameter α obeys different selec-

tion criteria in different EFG methods. Specifically, the scale
factor is given as α = 1.01 in this paper.

The interpolation property of MLS shape function is pre-
served by the special value of α, making it easier to impose
essential boundary constraints. Furthermore, the Gaussian
product point is directly influenced by the triangle containing
it as this arbitrary convex polygonal impact domain technique
is used [31]. Therefore, the EFG calculation time will be
reduced significantly, moreover, the bandwidth of the system
equations is minimized due to the smaller overlapping range
of influence domains, allowing for more efficient calcula-
tions. Crucially, it can further simplify the process of the
adaptive analysis in the EFG, which will be explained in
detail in Section III.

On the approximation theory of MLS, Li [36] gave the
following results in n-dimensional spaces.

Theorem 1. Assume that u (x) ∈W p+1,q (Ω) with p+ 1 ≥
n
q if q > 1, or p+ 1 ≥ n if q = 1, where W p+1,q (Ω) is the

Sobolev space of functions defined on Ω. Let uh (x) given
by Eq.(9) be the MLS approximation of u (x), then there is
a constant C independent of h such that

‖u (x)− uh (x) ‖Wk,q(Ω) ≤ Chp̃−k‖u (x) ‖W p̃,q(Ω)

k = 0, 1, · · · ,min {p̃, γ}, p̃ = min {p+ 1, m̂+ 1}.
(12)

Particularly, when u (x) ∈W m̂+1,q (Ω), namely p ≥ m̂, we
have

‖u (x)− uh (x) ‖Wk,q(Ω) ≤ Chm̂+1−k‖u (x) ‖W m̂+1,q(Ω)

k = 0, 1, · · · ,min {m̂+ 1, γ}
(13)

Besides, when u (x) ∈ Hm̂+1 (Ω), namely p ≥ m̂ and q =
2, we have

‖u (x)− uh (x) ‖Hk(Ω) ≤ Chm̂+1−k‖u (x) ‖Hm̂+1(Ω)

0 ≤ k ≤ min {m̂+ 1, γ}
(14)

B. The global weak form for linear elastic problems

The equilibrium equation of elastic problem is as follows:

∇ · σ + b = 0 in Ω (15)

where Ω is bounded by Γ, σ is the stress vector, and b is
the body force vector.

The mixed boundary conditions are usually described as:

u = ū on Γu,

σ · n = t̄ on Γt.
(16)

where ū presents the constraint displacement on the bound-
ary Γu, t̄ is the imposed traction on the boundary Γt, and n
is the unit normal vector outward to Γt.

This governing equation, described with displacement u,
strain ε, stress σ, can be expressed by displacement forms,
basing on the basic equations of 2-D elasticity mechanics:

u = {ux, uy}T ,
ε = ∇u,
σ = Dε.

(17)

where matrix D describes the elasticity (constitutive) matrix.
For plane stress condition:

D =
E

1− v2

1 v 0
v 1 0
0 0 1−v

2

 , (18)

For plane strain condition:

D =
E

(1− 2v) (1 + v)

1− v v 0
v 1− v 0
0 0 1−2v

2

 , (19)

where E is the Young’s modulus and v is the Poisson’s ratio
of the material.

For the convenience of expression, rendering nonhomo-
geneous boundary conditions to homogeneous form in a
standardized way, the displacement boundary condition can
be assumed to be homogeneous as: ū = 0.

The Galerkin weak form of elastic problems is:∫
Ω

∇uTD∇vdΩ−
∫

Ω

bTvdΩ−
∫

Γt

t̄ TvdΓ = 0 (20)
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The global weak formulation for elastic problems is:{
find u ∈ V such that

a (u,v) = l (v) , ∀v ∈ V.
(21)

where a (·, ·) is a continuous and coercive bilinear operator
on V =

{
u ∈

(
H1 (Ω)

)2
: u|Γu = 0

}
a (u,v) =

∫
Ω

∇uTD∇vdΩ (22)

and
l (v) =

∫
Ω

bTvdΩ +

∫
Γt

t̄ TvdΓ. (23)

The approximation for the global Galerkin formulation
would be:{

find uh ∈ Vh (Ω) such that

a
(
uh,vh

)
= l
(
vh
)
, ∀vh ∈ Vh (Ω) .

(24)

where Vh is the finite dimensional subspace generated by
the EFG method, and it is a subspace of V , and the MLS
approximation function uh (x) in Eq.(9) is utilized as the
trial function to obtain the final discrete equations.

Substituting Eq.(9) into the approximate formulation
Eq.(24), it generates the following system of linear equations:

Ku = F (25)

where
u = [u1,u2, · · · ,un]

T
, (26)

uh (x) = ΦT (x)u =
n∑
i=1

Φi (x)ui (27)

Kij =

∫
Ω

BT
i DBjdΩ, i, j = 1, 2, · · · , n, (28)

Fi =

∫
Ω

bTΦidΩ +

∫
Γt

t̄ TΦidΓ, i = 1, 2, · · · , n, (29)

with

Bi =

Φi,x 0
0 Φi,y

Φi,y Φi,x

 , i = 1, 2, · · · , n (30)

Cheng and Cheng [23] gave a priori error estimations
results in the meshless method for elastic problems like the
FEM as follows:

Theorem 2. Let u ∈ V (Ω) be the analytical solution of
the boundary value problem Eq.(20), let uh ∈ Vh(Ω) be the
solution of the variational problem Eq.(24), then there is a
constant C independent of mesh size h such that

‖u− uh‖1 ≤ C‖u‖2 (31)

where ‖ ‖1 is the norm of space H1, and ‖ ‖2 is the norm
of space H2.

As the MLS shape function generated by this special
influence domain almost exhibits interpolation properties,
combining Schwarz inequality, Trace Theorem, Theorem 1,
it can be proved simply that the result of Theorem 2 is
applicable to the method of this paper.

III. ADAPTIVE REFINEMENT ALGORITHM

Contrary to the uniform refinement, the adaptive refine-
ment algorithm aims to refine only a few locations where the
solution changes rapidly more than in the other regions. Error
estimation and domain refining are therefore two crucial
components of every adaptive analysis technique. In tradi-
tional adaptive meshfree analysis, the influence domains may
be highly overlapping, which brings trouble to implement
the two processes mentioned above, even to the new iteration
step, the re-search of nodes falling into a support domain and
the re-construction of shape functions of the corresponding
searched nodes may be time-consuming.

However, in this EFG method, using triangular grid as
the background integral elements and setting α = 1.01 can
generate smaller overlapped influence domains and provide
greater convenience for adaptive analysis. First, the Gauss
quadrature point is only affected by the vertices of that
triangular itself, and the shape function of this MLS method
has the interpolation property, which is similar to those of
the FEM, therefore element residual error estimation can be
directly calculated and marked on the integration elements,
and the mature posteriori estimator techniques of the FEM
can be transplanted to the EFG method without much change.
In addition, the refinement can be made directly on the
background mesh, whereas most adaptive meshless methods
have to refine the meshless nodes.

Let T0 be a confirming triangular background integrational
mesh on the computational domain Ω, and let {Tk}k>0

be the sequential local refinement background integrational
meshes. The mesh Tk+1 is generated from Tk. The adaptive
procedure can be performed by iterating the following loop:

SOLVE → ESTIMATE → MARK → REFINE

• Solve
Solving the given PDE by the introduced EFG method
in Section II on the conforming triangular background
mesh Tk.

• Estimate
Estimating the error over the integration cell is one
of the critical components of the adaptive method. To
obtain the indicators of each field node required by
the subsequent module, the posteriori error estimator
is widely used. There are two kinds of a posteriori
error estimator broadly used in the FEM: one is the
recovery-based methods, the other is the residual-based
methods. Both have rich theoretical results and practical
experience in adaptive analysis, but the latter is still
rarely studied in the general EFG method.
The error estimation used in this paper is similar to a
widely used standard element residual technique in the
FEM [37]. The element residual ηk used in this paper
is defined as:

ηk =hk‖f +∇σh‖K + h
1
2

K(
1

2
‖σh · n‖∂K\∂Ω

+ ‖t̄− σh · n‖∂K∩∂Γt
)

(32)

where hk‖f +∇σh‖K is the cell residual and the rest
part represents the edge residual.

• Mark
After getting the error indicator, the following procedure
is to decide which background integration elementsneed
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to be improved, which is named as the mark mod-
ule. Generally, some user-defined criteria are given in
advance. If the value on the edge of the background
integration element or the value of the background
integration element itself is greater than the given value,
these elements should be marked and refined at the
subsequent process.
We adopt the Dörfler’s bulk marking strategy to mark
the key areas in this paper, which is one of the widely
used adaptive FEM marking strategies.
Firstly, let ηk denotes the error factor of each triangular
background integration k. The global error is calculated
by adding together all the element errors as:

η2 =
∑
k∈Tk

η2
k (33)

Then, identify a certain subset M ⊂ Tk by a user-
defined marking parameter θ:

θη2 =
∑
τ∈M

η2
τ (34)

where θ ∈ (0, 1]. The mesh density decreases as the
value θ increases.

• Refine
In this paper, bisecting the marked triangular back-
ground integration cells to achieve the refinement [17].
There are many details about the ”newest vertex bisec-
tion” technique in [20].

IV. NUMERICAL RESULTS AND DISCUSSION

The efficiency of this proposed adaptive method is ver-
ified by four elastic problems. These benchmark problems
discussed in this section are classic examples of adaptive
procedure testing, as they are either highly concentrated in
some areas or have stress singularities in special regions.

In this paper, a triangular mesh is used as the background
integration element, the linear basis is selected in the MLS
method, and the element-based Dörfler labeling strategy is
used to execute the adaptive EFG algorithm, letting the
marking parameter θ = 0.4.

A. Cantilever beam

Fig. 2: Cantilever beam loaded at the free edge.

As shown in Fig.2, a unit thickness cantilever beam is
loaded at the free edge. The material of the beam is elastic,
with Young’s modulus E = 3.0 × 107 and Poisson’s ratio
v = 0.3. The length and width of the beam are L = 48 and
D = 12. A distributed shear force P = 1000 is imposed
at the right edge and a displacement constrained ux = 0

is applied at the left edge. The exact solution is given by
Timoshenko and Goodier [38] as follows:

ux =− Py

6EI

[
(6L− 3x)x+ (2 + v)

(
y2 − 1

4
D2

)]
uy =

P

6EI

[
3vy2 (L− x) +

1

4
D2 (4 + 5v)x+ (3L− x)x2

]
(35)

for displacements, and

σxx = −P (L− x) y

I
,

σyy = 0,

σxy =
P

2I

(
D2

4
− y2

)
.

(36)

for stresses, where I = D3

12 is the cantilever moment of
inertia.

The analytical solution indicates stress concentrating at the
fixed left end, and we’d better place rich enough nodes near
this area. In this paper, 13× 5 nodes are uniformly arranged
initially; the stopping condition is determined by the final
number of nodes or the steps of refinement.

0 10 20 30 40 50
-0.01

-0.008

-0.006

-0.004

-0.002

0
Numerical solution

Analytical solution

(a) Vertical displacement along the central line

-6 -4 -2 0 2 4 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10

-3

Numerical solution

Analytical solution

(b) Horizontal displacement on the right edge

Fig. 3: Displacement of the cantilever beam.

The results for this loaded beam are shown in Fig.3-Fig.7.
Fig.3-Fig.5 show that the numerical results consistent with
the analytical solutions. The distribution of the final nodes
of our adaptive algorithm is shown in Fig.6, it reveals that
the refinement is carried out on the constrained boundary
where the stress concentration occurs. The a posteriori error
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(a) σxx
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6
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Analytical solution

(b) σxy

Fig. 4: Stresses along left end of the cantilever beam.

estimates’ convergence is displayed in Fig.7. Estimates of
errors decline monotonically at a rate of O(N−0.51), which
is almost identical to the optimal rate of the linear adaptive
finite element method, where N is the total number of nodes
for each adaptive step.

B. An infinite plate with a circular hole

As shown in Fig.8, an infinite plate that has a hole in the
middle is affected by a uniaxial tension P .

The analytical solution of displacements and stresses of
this problem are given by Timoshenko and Goodier [38] in
the polar coordinates (r, θ) as:

ux =
Pa

8G

(
r

a
(1 + κ) cos θ +

2a

r
((1 + κ) cos θ + cos 3θ)−

2a3

r3
cos 3θ

)
uy =

Pa

8G

(
r

a
(κ− 3) sin θ +

2a

r
((1− κ) sin θ + sin 3θ)−

2a3

r3
sin 3θ

)
(37)

σxx =
P

2

(
2−

a2

r2

(
3 cos 2θ +

(
2− 3

a2

r2

)
cos 4θ

))
σyy = −

Pa2

2r2

(
cos 2θ −

(
2− 3

a2

r2

)
cos 4θ

)
τxy = −

Pa2

2r2

(
sin 2θ −

(
2− 3

a2

r2

)
sin 4θ

) (38)

where a is the hole radius, v is the Poisson’s ratio, G =

(a) σxx

(b) σxy

Fig. 5: Contours of stresses with 25 adaptive steps and the exact solution.

Initial nodal distribution

Final nodal distribution

Fig. 6: Node distribution of cantilever beam loaded at the free end.

E
2(1+v) is the shear modulus, and Kolosov constant is:

κ =

{
3−v
1+v for plane stress

3− 4v for plane strain
(39)

The problem domain for numerical modeling is a bounded
square zone with side lengths substantially longer than the
hole’s radius. Usually, only the first quadrant of the plate is
examined due to symmetry. In this work, assume that the
length of the edge to be analyzed is 5a.

This problem is considered as a plane stress problem.
The left edge is fixed horizontally, while the bottom edge
is fixed vertically. The right and upper edges are subjected
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Fig. 7: Error estimation of the adaptive algorithm for the cantilever beam.

to the traction converted from the uniaxial tension. Suppose
Young’s modulus E = 1000, Poisson’s ratio v = 0.3, and
the tension P = 1000.

Fig.9-10 show that the numerical results agree well with
the analytical solutions. The initial nodal configuration and
the last adapted configuration shown in Fig.11 indicate
distinctly that the point density is higher around the regions
with a significantly changed solutions. Fig.12 demonstrates
the convergence of this proposed error estimation, and the
decay rate of error estimates is O(N−0.49), with N denoting
the total number of nodes in each adaptive step.

(a) (b)

Fig. 8: An infinite plate with a circular hole subjected a uniaxial tension P .

C. An Edge-cracked Rectangular Body Subject to Tension

A rectangle plate with an edge-cracked is shown in Fig.13.
Let a = 4, L = 20, D = 26, material constants of Young’s
modulus E = 2.0 × 105 and Poisson’s ratio v = 0.25. The
rectangle plate is under a uniform tension P = 1 in the
vertical direction at the upper and bottom ends. This example
is a typical Griffifith mode-I crack problem. The analytic
solution at the crack tip is given by Anderson [39] in the
polar coordinates (r, θ) as:

σxx =
KI√
2πr

cos
θ

2
(1− sin

θ

2
sin

3θ

2
)

σyy =
KI√
2πr

cos
θ

2
(1 + sin

θ

2
sin

3θ

2
)

τxy =
KI√
2πr

cos
θ

2
sin

θ

2
sin

3θ

2

(40)

where the stress intensity factor KI is prescribed by KI =
P
√
πa.
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Fig. 9: Comparison between numerical solution and analytical solution .

A conventional way is to calculate the top half of the
plate, on account of symmetry. Results concerned with this
example are shown in Fig.14–Fig.16.

The coherence between the computing results with the
exact solution in Fig.14 indicates that the method in the
paper is reliable. Fig.15 depicts that, as expected, after
the performance of this adaptive method, the majority of
nodes are distributed around the crack tip, where the stress
singularity happened. Fig.16 displays the convergence for
the a posteriori error estimates. Estimates of errors decline
monotonically at a rate of O(N−0.51), where N denotes the
total number of nodes in each adaptive step.

D. L-shaped plate

The fourth example concerns an L-shaped plate under
the transverse loads, as illustrated in Fig.17 with a = 25,
material constants as Young’s modulus E = 3.0 × 107 and
Poisson’s ratio v = 0.3. A unit traction P is applied at
the right edge. The left edge is fixed horizontally, while the
bottom edge is fixed vertically. This problem is a standard
test case for the refining processes, because the stress at the
inner corner of the plate is singular.

As Fig.18 reveals, the refinement is assembled around
the corner point, despite the initial nodes are uniformly
distributed. The contours of stress σxx with different adaptive
steps shown in Fig.19 demonstrate obviously that the max-
imum stress increasing with the proceeding of adaptivity.
These indicate that the interior corner of the plate is the

Engineering Letters, 30:4, EL_30_4_24

Volume 30, Issue 4: December 2022

 
______________________________________________________________________________________ 



(a)

(b)

Fig. 10: Contours of stresses with 25 adaptive steps and the exact solution.

stress singularity point, and the expected refinements are
implemented near the point. The a posteriori error estimates’
convergence is demonstrated in Fig.20. Estimates of errors
decline monotonically at a rate of O(N−0.47), where N
denotes the total number of nodes in each adaptive step.

V. CONCLUSION

An interpolation h-refinement procedure of element free
Galerkin method is proposed to solve some elastic problems.
This approach takes full benefit of the meshless method and
the adaptive finite element method by transferring proven and
effective adaptive techniques from FEM directly into EFG.
Instead of most recovery-based adaptive EFG methods, this
method uses residual-based error estimation as the refinement
metric. The particular value of the scalar factor α of the spe-
cial influence domain not only gives interpolation property
to the shape function of the EFG method but also makes it
possible to use a refinement similar to that of the adaptive
finite element method. One of the broadly used residual error
estimation of the AFEM is taken as the EFG error estimation
strategy in this paper.

The adaptive interpolation element free Galerkin method
for Poisson equation with Dirichlet boundary conditions
is extended to linear elastic problems of mixed boundary
conditions and the desired results are obtained. The nu-
merical results of four benchmark problems demonstrate
the validity and efficiency of the proposed adaptive EFG

(a) Initial nodal distribution

(b) Final nodal distribution.

Fig. 11: Node distribution of an infinite plate with a circular hole.

Fig. 12: Error estimates of the adaptive algorithm employing for an infinite
plate with a circular hole.

(a) Geometry (b) Top half of the Rectangular

Fig. 13: An Edge-cracked Rectangular Body Subject to Tension.
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Fig. 14: Normal stress σyy along the right hand of the crack-tip, where
θ = 0.

(a) Initial nodal distribution

(b) Final nodal distribution.

Fig. 15: Node distribution of an edge-cracked rectangular body subject to
tension.

Fig. 16: Error estimates of the adaptive algorithm employing for an edge-
cracked rectangular body subject to tension

Fig. 17: L shape plate subjected to a uniform tension

(a) Initial nodal distribution

(b) Nodal distribution with 7 adaptive steps

(c) Final nodal distribution with 16 adaptive steps.

Fig. 18: Nodal distribution of the L-shaped plate with different adaptive
steps.
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(a) Stress σxx with 4 adaptive steps.

(b) Stress σxx with 7 adaptive steps.

(c) Stress σxx with 16 adaptive steps.

Fig. 19: Contours of σxx of the L-shaped plate with different adaptive steps.

Fig. 20: Error estimates of the adaptive algorithm employing for the L-
shaped plate.

method. As expected, the refinements are around the regions
with drastically varying gradients and discontinuities, and
the convergence of this adaptive analysis is almost consistent
with the optimal rate of the finite method. In the future, we
will investigate the method’s application in non-linear and
dynamic problems.
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