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Abstract—Least squares twin support vector classification
for K-class (LST-KSVC) [1] is an efficient multiclass classifier
that incorporates least squares strategy into twin support
vector classification for K-class (Twin-KSVC) [2]. Because of
its excellent classification performance, LST-KSVC has been
applied in many fields. However, the LST-KSVC has some
drawbacks: (1) It only implements empirical risk minimization
(ERM), which reduces its generalization performance. (2) It is
sensitive to noise and outliers. (3) The inverse matrices need
to be calculated, which is impossible for many large-scale en-
gineering problems. (4) For the nonlinear case, the LST-KSVC
needs to reconstruct primal problems using the approximate
kernel-generated surface (AKGS) and does not directly use
kernel tricks as in the support vector machine (SVM) [3].
To address these shortcomings, an improved LST-KSVC based
on energy model, which is called ELST-KSVC, is proposed
in this paper. First, a regularization term is introduced into
LST-KSVC to implement structural risk minimization (SRM).
Second, energy parameters are introduced into LST-KSVC to
reduce the effect of noise and outliers. Third, the dual problems
are reconstructed to avoid inverse matrices. Furthermore, the
sequential minimal optimization (SMO) algorithm is used to
efficiently train subclassifiers. Finally, ELST-KSVC can directly
use kernel tricks for nonlinear cases. Experimental results show
that the ELST-KSVC has better generalization performance
and higher learning speed.

Index Terms—multiclass classification, LST-KSVC, Twin-
KSVC, SMO.

I. INTRODUCTION

TWIN support vector machine (TSVM) [4] is an im-
proved version of SVM [5, 6]. Unlike SVM, which

seeks two parallel hyperplanes, TSVM aims to search for
two nonparallel hyperplanes. Each hyperplane is close to the
corresponding class and away from the others. Since TSVM
only needs to solve two smaller-scale quadratic programming
problems (QPPs), its learning speed is 4 times that of SVM in
theory. Due to its good classification accuracy and high learn-
ing speed, the TSVM has become an effective tool in many
engineering fields. Many improvements have been proposed,
such as A-TSVM [7], PIFTSVMs [8], ITWSVM-DC [9],
SQN-PTSVM [10], TSVM-PI [11], CTSVM [12], CL2,p-
LSTSVM [13], RCTSVM [14], LPTSVM [15], AULSTSVM
[16], FULSTSVM [17], and CIL-FART-IFTSVM [18].
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TSVM and its improved algorithms can only solve the
binary-class classification problem, but many practical prob-
lems involve multiclass classification [19–30], such as in-
dustrial fault diagnosis and computer-aided diagnosis of
diseases. Under the framework of SVM and TSVM, the
decomposition-reconstruction strategy is generally used to
solve the multiclass classification problem. The 1-a-r and
1-a-1 are two representative methods. The main idea of the
1-a-1 method is to construct a subclassifier for each pair
of focus classes. In light of the prediction results of all
subclassifiers, a voting strategy is used to determine the class
of the new sample. Since the 1-a-1 method only involves
two classes of samples when constructing each subclassifier
and the other samples are omitted, it is possible to obtain
unfavourable results. The main idea of the 1-a-r method
is to construct each subclassifier using the corresponding
class as the positive class and the remaining classes as the
negative class. In light of the distance from the new sample
to each hyperplane, the nearest one is the class to which
the sample belongs. Since the 1-a-r method easily leads to
class imbalance when constructing each subclassifier, it may
obtain poor classification results.

To overcome the disadvantages of 1-a-1 SVM [31] and
1-a-r SVM [32], K-SVCR [33] was proposed, where each
subclassifier divides the training set into three subsets for
each pair of focus classes: positive samples, negative samples
and remaining samples. The K-SVCR avoids the sample
information loss in the 1-a-1 SVM and class imbalance in the
1-a-r SVM. Thus it has better generalization performance.
Compared with the 1-a-r SVM and 1-a-1 SVM, K-SVCR
needs to solve more and larger subclassifiers and therefore
has a lower learning speed. Based on K-SVCR and TSVM,
Xu et al. proposed Twin-KSVC [2, 34–36]. The experimental
results show that Twin-KSVC has a higher learning speed.
Inspired by LS-TSVM [37], Nasiri et al. proposed a least
squares version of Twin-KSVC, named LST-KSVC [3, 38].
The LST-KSVC replaces inequality constraints in Twin-
KSVC with equality constraints and hinge loss with quadratic
loss. Because LST-KSVC only needs to solve nonlinear
equations, instead of QPPs, LST-KSVC has a higher learning
speed. However, there exist some disadvantages in the LST-
KSVC. (1) it only implements the ERM, instead of the
SRM. (2) It is sensitive to noise and outliers. (3) Inverse
matrices need to be calculated in the LST-KSVC, which is
impossible for many large-scale engineering problems. (4)
For the nonlinear case, the LST-KSVC needs to reconstruct
primal problems using the AKGS and not directly use kernel
tricks as in the SVM. To overcome the disadvantages of LST-
KSVC, we propose an improved algorithm, named ELST-
KSVC. First, a regularization term is introduced into LST-
KSVC to implement the SRM. Second, energy parameters
are introduced into LST-KSVC to reduce the effect of noise
and outliers. Third, the dual problems are reconstructed to
avoid inverse matrices. Furthermore, the SMO algorithm

Engineering Letters, 30:4, EL_30_4_27

Volume 30, Issue 4: December 2022

 
______________________________________________________________________________________ 



is used to train subclassifiers efficiently. Finally, the dual
problems in ELST-KSVC can directly apply kernel tricks
for nonlinear cases.

The remaining parts of this paper are organized as follows:
the related works are reviewed in Section II. In Section III,
we discuss the ELST-KSVC in detail, including the linear
case, nonlinear case, decision rule, fast training algorithm and
convergence analysis. The experimental results are presented
in Section IV. Section V presents the conclusions.

II. RELATED WORKS

Assume a multiclass classification training dataset D =
{Xi ∈ Rli×d|i = 1, 2, · · · ,K}, where K is the number of
classes, li is the number of samples of the ith class, and the
total number of samples l = l1 + · · ·+ lK .

A. K-SVCR

K-SVCR is an effective multiclass classification SVM that
constructs K(K − 1)/2 hyperplanes. Each subclassifier in
K-SVCR exploits the 1-a-1-a-r strategy to evaluate train-
ing samples, i.e., each subclassifier divides the training set
into three subsets: positive samples, negative samples and
remaining samples, and the corresponding outputs are +1,
-1, and 0, respectively. In light of the prediction results of
all subclassifiers (i.e., +1, -1, 0), a voting strategy is used to
assign the class of the new sample.

For the training samples of the ith and jth classes, K-
SVCR aims to construct an optimal hyperplane

wTijx+ bij = 0, (1)

where bij ∈ R and wij ∈ Rd are the bias and normal vector,
respectively.

To obtain the hyperplane, K-SVCR solves the following
QPP:

min 1
2 ‖wij‖

2
+c1(eTi γij+e

T
j γij∗)+c2ē

T (λij+λij∗),
s.t. (Xiwij + eibij) + γij ≥ ei,
−(Xjwij + ejbij) + γij∗ ≥ ej ,
−ēσ − λij∗ < X̄wij + ēbij ≤ ēσ + λij ,
γij ≥ 0ei, γij∗ ≥ 0ej , λij ≥ 0ē, λij∗ ≥ 0ē,

(2)

where X̄ = D −Xi −Xj , γij , γij∗, λij and λij∗ are slack
variables, σ ∈ [0, 1) is the preset bandwidth parameter, and
ei, ej and ē are all 1 vectors of appropriate dimensions.

For a new sample x, if subclassifier gij(x) = wTijx+bij >
σ, a vote is given to the ith class; if subclassifier gij(x) <
−σ, a vote is given to the jth class; if these conditions are
not met, a vote is decreased for the ith and jth classes.
K-SVCR counts the votes of all subclassifiers, and the new
sample is assigned to the label that has the most votes.

B. Twin-KSVC

Twin-KSVC is an improvement of K-SVCR, which inte-
grates TSVM and the 1-a-1-a-r strategy. Twin-KSVC con-
structs K(K − 1)/2 pairs of subclassifiers. For the ith and
jth classes, Twin-KSVC aims to seek a pair of nonparallel
hyperplanes as follows:

wTi x+ bi = 0 and wTj x+ bj = 0, (3)

where bi(bj) ∈ R and wi(wj) ∈ Rd are the bias and normal
vector of the ith(jth) class, respectively.

To obtain the above nonparallel hyperplanes, Twin-KSVC
solves the following QPPs:

min 1
2 ‖Xiwi + eibi‖2 + c1e

T
j γi + c2ē

Tλi,
s.t. − (Xjwi + ejbi) + γi ≥ ej ,
−(X̄wi + ēbi) + λi ≥ ē(1− σ),
γi ≥ 0ej , λi ≥ 0ē,

(4)

and

min 1
2 ‖Xjwj + ejbj‖2 + c3e

T
i γj + c4ē

Tλj ,
s.t. (Xjwj + eibj) + γj ≥ ei,
−(X̄wj + ēbj) + λj ≥ ē(1− σ),
γj ≥ 0ei, λj ≥ 0e,

(5)

where X̄ = D−Xi−Xj , γi, γj , λi and λj are slack variables.
For a new sample x, if subclassifier gi(x) = wTi x+ bi >
−1 + σ, a vote is given to the ith class; if subclassifier
gj(x) = wTj x + bj < 1 − σ, a vote is given to the jth
class; if these conditions are not met, a vote is decreased for
the ith and jth classes. Twin-KSVC counts the votes of all
subclassifiers, and the new sample is assigned to the label
that has the most votes.

C. LST-KSVC

LST-KSVC is an improvement of Twin-KSVC, which in-
tegrates LS-TSVM and the 1-a-1-a-r strategy. Different from
Twin-KSVC, LST-KSVC replaces inequality constraints with
equality constraints and hinge loss with quadratic loss, such
that it only needs to solve nonlinear equations rather than
QPPs. To obtain the above nonparallel hyperplanes, LST-
KSVC solves the following QPPs:

min 1
2 ‖Xiwi + eibi‖2 + c1

2 γ
T
i γi + c2

2 λ
T
i λi,

s.t. − (Xjwi + ejbi) + γi = ej ,
−(X̄wi + ēbi) + λi = ē(1− σ),

(6)

and

min 1
2 ‖Xjwj + ejbj‖2 + c3

2 γ
T
j γj + c4

2 λ
T
j λj ,

s.t. (Xjwj + eibj) + γj = ei,
−(X̄wj + ēbj) + λj = ē(1− σ),

(7)

For a new sample, similar to Twin-KSVC, a voting strategy
is used to assign the final class.

III. ELST-KSVC

As discussed in the previous sections, LST-KSVC is a
valuable extension of Twin-KSVC. The advantage of LST-
KSVC compared with Twin-KSVC is that LST-KSVC has
a higher learning speed. In this section, to address the
disadvantages of LST-KSVC, we propose ELST-KSVC.

A. Linear Case

Due to the fact that LST-KSVC, only implements the ERM
rather than the SRM and is sensitive to noise and outliers, we
introduce a regularization term into LST-KSVC to implement
the SRM and energy parameters into LST-KSVC to reduce
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the effect of noise and outliers. The primal problems are
modified as follows:

min c52 ‖wi‖
2

+ 1
2γ

T
i γi + c1

2 λ
T
i λi + c2

2 θ
T
i θi,

s.t. Xiwi + eibi = γi,
−(Xjwi + ejbi) + λi = E1ej ,
−(X̄wi + ēbi) + θi = (E1 − σ) ē,

(8)

and

min c62 ‖wj‖
2

+ 1
2γ

T
j γj + c3

2 λ
T
j λj + c4

2 θ
T
j θj ,

s.t. Xjwj + ejbj = γj ,
(Xiwj + eibj) + λj = E2ei,
−(X̄wj + ēbj) + θj = (E2 − σ) ē,

(9)

where ck(k = 1, 2, · · · , 6) are penalty parameters and λi(λj)
and θi(θj) are slack variables.

Different from (6) and (7) in the LST-KSVC, the objective
functions in (8) and (9) add regularization terms (‖wi‖2
and ‖wj‖2) such that ELST-KSVC implements the SRM.
In addition, (8) and (9) introduce the energy parameters (E1

and E2) in the constraints such that ELST-KSVC is robust
for noise and outliers.

The Lagrangian of (8) is given by:

L = c5
2 ‖wi‖

2
+ 1

2γ
T
i γi + c1

2 λ
T
i λi + c2

2 θ
T
i θi

+αT (γi −Xiwi − eibi)
+pT (λi − (Xjwi + ejbi)− E1ej)
+qT (θi − (X̄wi + ēbi) + θi − (E1 − σ) ē),

(10)

where α, p and q are Lagrangian multiplier vectors. Accord-
ing to Karush-Kuhn-Tucker (KKT) conditions, we can obtain

∂L

∂wi
= c5wi −Xi

Tα−Xj
T p− X̄T q = 0, (11)

∂L

∂bi
= −eTi α− eTj p− ēT q = 0, (12)

∂L

∂γi
= γi + α = 0, (13)

∂L

∂λi
= c1λi + p = 0, (14)

∂L

∂θi
= c2θi + q = 0. (15)

From (11) and (12), we can obtain

wi =
1

c5

(
Xi

T Xj
T X̄T

)αp
q

 , (16)

(
eTi eTj ēT

)αp
q

 = 0. (17)

According to (13)-(17), we can obtain the following dual
optimization problem of (8):

max− 1
2

(
αT pT qT

)
Q̄

αp
q


−c5

(
0eTi E1e

T
j (E1 − σ)ēT

)αp
q

 ,

s.t.
(
eTi eTj ēT

)αp
q

 = 0,

(18)

where

Q̄=

XiXi
T+c5I XiXj

T XiX̄
T

XjXi
T XjXj

T + c5
c1
I XjX̄

T

X̄TXi
T X̄TXj

T X̄T X̄T + c5
c2
I

 . (19)

The bias bi can be calculated by

bi =
1

l

l∑
k=1

[− 1

c5
Q̄

αp
q

−
 0ei

E1ej
(E1 − σ) ēT

]k. (20)

Similarly, we can obtain the following dual optimization
problem of (9):

max− 1
2

(
βT mT nT

)
Q̂

βm
n


−c6

(
0eTj E2e

T
i (E2 − σ)ēT

)βm
n

 ,

s.t.
(
eTj eTi ēT

)βm
n

 = 0,

(21)

where β, m and n are Lagrangian multiplier vectors, and

Q̂=

XjXj
T +c6I XjXi

T XjX̄
T

XiXj
T XiXi

T + c6
c3
I ACT

X̄Xj
T X̄Xi

T X̄X̄T + c6
c4
I

 . (22)

wj and bj can be calculated by

wj = − 1

c6

(
Xj

T Xi
T X̄T

)βm
n

 (23)

and

bj =
1

l

l∑
k=1

[− 1

c6
Q̂

βm
n

−
 0ej

E2ei
(E2 − σ) ēT

]k. (24)

B. Nonlinear Case

For the nonlinear case, we directly introduce the mapping
φ from Rd to a high dimensional space H instead of the
AKGS in LST-KSVC. The primal problems in nonlinear
ELST-KSVC are as follows:

min c52 ‖wi‖
2

+ 1
2γ

T
i γi + c1

2 λ
T
i λi + c2

2 θ
T
i θi,

s.t. φ (Xi)wi + eibi = γi,
−(φ (Xj)wi + ejbi) + λi = E1ej ,
−(φ

(
X̄
)
wi + ēbi) + θi = (E1 − σ) ē,

(25)

and

min c62 ‖wj‖
2

+ 1
2γ

T
j γj + c3

2 λ
T
j λj + c4

2 θ
T
j θj ,

s.t. φ(Xj)wj + ejbj = γj ,
(φ(Xi)wj + eibj) + λj = E2ei,
−(φ(X̄)wj + ēbj) + θj = (E2 − σ) ē,

(26)
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Similarly, we can obtain the following dual optimization
problems of (25) and (26):

max− 1
2

(
αT pT qT

)
Q̄

αp
q


−c5

(
0eT1 E1e

T
2 (E1 − σ)eT3

)αp
q

 ,

s.t.
(
eT1 eT2 eT3

)αp
q

 = 0,

(27)

and

max− 1
2

(
βT mT nT

)
Q̂

βm
n


−c6

(
0eT2 E2e

T
1 (E2 − σ)eT3

)βm
n

 ,

s.t.
(
eT2 eT1 eT3

)βm
n

 = 0,

(28)

where

Q̄=

K
(
Xi, X

T
i

)
+c5I K

(
Xi, X

T
j

)
K
(
Xi, X̄

T
)

K
(
Xj , X

T
i

)
K
(
Xj , X

T
j

)
+c5
c1
I K

(
Xj , X̄

T
)

K
(
X̄,XT

i

)
K
(
X̄,XT

j

)
K
(
X̄, X̄T

)
+c5
c2
I


(29)

and

Q̂=

K
(
Xj,X

T
j

)
+c6I K

(
Xj,X

T
i

)
K
(
Xj,X̄

T
)

K
(
Xi,X

T
j

)
K
(
Xi,X

T
i

)
+c6
c3
I K

(
Xi,X̄

T
)

K
(
X̄,XT

j

)
K
(
X̄,XT

i

)
K
(
X̄,X̄T

)
+c6
c4
I

 .

(30)
Obviously, (27) and (28) can degenerate to (18) and (21)

by using a linear kernel.

C. Decision Rule

For each pair of subclassifiers in ELST-KSVC, a new
sample x is labelled by

f (x)=


1, if 1

c5

(
K
(
x,XT

i

)
α+K

(
x,XT

j

)
p+K

(
x,X̄T

)
q
)

+bi >E1+σ
−1,if − 1

c6

(
K
(
x,XT

j

)
β+K

(
x,XT

i

)
m+K

(
x,X̄T

)
n
)

+bj <E2−σ
0, otherwise

.

(31)
We use a voting strategy to assign the final label of x. If

subclassifier gi(x) = wi
T ·x+bi > E1+σ, a vote is given to

the ith class; if subclassifier gj(x) = wj
T ·x+ bj < E2−σ,

a vote is given to the jth class; if these conditions are not
met, a vote is decreased for the ith and jth classes. All
subclassifiers are counted, and x is assigned to the class that
has the most votes.

D. Fast Solvers

LST-KSVC and its improved algorithms cannot solve
large-scale problems. To handle large-scale problems, in this
subsection, we use the SMO algorithm to solve (27) and (28).

The optimization problems (27) and (28) can be rewritten in
a unified form as follows:

max
{
D (x) = − 1

2x
TQx+ pTx

}
,

s.t. eTx = 0,
(32)

where Q is a positive definite matrix. For instance, the
unified form (32) can be converted to (27) when Q =
Q, p = −c5(0eT1 E1e

T
2 (E1 − σ)eT3 )T , while the unified

form (32) can be converted to (28) when Q = Q̂, p =
−c6(0eT2 E2e

T
1 (E2 − σ)eT3 )T .

The Lagrangian of (32) is given by:

L = −1

2
xTQx+ pTx+ ηeTx. (33)

Define
F = −Qx+ p. (34)

The KKT condition for (32) is

F + ηe = 0. (35)

The QPP (32) is solved by the following SMO algorithm:
Step 1: Set k = 0, xk = 0e and F k = p.
Step 2: If the stop criterion is satisfied, stop; otherwise,

i1 = arg maxi(F
k
i ) and i2 = arg mini(F

k
i ).

Step 3: Solve the following suboptimization problem

zopt =

arg maxz

{
− 1

2

[
−z
z

]T[
Qi1i1Qi1i2
Qi2i1Qi2i2

] [
−z
z

]
+

[
−z
z

]T[
F ki1
F ki2

]}
=

Fki2−F
k
i1

Qi1i1+Qi2i2−2Qi1i2
.

(36)

Step 4: Set xk+1
i1

= xki1−z
opt, xk+1

i2
= xki2 +zopt, F k+1

i =
F ki + zoptQii1 − zoptQii2(i ∈ 1, · · · , l) and k = k+ 1. Goto
Step 2.

E. Convergence Analysis

Lemma 1:
{
xk
}

converges to the global solution of (32).
Proof: From (36), we can obtain

D
(
xk+1

)
−D

(
xk
)

=

maxz

{
− 1

2

[
−z
z

]T[
Qi1i1Qi1i2
Qi2i1Qi2i2

] [
−z
z

]
+

[
−z
z

]T[
F ki1
F ki2

]}
=

(zopt)
2
(Qi1i1+Qi2i2−2Qi1i2)

2 .

(37)

We can observe that Qi1i1 +Qi2i2 − 2Qi1i2 > C,

C =



2c5 if xi1 ⊆ Xi and xi2 ⊆ Xi

2 c5c1 if xi1 ⊆ Xj and xi2 ⊆ Xj

2 c5c2 if xi1 ⊆ X̄ and xi2 ⊆ X̄
c5 + c5

c1
, if xi1 ⊆ Xi and xi2 ⊆ Xj

c5 + c5
c2
, if xi1 ⊆ Xi and xi2 ⊆ X̄

c5
c1

+ c5
c2
, if xi1 ⊆ Xj and xi2 ⊆ X̄

, when Q = Q̄.

From Qi1i1 +Qi2i2−2Qi1i2 > C and (zopt)
2

=
‖xk+1−xk‖2

2

2 ,
(37) implies that D is increased at each step, i.e.,

D
(
xk+1

)
−D

(
xk
)
≥
C
∥∥xk+1 − xk

∥∥2
2

4
(38)

According to the Wolf duality [39], D is bounded above.
Thus,

{
D
(
xk
)}

is a convergent sequence. From (38), we
can obtain that

{
xk+1 − xk

}
converges to 0.

Because D is a positive definite quadratic form, the set{
x | D (x) ≥ D

(
x0
)}

is a compact set. Because
{
xk
}

lies
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in
{
x | D (x) ≥ D

(
x0
)}

, it is a bounded sequence. Let
{xnk}k∈N be a convergent subsequence of

{
xk
}

and x̄ be
the limit point of subsequence.

For ∀ k ≥ 0, let µ (k) = arg maxi
(
Fi
(
xk
))

and ν (k) =
arg mini

(
Fi
(
xk
))

at the kth step. Since there is only a
finite number of variables, for ∀ k ≥ 0, there exists at least
a pair of variables i1 = µ (nk) and i2 = ν (nk) in this
subsequence. Because Fi1 and Fi2 are continuous functions
of x, we have

Fi1 (x̄)−Fi2 (x̄) = limk→∞ (Fi1 (xnk)− Fi2 (xnk)) . (39)

(39) can be decomposed into Fi1 (x̄) − Fi2 (x̄) =
limk→∞ (Υ1 (k) + Υ2 (k) Υ3 (k)), where Υ1 (k) =
Fi1 (xnk) − Fi1

(
xnk+1

)
, Υ2 (k) = Fi1

(
xnk+1

)
−

Fi2
(
xnk+1

)
and Υ3 (k) = Fi2

(
xnk+1

)
− Fi2 (xnk).

Since
{
xk+1 − xk

}
converges to 0, limk→∞Υ1 (k) = 0

and limk→∞Υ3 (k) = 0. From step 4 of the SMO algorithm,
we obtain limk→∞Υ2 (k) = 0. Thus, Fi1 (x̄)−Fi2 (x̄) = 0.
For ∀i, j ∈ {1, · · · , l},

(Fi (x̄)− Fj (x̄))
2

= limk→∞ (Fi (xnk)− Fj (xnk))
2 ≤

Qii+Qjj−2Qij
Qi1i1+Qi2i2−2Qi1i2

(limk→∞(Fi1(xnk)−Fi2(xnk)))
2

=
Qii+Qjj−2Qij

Qi1i1+Qi2i2−2Qi1i2
(Fi1 (x̄)−Fi2 (x̄)) = 0.

(40)

From (40), we observe that F1 (x̄) = F2 (x̄) = ... = Fl (x̄).
According to the KKT conditions, x̄ is the global optimal
solution of (32). Since D is strictly convex,

{
xk
}

converges
to x̄.

IV. EXPERIMENTS

To investigate the effectiveness of ELST-KSVC, we com-
pared ELST-KSVC with the state-of-the-art multiclass algo-
rithms on multiple datasets.

A. Experimental Configuration

1) Datasets: We performed experiments on eight mul-
ticlass benchmark datasets. The experimental datasets are
listed in Table IV, where #Sample, #Feature and #Label
represent the number of samples, the number of features and
the number of labels, respectively.

2) Comparative Algorithms:
1) K-SVCR [33]: This is a classical multiclass classi-

fication algorithm that combines the 1-a-1-a-r strat-
egy and SVM. It has three parameters, namely,
c1, c2 and σ, where c1 and c2 are selected
from

{
2−8, 2−7, ..., 27

}
, and σ is selected from

{0, 0.1, 0.2}. In our experiments, we set c1 = c2.
2) Twin-KSVC [2]: This is an improvement of K-SVCR,

which combines the 1-a-1-a-r strategy and TSVM. It
has five parameters, c1, c2, c3, c4 and σ, where c1, c2,
c3 and c4 are selected from

{
2−8, 2−7, ..., 27

}
, and

σ is selected from {0, 0.1, 0.2}. In our experiments,
we set c1 = c3 and c2 = c4.

3) LST-KSVC [1]: This is the least squares version
of Twin-KSVC. It has five parameters, c1, c2, c3,
c4 and σ, where c1, c2, c3 and c4 are selected
from

{
2−8, 2−7, ..., 27

}
, and σ is selected from

{0, 0.1, 0.2}. In our experiments, we set c1 = c3 and
c2 = c4.

4) Improvement on LST-KSVC (ILST-KSVC) [40]: This
is an improvement of LST-KSVC. It has seven param-
eters, c1, c2, c3, c4, c5, c6 and σ, where c1, c2, c3, c4,
c5 and c6 are selected from

{
2−8, 2−7, ..., 27

}
, and

σ is selected from {0, 0.1, 0.2}. In our experiments,
we set c1 = c3, c2 = c4 and c5 = c6.

5) ELST-KSVC: The penalty parameters c1, c2, c3, c4,
c5 and c6 are selected from

{
2−8, 2−7, ..., 27

}
.

The preset bandwidth parameter σ is selected from
{0, 0.1, 0.2}. The energy parameters E1 and E2 are
selected from {0.6, 0.7, ..., 1}. In our experiments,
we set c1 = c3, c2 = c4, c5 = c6 and E1 = E2.

In the experiment, the Gaussian kernel function

K (xi, xj) = e
−
‖xi−xj‖

2

γ2 was employed, where the
parameter γ was selected from

{
2−8, 2−7, ..., 27

}
.

B. Comparison of Experimental Results

Experiments were conducted on a server with an Intel
Xeon processor (2.5 GHz) and 32 GB RAM.

The 5-fold cross-validation is employed to evaluate each
algorithm. We report the experimental results in Table I,
where the best result for each dataset is highlighted in bold.
From Table I, we can observe that our ELST-KSVC is better
than each comparative algorithm on all datasets in terms of
running time and is superior to Twin-KSVC, LST-KSVC and
ILST-KSVC on most datasets in terms of accuracy.

To evaluate these classifiers more systematically, we em-
ployed the Friedman test [41] to analyse the accuracy of these
classifiers. χ2

F = 12N
k(k+1)

[∑k
j=1R

2
j −

k(k+1)2

4

]
, where k is

the number of comparative algorithms, N is the number of
datasets, and Rj is the average rank of the jth classifier
on all datasets. Friedman statistic FF =

(N−1)χ2
F

N(k−1)−χ2
F
∼

F (k − 1, (k − 1) (N − 1)). In Table II, we show the accu-
racy rank of five algorithms on eight benchmark datasets.
From Table II, we notice that the average rank of ELST-
KSVC is better than that of Twin-KSVC, LST-KSVC and
ILST-KSVC for accuracy. The Friedman statistics FF of
accuracy is 8.887, and the corresponding critical value is
2.714 at the significance level α = 0.05. Because the
Friedman statistic FF is greater than the critical value at
α = 0.05, these algorithms are significantly different in terms
of accuracy. We employed the Nemenyi test [41] to further
analyse whether ELST-KSVC has better accuracy than other

classifiers. The critical difference (CD = qα

√
k(k+1)

6N ) was
employed to compare the average rank difference of accuracy
between ELST-KSVC and a comparative classifier. For the
Nemenyi test, at α = 0.05, we obtained qα = 2.948 and
CD = 2.157(k = 5, N = 8). We show the average
rank difference of accuracy between ELST-KSVC and other
algorithms in Table III. When the average rank difference of
accuracy between two algorithms is within one CD, they can-
not be considered to be significantly different. As presented
in Table III, we notice that the difference between ELST-
KSVC and other comparative algorithms is not significantly
different.

According to the experimental results, we can draw the
conclusions as follows:

1) Because ILST-KSVC implements the SRM, it is better
than LST-KSVC and Twin-KSVC for accuracy.
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Fig. 1. The performance of ELST-KSVC changes on all evaluation metrics as the value of energy parameters increases on eight benchmark multiclass
datasets.
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TABLE I
EXPERIMENTAL RESULTS OF EACH COMPARATIVE ALGORITHMS WITH RBF KERNEL

Dataset K-SVCR Twin-KSVC LST-KSVC ILST-KSVC ELST-KSVC
Acc ± std Acc ± std Acc ± std Acc ± std Acc ± std
Time (s) Time (s) Time (s) Time (s) Time (s)

Soybean 99.16 ± 1.89 96.18 ± 5.15 97.02 ± 6.27 96.98 ± 6.03 99.56 ± 0.99
0.074 0.178 0.020 0.019 0.010

Iris 95.47 ± 3.81 92.00 ± 5.39 95.13 ± 4.34 95.60 ± 3.70 95.07 ± 4.58
0.132 0.195 0.049 0.065 0.014

Wine 98.54 ± 1.62 97.31 ± 2.53 96.18 ± 3.40 97.09 ± 3.57 97.76 ± 2.65
0.213 0.217 0.081 0.076 0.037

Ecoli 88.56 ± 3.64 86.56 ± 4.22 85.76 ± 3.41 85.93 ± 3.67 86.12 ± 3.38
3.163 1.709 0.486 0.518 0.246

Vowel 98.75 ± 0.70 93.88 ± 1.99 94.89 ± 1.84 96.73 ± 1.41 98.38 ± 1.04
185.742 776.113 30.616 31.243 13.113

Car 98.43 ± 0.54 97.48 ± 0.77 94.48 ± 1.25 97.19 ± 0.77 98.03 ± 0.86
43.895 41.684 11.909 11.268 2.598

Segment 96.94 ± 0.79 90.91 ± 0.95 95.56 ± 0.96 94.67 ± 1.03 95.01 ± 0.65
498.903 316.283 72.219 73.666 30.215

Satimage 91.71 ± 1.06 85.31 ± 0.86 84.03 ± 0.74 88.88 ± 0.74 91.31 ± 0.83
1753.600 980.628 311.736 312.722 137.863

TABLE II
THE RANK OF EACH COMPARATIVE ALGORITHM FOR ACCURACY

Dataset K-SVCR Twin-KSVC LST-KSVC ILST-KSVC ELST-KSVC

Soybean 2 5 3 4 1
Iris 2 5 3 1 4
Wine 1 3 5 4 2
Ecoli 1 2 5 4 3
Vowel 1 5 4 3 2
Car 1 3 5 4 2
Segment 1 5 2 4 3
Satimage 1 4 5 3 2

Average 1.25 4 4 3.375 2.375

TABLE III
THE AVERAGE RANK DIFFERENCE OF ACCURACY BETWEEN

ELST-KSVC AND A COMPARATIVE ALGORITHM

Algorithm Difference CD

K-SVCR 1.125

2.157Twin-KSVC 1.625
LST-KSVC 1.625
ILST-KSVC 1

TABLE IV
DESCRIPTION OF DATASETS

Dataset #Sample #Feature #Label

Soybean 47 35 4
Iris 150 4 3
Wine 178 13 3
Ecoli 327 7 5
Vowel 990 11 11
Car 1728 6 4
Segment 2310 20 7
Satimage 4435 37 6

2) ELST-KSVC outperforms ILST-KSVC for accuracy,
because ELST-KSVC not only implements the SRM
principle, but also reduces the effect of noise and
outliers effectively.

3) Because ELST-KSVC avoids inverse matrices, and
uses SMO to solve, it is faster than other comparative
algorithms on all datasets.

C. Parameter Sensitivity Analysis

Energy parameters E1 and E2 are used to reduce the
effect of noise and outliers. The effects of E1 and E2 of our
ELST-KSVC on the accuracy are investigated in this subsec-
tion. The experiments were conducted on eight benchmark
datasets. We changed the values of E1 and E2 and set other
parameters to fixed values in the experiments. Figure 1 shows
how the accuracy of our ELST-KSVC changes as the values
of E1 and E2 change. We observe that the values of E1 and
E2 significantly affect the accuracy of ELST-KSVC.

V. CONCLUSION

In this paper, to overcome the disadvantages of LST-
KSVC, we have proposed a novel algorithm named ELST-
KSVC. First, our ELST-KSVC employs energy parameters
to reduce the effect of noise and outliers, and the regular-
ization term to implement the SRM. Second, ELST-KSVC
reconstructs the dual optimization problems to avoid inverse
matrices, and the SMO is used to improve the training speed
for large-scale problems. Finally, ELST-KSVC directly uses
the kernel tricks for nonlinear cases. The experimental re-
sults present that ELST-KSVC outperforms other multiclass
classifiers.
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