

Abstract— Job Shop Scheduling (JSS) is one of the problems

in the production process. The sequence of operation and

processing time are often different because some jobs consist of

multiple processes, with each being performed by a different

machine. The purpose of JSS is to determine the order in

which jobs are processed to meet specific optimization criteria.

Several solutions to Job Shop Scheduling Problem (JSSP) have

been proposed, either with exact approaches or heuristics. It

was observed that one of the most widely used heuristic

approaches is metaheuristics, specifically the Genetic

Algorithm, which has the advantage of finding solutions

globally, also known as global optimal. However, this

algorithm is often trapped in a search that only involves local

optimal values. This study proposes an approach to improve

the Genetic Algorithm performance by combining it with

another metaheuristic, known as the Firefly Algorithm, which

has the advantage of finding solutions locally or called local

optimal. It is, therefore, possible to maintain global and local

optimal balance and obtain better performance by combining

these two algorithms as well. Furthermore, two approaches are

proposed, which include S-GAFA and C-GAFA. Several

experiments were performed to measure these proposed

algorithms. It was observed that S-GAFA and C-GAFA

performed better than the Genetic Algorithm in solving JSSP.

Index Terms— Firefly Algorithm, Genetic Algorithm, Job

Shop Scheduling Problem, metaheuristic, optimization

I. INTRODUCTION

here are several types of scheduling problems in the

industry based on job processing flow. One of them is

Job Shop Scheduling Problem (JSSP), in which each job

moves from one machine to another in a non-homogeneous

pattern.

JSSP is a combinatorial optimization problem, which is a

topic in theoretical computer science and applied

mathematics. Furthermore, it consists of finding the most

cost-effective solutions to mathematical problems. Many

solutions to JSSP have been proposed, either with an exact

algorithm or heuristics. It has been observed that one of the

most widely used heuristic approaches to this problem is

metaheuristics which are a class of intelligent self-learning

algorithms for finding near-optimal solutions to hard

optimization problems, mimicking intelligent processes, and

behaviors observed in nature, sociology, reasoning, and

other disciplines [1]. Several metaheuristics classes have

also been proposed, which include evolutionary algorithms

[2]-[10], swarm intelligence-based approaches [11]-[17],

and local search algorithms [18]-[20].

The two examples of algorithms that are included in

metaheuristics are the Genetic Algorithm (GA) and the

Firefly Algorithm (FA). The GA is a computational

algorithm inspired by Darwin's theory of evolution, and it

states that organisms with high fitness values tend to

survive, while those with low values die. This theory was

incorporated into a computational algorithm to solve

problems in a more "natural" way. Ever since John Holland

first pioneered this theory, GA has been studied and widely

applied in various fields. For example, it has been used in

practical problems that focus on determining optimal

parameters.

Furthermore, the FA is an optimization algorithm inspired

by the blinking behavior of fireflies. The main purpose of a

firefly's blinking behavior is to be a signal for attracting

other fireflies. This means that a firefly with a brighter light

tends to attract others that have a lower light.

The advantage of GA is that it can find solutions globally,

known as global optimal. However, this algorithm is often

trapped in a search that only involves local optimal values

because it starts optimization from an initial point and only

aims for maximum values in a particular area. This is unlike

the FA, as it finds solutions locally or known as local

optimal. This means that the two algorithms can maintain

the balance between global and local optimal. Based on

these aforementioned advantages, several studies tried to

combine the two algorithms. This combination aims to

obtain a new approach that has better performance than

either of these algorithms working individually.

The FA has been used in several methods and approaches

to solve many variants of JSSP [21]-[28]. In [29], Wahid

et.al. proposed a combination of the GA and FA by

introducing GA operators, which include selection,

mutation, and crossover operators at the positioning stage of

the standard FA. This combination aims to overcome the

FA’s weaknesses, such as unbalanced exploration and

exploitation. The proposed algorithm was further applied to

optimize energy consumption and user comfort management

in smart buildings. In [30], a novel method for the traveling

salesman problem was proposed based on a discrete FA with

a combination of GA. The distance of the FA was redefined

by introducing swap operators and sequences to prevent the

algorithm from falling easily into the local solutions and to

Hybrid Metaheuristics for Job Shop Scheduling

Problems

Cecilia E. Nugraheni, Member IAENG, D. Swastiani, and L. Abednego, Member IAENG

T

Manuscript received September 22, 2021; revised October 12, 2022.

This work was supported in part by the Indonesian Ministry of Research,

Technology and Higher Education (RistekDikti), under the research

scheme of Higher Education Excellence Applied Research 2019-2021 with

contract number: III/LPPM/2020-04/104-PE-S.

Cecilia E. Nugraheni is a lecturer at the Informatics Dept., Fac. of

Information Technology and Science, Parahyangan Catholic University,

Bandung, Indonesia (email:cheni@unpar.ac.id).

Dian Swastiani is a postgraduate student majoring in Informatics at

Bandung Institute of Technology, Indonesia (email:

dian.swastiani@gmail.com).

Luciana Abednego is a lecturer at the Informatics Dept., Fac. of

Information Technology and Science, Parahyangan Catholic University,

Bandung, Indonesia (email:luciana@unpar.ac.id).

Engineering Letters, 30:4, EL_30_4_28

Volume 30, Issue 4: December 2022

__

accelerate convergence speed. It was also observed that

several other studies used a combination of metaheuristics to

solve JSSP [31]-[49].

In this study, the use of the FA was investigated to

improve the performance of the GA in solving JSSP. Two

algorithms were proposed to combine the Genetic and the

Firefly, and the optimization criteria were the makespan.

Even though there are many similar works, this current

study differs in terms of the application order of GA and

FA, chromosome modeling, methods for mutation and

crossover operations, and the principle of firefly movement.

II. METHODOLOGY

A. Job Shop Scheduling Problems (JSSP)

Given n jobs, 𝐽 = {𝐽1, …, 𝐽𝑛} with different processing

times, which are to be assigned to m machines 𝑀 = {𝑀1, ...,

𝑀𝑚}. The process order for each job is often different, and

every job is processed exactly once on every machine.

Furthermore, each job (𝐽𝑖) consists of m operations {𝑂𝑖1, …,

𝑂𝑖m}, and every operation has a different processing time

𝑃𝑇𝑖𝑗, for a job i at machine j. The goal is to find a schedule

with minimum makespan. It is important to note that

makespan is the total time needed until all these jobs are

ready to be processed on these machines.

Table I illustrates a small JSSP consisting of three jobs

and three machines. The first job, J1, consists of three

operations which include O11, O12, and O13, which are

processed on machines M1, M2, and M3 for 10, 9, and 8 units

of time, respectively. The second and third jobs, J2 and J3,

also consist of three operations, but the machines' order for

the third job was different. For example, M3 was for the first

operation, M1 was for the second, and M2 was for the third.

TABLE I

AN EXAMPLE OF JOB SHOP SCHEDULING PROBLEMS

Job
Operation i1 Operation i2 Operation i3

Time Machine Time Machine Time Machine

J1 10 1 9 2 8 3

J2 9 3 8 1 7 2

J3 10 3 8 1 11 2

Fig. 1 shows one of the possible schedules for this

problem, in which the order of jobs processed by M1 is J1

(O11), J2 (O21), and J3 (O31). The second machine, M2, also

has the same sequence, namely J1 (O12), J2 (O22), and J3

(O32). Meanwhile, M3 works on J2 (O23), followed by J3

(O33), and J1 (O13). The makespan generated by this

schedule is 38 units of time.

M 1

M 2

M 3

: J 1 : J 2 : J 3

3824 28 30 32 34 3614 16 18 20 22 242 4 6 8 10 12

Fig. 1. The Gantt Chart for a solution of JSSP in Table I.

B. Genetic Algorithms (GA)

GA is often used to address optimization problems, but it

can also solve other types of problems. John Holland stated

that it is possible to formulate every problem in adaptation

such as natural or artificial, using genetic technology. This is

because GA simulates the Darwinian evolutionary process

and genetic operations on chromosomes.

Furthermore, the solution to the problem is represented in

GA as a chromosome, which consists of multiple genes.

Each gene contains a value called an allele. It is important to

note that the modeling of chromosomes is specific to the

problem in this study.

Fig. 2. The Genetic Algorithm’s Flowchart.

Fig. 2 shows the steps taken in GA. The first step is to

generate the initial population by creating a set of

chromosomes, which are the first candidate solutions. The

algorithm repeatedly defines the new populations, starting

with the initial population until the termination conditions

are met. At the beginning of each iteration, the quality of

each chromosome was assessed using a function called

fitness. Optionally, an elitism process was performed to

preserve the best candidate solutions in the new population

by selecting some of the best chromosomes, which are

further selected using a selection mechanism.

Furthermore, two genetic operations are conducted based

on several established criteria, which include crossover and

mutation rates. The obtained chromosomes from these

operations were inserted into the new population. The

termination was then performed depending on the specified

number of generations or particular conditions.

C. Firefly Algorithm (FA)

FA is a metaheuristic algorithm inspired by the flickering

behavior of fireflies. There are two main functions of

flashing lights, which include attracting the attention of

other fireflies and attracting prey. Xin-She Yang developed

this algorithm in 2007, by using the following three rules

[24]:

1. All fireflies are the same gender, meaning that one

firefly tends to be attracted to others regardless of

gender.

2. The attraction is proportional to the brightness of the

Engineering Letters, 30:4, EL_30_4_28

Volume 30, Issue 4: December 2022

__

firefly's light. Therefore, fireflies with lower

brightness levels tend to be attracted and move to

those with higher brightness. It is important to note

that brightness tends to decrease with distance and

light absorption due to the air factor. When none of

the fireflies has the brightest light among the

population, they all move randomly.

3. The brightness of a firefly is influenced by the value

of the objective function of the given problem. In the

maximization problem, the brightness is proportional

to the value of the objective function.

Fig. 3. The Firefly Algorithm’s Flowchart.

According to Fig. 3, the first step in FA is to initialize a set

of candidate solutions, which is a firefly. The next step is to

calculate the brightness of each firefly that reflects the

corresponding quality. The following steps are three

calculations, 1) the distance between a pair of fireflies, 2)

the attractiveness based on the brightness and the distance

between the fireflies, and 3) the movement calculation of the

fireflies.

D. The Proposed Algorithms

In this work, two ways for combining GA with FA were

proposed. The first way was to run GA and FA sequentially,

in which the final population generated by GA becomes the

initial population of FA. It was observed that the final

population of GA contained the best solution generated by

the algorithm. This condition is achieved by using the

principle of elitism. Furthermore, the algorithm is named S-

GAFA, which stands for Sequential Hybrid Genetic

Algorithm and Firefly Algorithm. The working of this

algorithm is given in the flowchart shown in Fig. 4.

The second way was to run both algorithms in each

search iteration for a new set of solutions. After generating

the initial population, steps are formulated from GA to

produce a new one, which was further subjected to

processes derived from FA. The population generated by FA

becomes the input for GA and vice versa, in order to obtain

a new result. These stages are performed iteratively until a

termination condition was met. This algorithm is called C-

GAFA, which stands for Cyclic Hybrid Genetic Algorithm

and Firefly Algorithm. The working of this algorithm is

given in the flowchart shown in Fig. 5.

Chromosomes and fireflies are represented as arrays, with

each element being a triple x,y,z where x, y, z are integers

representing job, operation, and machine. For example,

1,3,2 represents the third operation of job 1 processed by

machine 2. The length of the array is the number of

operations.

The following equation was used to model the solution

quality, fitness in GA, and brightness in FA

 (1)

where x is a chromosome/firefly and Cmaxx is its

corresponding makespan.

Fig. 4. The S-GAFA Algorithm’s Flowchart.

Fig. 5. The C-GAFA Algorithm’s Flowchart.

Engineering Letters, 30:4, EL_30_4_28

Volume 30, Issue 4: December 2022

__

Furthermore, the mechanism of elitism takes the best

chromosomes from the current population and inserts them

directly into the new population. These chromosomes are

not involved in the process of crossover or mutation. In the

selection process, the roulette wheel technique was

employed.

A random number was generated in each iteration to

determine whether a crossover was performed. The two best

chromosomes are subjected to crossover operations when

the random number was smaller than the predetermined

crossover rate (CR). In [24], the technique used was a

modified one-point crossover, and the process was

explained in Fig. 5. After the cross point was determined i.e.

the bold vertical line, the genes on the right side of the line

were only exchanged with their machine numbers. It was

this exchange of partial gene values that distinguished it

from the usual crossover methods.

Fig. 5. A modified one-point crossover.

Furthermore, a random number was generated in the

crossover operation to determine whether a mutation was

performed. A randomly selected chromosome undergoes a

mutation operation when the random number is smaller than

the predetermined mutation rate (MR). Two genes from the

selected chromosome are randomly selected and exchanged.

For example, the third and the seventh genes are exchanged,

thereby resulting in a new chromosome as shown in Fig. 6.

Fig. 6. A mutation.

The distance between two fireflies is the number of

elements exchanged in the first firefly array for it to have the

same order of elements as the second firefly.

The attractiveness of a firefly f1 over firefly f2 is

calculated by using the equation (2):

 (2)

Where is the attractiveness, r is the distance between f1

and f2, 0 is the firefly attraction value (base beta), and  is

the coefficient of light absorption, for 0  0  1 and 0   

1.

 The last process in FA is firefly movements and based on

[25], the two-step movement principle was used as follows.

The brightness of all pairs of fireflies in the population was

compared, and a random number was generated for those

with a lower brightness level. When this random number is

smaller than the brightness value, the firefly moves or

changes position. The calculation of the distance between

two fireflies shows the elements that need to be swapped for

the elements’ order of the array to be the same.

Consequently, a random number was generated for each pair

of elements. It was observed that when the value of this

random number is smaller than the brightness value, the

element is swapped. The second step movement is the

exchange of elements such as the GA mutation process.

Final tests are performed by checking the number of

iterations or generations set in the initial stage.

III. EXPERIMENTAL RESULTS

The experiments performed in this study are described as

follows. The purpose is to reveal whether it is possible to

improve the performance of GA by combining it with FA.

Specifically, it aims to find out whether S-GAFA and C-

GAFA have better performance than GA. The influence of

GA parameters on its performance was also analyzed. In this

study, the parameter tested is the crossover rate, but the

mutation was not tested based on the assumption that its

effect was much smaller than the crossover.

A. Experiment Setting

The sample problems are obtained from the benchmarks

commonly used to test JSSP [50][51]. There were 55

problems in total, of which 5 examples are from Adam et

al., while 10 and 40 are found in Applegate and Cook, and

Lawrence, respectively. Each instance has a different size

i.e. number of jobs and number of machines, as shown in

Table II.

Table III shows the parameter values used in the

experiment. With reference to [50], the FA parameter

suggested for gamma and beta values are 1 and 0.1,

respectively. Run represents the number of makespan

calculations performed by each algorithm or crossover value

for every problem instance.

Furthermore, four algorithms and three crossover rate

values were used to compute the makespan of each instance

for 100 times. A total of 1000 computation results were

obtained for each instance because ten algorithm variations

were executed, namely FA, GA-0.70, GA-0.75, GA-0.80, S-

GAFA-0.70, S-GAFA-0.75, C-GAFA-0.80, C-GAFA-0.70,

C-GAFA-0.75, and C-GAFA-0.80. Out of the resulting 1000

makespans for each problem instance, the average,

minimum, and maximum values were calculated.

Engineering Letters, 30:4, EL_30_4_28

Volume 30, Issue 4: December 2022

__

TABLE II

PROBLEM INSTANCES

Benchmark Instances
Problem Size

(job x machine)

 Adam et.al.

(1988)
abz5 - abz6 10 x 10

 abz7 - abz9 20 x 15

Applegate &

Cook (1991)
orb01 - orb10 10 x 10

Lawrence (1984) la01 – la05 10 x 5

 la06 – la10 15 x 5

 la11 – la15 20 x 5

 la16 – la20 10 x 10

 la21 – la25 15 x 10

 la26 – la30 20 x 10

 la31 – la35 30 x 10

 la36 – la40 15 x 15

TABLE III

PARAMETER SETTING

No Parameter Value

1 Crossover Rate {0.70, 0.75, 0.80}

2 Mutation Rate 0.01

3 Gamma 1.0

4 Beta 0.1

5 Population Size 50

6 Generation 50

7 Run 100

Furthermore, four algorithms and three crossover rate

values were used to compute the makespan of each instance

for 100 times. A total of 1000 computation results were

obtained for each instance because ten algorithm variations

were executed, namely FA, GA-0.70, GA-0.75, GA-0.80, S-

GAFA-0.70, S-GAFA-0.75, C-GAFA-0.80, C-GAFA-0.70,

C-GAFA-0.75, and C-GAFA-0.80. Out of the resulting 1000

makespans for each problem instance, the average,

minimum, and maximum values were calculated.

B. Results and Analysis

Table IV shows the average makespan generated by each

algorithm. Meanwhile, Table V shows the minimum and

maximum makespan values produced by each algorithm for

every problem instance.

TABLE IV

AVERAGE MAKESPAN RESULTED BY EACH ALGORITHM

Instance Benchmark FA GA S-GAFA C-GAFA

abz5 1234 1598 1717 1601 1603

abz6 943 1223 1320 1218 1222

abz7 667 1073 1133 1071 1071

abz8 670 1104 1167 1104 1105

abz9 691 1120 1181 1119 1119

Instance Benchmark FA GA S-GAFA C-GAFA

orb01 1059 1504 1614 1506 1512

orb02 888 1216 1310 1218 1216

orb03 1005 1519 1628 1518 1522

orb04 1005 1361 1453 1361 1360

orb05 887 1286 1385 1286 1287

orb06 1010 1470 1579 1468 1475

orb07 397 550 593 550 550

orb08 899 1336 1435 1333 1336

orb09 934 1273 1367 1271 1272

orb10 944 1383 1492 1378 1384

la01 666 767 822 764 772

la02 655 807 863 809 815

la03 597 736 785 735 739

la04 590 732 790 733 734

la05 593 613 660 614 617

la06 926 1018 1092 1016 1025

la07 890 1068 1140 1068 1078

la08 863 1021 1094 1017 1027

la09 951 1052 1134 1055 1065

la10 958 1012 1085 1014 1017

la11 1222 1364 1450 1364 1375

la12 1039 1175 1256 1175 1181

la13 1150 1298 1387 1298 1304

la14 1292 1345 1426 1340 1353

la15 1207 1503 1584 1498 1514

la16 945 1205 1290 1201 1213

la17 784 1023 1108 1021 1028

la18 848 1107 1187 1103 1111

la19 842 1134 1227 1134 1145

la20 902 1180 1275 1180 1189

la21 1046 1542 1652 1544 1555

la22 927 1389 1496 1390 1405

la23 1032 1477 1597 1482 1488

la24 935 1396 1505 1391 1405

la25 977 1433 1532 1431 1440

la26 1218 1840 1968 1840 1854

la27 1235 1898 2020 1899 1909

la28 1216 1834 1965 1838 1855

la29 1153 1828 1945 1822 1825

la30 1355 1952 2068 1943 1947

la31 1784 2491 2623 2489 2486

la32 1850 2650 2792 2648 2648

la33 1719 2420 2554 2416 2421

la34 1721 2481 2615 2478 2474

la35 1888 2679 2823 2680 2680

la36 1268 1905 2032 1907 1906

la37 1397 2121 2245 2115 2118

la38 1196 1876 1997 1877 1876

la39 1233 1923 2051 1924 1928

la40 1222 1907 2032 1904 1908

Engineering Letters, 30:4, EL_30_4_28

Volume 30, Issue 4: December 2022

__

TABLE V

MINIMUM AND MAXIMUM MAKESPANS RESULTED BY EACH ALGORITHM

 FA GA S-GAFA C-GAFA

Inst. min max min max min max min max

abz5 1459 1704 1559 1873 1458 1715 1445 1721

abz6 1143 1315 1171 1450 1111 1313 1094 1314

abz7 997 1130 1046 1213 980 1141 990 1134

abz8 1021 1165 1059 1238 1018 1166 1027 1166

abz9 1032 1171 1046 1266 1024 1185 1045 1172

orb01 1394 1607 1443 1758 1391 1589 1393 1589

orb02 1094 1294 1146 1436 1118 1298 1096 1300

orb03 1347 1612 1374 1798 1374 1623 1371 1624

orb04 1262 1458 1311 1589 1249 1454 1262 1442

orb05 1159 1383 1246 1508 1171 1377 1133 1403

orb06 1341 1578 1321 1731 1311 1578 1326 1572

orb07 488 587 502 651 502 589 495 588

orb08 1199 1425 1267 1573 1174 1424 1219 1420

orb09 1162 1357 1206 1493 1146 1353 1115 1379

orb10 1223 1477 1275 1648 1203 1474 1213 1498

la01 699 837 708 910 693 819 722 823

la02 747 861 771 947 751 872 745 859

la03 680 782 696 858 669 789 669 792

la04 653 784 687 893 667 798 652 806

la05 593 665 593 749 593 665 593 663

la06 926 1084 997 1199 939 1103 956 1090

la07 992 1144 1003 1238 970 1146 984 1155

la08 943 1111 966 1219 944 1086 927 1090

la09 985 1118 1010 1242 951 1134 972 1134

la10 958 1090 985 1209 958 1090 958 1069

la11 1270 1460 1299 1575 1246 1443 1272 1449

la12 1099 1246 1115 1387 1065 1256 1061 1246

la13 1178 1392 1233 1534 1172 1387 1186 1372

la14 1292 1412 1292 1546 1292 1417 1292 1450

la15 1378 1582 1441 1717 1386 1581 1439 1588

la16 1115 1302 1142 1398 1094 1283 1104 1280

la17 918 1100 970 1209 894 1109 930 1123

la18 995 1193 1063 1338 986 1186 1018 1195

la19 1034 1215 1108 1332 1047 1215 1035 1242

la20 1066 1270 1127 1388 1079 1291 1067 1278

la21 1402 1656 1496 1796 1391 1657 1385 1643

la22 1292 1475 1320 1635 1278 1486 1253 1482

la23 1360 1579 1418 1762 1340 1585 1345 1578

la24 1275 1503 1332 1636 1264 1522 1262 1497

la25 1290 1540 1352 1695 1285 1528 1327 1534

la26 1717 1984 1800 2110 1696 1965 1661 1970

la27 1727 2020 1796 2188 1743 2016 1735 2014

la28 1682 1942 1811 2117 1666 1957 1691 1952

la29 1676 1943 1744 2086 1680 1942 1628 1935

la30 1810 2077 1819 2235 1805 2086 1813 2049

la31 2261 2634 2285 2797 2285 2616 2314 2606

la32 2478 2787 2530 2944 2424 2802 2449 2795

la33 2185 2574 2301 2739 2182 2535 2171 2561

 FA GA S-GAFA C-GAFA

Inst. min max min max min max min max

la34 2307 2608 2400 2787 2222 2647 2317 2626

la35 2438 2826 2546 3042 2481 2826 2503 2910

la36 1756 2017 1869 2179 1721 2019 1739 2019

la37 1900 2232 1984 2412 1932 2231 1965 2262

la38 1696 1991 1801 2151 1649 2011 1661 1974

la39 1754 2042 1809 2200 1767 2041 1773 2039

la40 1710 2029 1738 2192 1699 2002 1762 2021

Furthermore, Table IV contains the best values that have

been previously reported. These values are used as a

reference to calculate the Relative Error (RE), which is the

difference between the value generated by each algorithm

and the value from the benchmark. For each instance i and

each algorithm A, the RE of i is calculated by using this

formula:

 (3)

where:

• REi denotes the relative error of makespan of

instance i produced by algorithm A,

• Ai denotes the makespan of instance i produced by

algorithm A,

• Bi denotes the benchmark’s value for instance i.

The Mean Relative Error (MRE) was calculated from

several REs using the following formula:

 (4)

where n is the number of REs.

 Fig. 7 shows the MRE comparison of each algorithm,

which are divided into three groups, namely the average,

minimum, and maximum, and they showed the same

tendency in term of the order. For example, the algorithms

are arranged in descending order based on MRE, such as

GA, C-GAFA, S-GAFA, and FA. This means that GA has

the worst performance and FA is the best, meanwhile, C-

GAFA and S-GAFA have better performance than GA. It

was also observed that the combination of GA and FA

improved the performance of GA, while S-GAFA

performed better than C-GAFA.

Fig. 8 shows the comparison of MRE for each crossover

rate value for GA, S-GAFA, and C-GAFA algorithms. It

was observed that the crossover rate value of 0.70 has the

worst results, while the other two values, namely 0.75 and

0.80, do not form a regular pattern. Furthermore, the 0.75

crossover rate in GA produced better results than 0.80, but

the situation recorded for the other two algorithms was the

opposite.

Engineering Letters, 30:4, EL_30_4_28

Volume 30, Issue 4: December 2022

__

Fig. 7. MRE of each algorithm.

Fig. 8. MRE of each crossover rate.

IV. CONCLUSION

In this study, the performance improvement of GA was

investigated using FA, and two algorithms were proposed,

which include S-GAFA and C-GAFA. In the S-GAFA, the

two algorithms are run sequentially, starting with GA, and

further continuing with FA. Meanwhile, GA and FA are

combined in C-GAFA by executing GA, and iteratively

running FA.

These algorithms were utilized to solve JSSP.

Accordingly, several adjustments have been made, such as

chromosomes and fireflies modeling, methods or techniques

for crossover, mutation, and movement of fireflies.

The results show that S-GAFA and C-GAFA performed

better than GA, and it supports the hypothesis. Furthermore,

S-GAFA gave better results than C-GAFA, but the

crossover rate value of 0.70 resulted in the worst

performance among the three values tested.

This study only focused on improving the performance of

GA by using FA, but the makespan calculation results or the

quality of the resulting solution have not been considered. It

was observed that the solution qualities are still inferior to

the reference value, even though the two proposed

algorithms have succeeded in improving the performance of

GA. Therefore, further studies are needed to determine the

appropriate parameter values of each basic algorithm, such

as the crossover rate, mutation rate, gamma, and beta values.

REFERENCES

[1] K-L. Du and M.N.S. Swamy, “Search and optimization by

metaheuristics techniques and algorithms inspired by nature”,

Birkhäuser. 2016.

[2] F. A. Toader, "Evolutionary algorithms for job shop scheduling",

Proceedings of the Conference on Electronics, Computers and

Artificial Intelligence, pp 1-6, 2016.

[3] J. Ding, Z. Lü, C.-M. Li, L. Shen, L. Xu, and F. Glover, “A two-

individual based evolutionary algorithm for the flexible job shop

scheduling problem”, AAAI, vol. 33, no. 01, pp 2262-2271, 2019.

[4] P. Sriboonchandr, N. Kriengkorakot, P. Kriengkorakot, “Improved

differential evolution algorithm for flexible job shop scheduling

problems”, Math. Comput. Appl., vol. 24, no. 80, 2019.

[5] Y. Wang and Q. Zhu, "A hybrid genetic algorithm for flexible job

shop scheduling problem with sequence-dependent setup times and

job lag times," in IEEE Access, vol. 9, pp 104864-104873, 2021.

[6] I. A. Chaudhry, "A genetic algorithm approach for process planning

and scheduling in job shop environment", Proceedings of the World

Congress on Engineering 2012, Vol. III WCE 2012, 2012, London,

U.K.

[7] H. M. Abd-Elaziz, M.A. Awad, F. Tolba, ”Integrated process

planning and scheduling in smart manufacturing using genetic-based

algorithm”, International Journal of Scientific & Technology

Research vol. 10, issue 03, 2021.

[8] M. Gabli, E. M. Jaara, and E. B. Mermri, “A genetic algorithm

approach for an equitable treatment of objective functions in multi-

objective optimization problems”, IAENG International Journal of

Computer Science, vol. 41, no. 2, pp 102-111, 2014.

[9] S. Zhang, Z. Yu, W. Zhang, D. Yu, D. Zhang, "Distributed integration

of process planning and scheduling using an enhanced genetic

algorithm”, International Journal of Computing, Information, and

Control, vol. 11, no. 5, 2015.

[10] E. Haq, I. Ahmad, A. Hussain, I. M. Almanjahie, "A novel selection

approach for genetic algorithms for global optimization of multimodal
continuous functions", Journal of Computational Intelligence and

Neuroscience, vol. 2019, pp 1-14, 2019.

[11] S. Kavitha, P. Venkumar, “Flexible job shop scheduling using hybrid

swarm intelligence”, International Journal of Engineering and

Advanced Technology, vol. 9, issue 154, pp 2249 – 8958, 2019.

[12] Z. Wang, J. Zhang, S. Yang, “An improved particle swarm

optimization algorithm for dynamic job shop scheduling problems

with random job arrivals”, Swarm and Evolutionary Computation,

vol. 51, no. 5, 2019.

[13] P. Fattahi, N. B. Rad, F. Daneshamooz, and S. Ahmadi, "A new

hybrid particle swarm optimization and parallel variable

neighborhood search algorithm for flexible job-shop scheduling with

assembly process", Assembly Automation, vol. 40, no. 3, pp 419-432,

2020.

[14] J. M. Todd, K. Steinhöfel, and P. Veenstra, “Firefly-inspired

algorithm for job shop Scheduling” in H.-J. Böckenhauer et al. (Eds.):

Hromkovíc Festschrift, LNCS 11011, pp. 423–433, 2018.

[15] Y. Halim, C.E. Nugraheni, “A bee colony algorithm based solver for

flow shop scheduling problem”. Int. J. Inform. Visualization, vol. 5,

no. 2, pp 170-176, 2021

[16] L. Asadzadeh, “Solving the job shop scheduling problem with an

enhanced artificial bee colony algorithm through local search

heuristic”, Recent Advances in Computer Science and

Communications, vol. 14, no. 7, 2021.

[17] D. Y. Sha, Hsing-Hung Lin, C.-Y. Hsu, "A modified particle swarm

optimization for multi-objective open shop scheduling", Proceedings

of the International Multiconference of Engineers and Computer

Scientist 2010 Vol III, pp 17-19, 2010.

[18] J.C. Seck-Tuoh-Mora, N.J. Escamilla-Serna, J. Medina-Marin, N.

Hernandez-Romero, I. Barragan-Vite, J.R. Corona-Armenta, “A

global-local neighborhood search algorithm and tabu search for

flexible job shop scheduling problem”, PeerJ Comput Sci., vol. 7, no.

574, 2021

[19] S. Kosasih, C.E. Nugraheni, L. Abednego, "Artificial immune system

applied to job shop scheduling", Journal of Industrial and Intelligent

Information, vol. 9, no. 1, pp 15-22, 2021.

[20] X. Wang, L. Gao, C. Zhang, and X. Shao. 2010. “A multiobjective

genetic algorithm based on immune and entropy principle for flexible

job-shop scheduling problems”, The International Journal of

Advanced Manufacturing Technology, vol. 51, no. 5, pp. 757–767,

2010.

Engineering Letters, 30:4, EL_30_4_28

Volume 30, Issue 4: December 2022

__

[21] K.C. Udaiyakumara, M. Chandrasekaran, “Application of firefly

algorithm in job shop scheduling problem for minimization of

makespan”, Procedia Engineering, vol. 97, pp 1798 – 1807, 2014.

[22] R. Luo, L. Liu, D. Tan, and S. Yin, "Scheduling feature selection for

data-driven job shop scheduling system using improved firefly

algorithm optimization," in 2019 International Conference on High-

Performance Big Data and Intelligent, pp 116-121, 2019.

[23] D.B. Sari, S. Batubara, R.R. Sindyastuti, “Scheduling design for job

shop production using firefly algorithm to minimize mean tardiness”,

in Proc. Of Int. Conf. on Industrial Engineering and Operations

Management, pp 2274- 2283, 2020.

[24] N. Á. Gil, R. Rosillo, D. de la Fuente, et al. “A discrete firefly

algorithm for solving the flexible job-shop scheduling problem in a

make-to-order manufacturing system”. Cent Eur J Oper Res, vol. 29,

pp 1353–1374 (2021).

[25] M. Liebenlito, N. Inayah, A. N. Rahmah, and A. Widiatmoko,

“Modified firefly algorithm using smallest position value for job-shop

scheduling problems”, in Proceedings of the International Conference

on Mathematics and Islam, pages 23-27, 2018.

[26] K. G. Devi, R. S. Mishra, A. K. Madan, “A dynamic adaptive firefly

algorithm for flexible job shop scheduling”, Intelligent Automation &

Soft Computing, vol. 31, no. 1, pp 429–448, 2022.

[27] H. Lo, S. Fong, Y. Zhuang, X. Wang, and T. Hanne, "Applying a

chaos-based firefly algorithm to the permutation flow shop scheduling

problem," in Proceeding 3rd International Symposium on

Computational and Business Intelligence, pp. 51-57, 2015.

[28] G. K. Kantak, A. Singh, A. Ansari, A. Kumar, M. Singh. “Application

and significance of firefly algorithm for multi-objective job shop

scheduling”, in Proceedings of National Conference on

Multidisciplinary Engineering Sciences and Information Technology,

pp 01-03, 2020.

[29] F. Wahid, R. Ghazali, L.H. Ismail, “Improved firefly algorithm based

on genetic algorithm operators for energy efficiency in smart

buildings”, Arabian Journal for Science and Engineering, vol. 44, no.

4, pp 4027-4047, 2020.

[30] L. Teng, H. Li, “Modified discrete firefly algorithm combining

genetic algorithm for traveling salesman problem”, TELKOMNIKA,

vol 16, no 1, pp 424-431, 2018.

[31] T. C. E. Cheng & B. Peng & Z. Lü, "A hybrid evolutionary algorithm

to solve the job shop scheduling problem", Annals of Operations

Research, Springer, vol. 242, no. 2, pp 223-237, 2016.

[32] S. Kavitha, P. Venkumar, “Flexible job shop scheduling using hybrid

swarm intelligence”, International Journal of Engineering and

Advanced Technology, vol. 9, issue154, 2019.

[33] K. Benhamza, O. Zedadra, “Hybrid metaheuristic for optimization

job-shop scheduling problem”, International Journal of Informatics

and Applied Mathematics, vol. 1, no. 1, pp 1-9, 2018.

[34] P. Pongchairerks, "A two-level metaheuristic algorithm for the job-

shop scheduling problem", Complexity, vol. 2019, pp 1-11, 2019.

[35] A. S. Eesa, A. M. Abdulazeez, Z. Orman. “A novel bio-inspired

heuristic”, International Journal of Scientific and Engineering

Research, vol. 4, no. 9, pp 1978-1986, 2013.

[36] A. Phu-ang, “A hybrid firefly algorithm with fuzzy movement for

solving the flexible job shop scheduling problem”, Ecti Transactions

on Computer and Information Technology, vol. 15, no. 2, 2021.

[37] S. Karthikeyan, P. Asokan, M. Chandrasekaran. “A hybrid discrete

firefly algorithm for multi-objective flexible job shop scheduling

problems with maintenance activity”, in Applied Mechanics and

Materials, vol. 575, pp. 922–925, 2014.

[38] M. G. Kharat, S. S. Khadke, R. Raut, S. Kamble, S.J. Kamble, & M.

G. Kharat, “Application of hybrid firefly algorithm-tabu search

technique to minimize the makespan in job shop scheduling

problem”, International Journal of Applied Industrial Engineering,

vol. 3, no. 2, pp 1–21, 2016.

[39] M. Rohaninejad, A. S. Kheirkhah, B. V. Nouri & P. Fattahi. “Two-

hybrid tabu search–firefly algorithms for the capacitated job shop

scheduling problem with sequence-dependent setup cost”,

International Journal of Computer Integrated Manufacturing, vol. 28,

no. 5, pp 470-487, 2015.

[40] A. Phu-ang, “The hybrid firefly algorithm with the fuzzy movement

method for solving a complex scheduling problem”, ECTI-CIT, vol.

15, no. 2, pp 208 - 219, 2021.

[41] X. Huang, L. Yang, "A hybrid genetic algorithm for multi-objective

flexible job shop scheduling problem considering transportation

time", International Journal of Intelligent Computing and Cybernetics,

vol. 12, no. 2, pp 154-174, 2019.

[42] M. E. Meziane, T. Noria, “A hybrid genetic algorithm with a

neighborhood function for flexible job shop scheduling”, Multiagent

and Grid Systems, vol. 14, no. 2, pp 161-175, 2018

[43] R. M. Branco, A. S. Coelho, S. F. Mayerle, “Hybrid genetic

algorithms: solutions in realistic dynamic and setup dependent job-

shop scheduling problems”, International Journal of Production

Management and Engineering, vol. 4, no. 2, pp 75-85, 2016.

[44] C. Wang, W. Song, L. Liu, “An adaptive bat algorithm with memory

for global optimization”, IAENG International Journal of Computer

Science, vol. 45, no. 2, pp 320-327, 2018.

[45] L. Dang, Y. Hou, Q. Liu, Y. Kong, "A hybrid metaheuristic algorithm

for the bi-objective school bus routing problem," IAENG

International Journal of Computer Science, vol. 46, no.3, pp 409-416,

2019.

[46] S. Mousavipour, H. Farughi, F. Ahmadizar, "A job shop scheduling

problem with sequence-dependent setup times considering position-

based learning effects and availability constraints", International

Journal of Industrial Engineering & Production Research, vol. 30, no.

3, pp 329-340, 2019

[47] S. Noor, M. I. Lali, M.S. Nawaz, “Solving job shop scheduling

problem with genetic algorithm", Sci.Int.(Lahore), vol. 27, no. 4, pp

3367-3371, 2015.

[48] W. T. Lunardi, H. Voos, “Comparative study of genetic and discrete

firefly algorithm for combinatorial optimization”, 33rd ACM/SIGAPP

Symposium on Applied Computing, pp 1–9, 2018.

[49] J.J. van Hoorn, “The current state of bounds on benchmark instances

of the job-shop scheduling problem”, J Sched, vol. 21, pp 127–128,

2018.

[50] A. Khadwilard, S. Chansombat, T. Thepphakorn, P. Thapatsuwan, W.

Chainate and P. Pongcharoen, “Application of firefly algorithm and

its parameter setting for job shop scheduling”, The Journal of

Industrial Technology, vol. 8, no. 1, 2012.

[51] M. Chandrasekaran, P. Asokan, S. Kumanan, T. Balamurugan,

“Sheep-flocks heredity model algorithm for solving job shop

scheduling problems”, the International Journal of Applied

Management and Technology, vol. 4, no. 1, pp 79-100, 2006.

Engineering Letters, 30:4, EL_30_4_28

Volume 30, Issue 4: December 2022

__

