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Abstract—In the paper, the optimal portfolio problem is
considered. The difficulty of the problem is that the probability
measure by which the mean vector and the covariance matrix
are calculated is unknown. Instead of the unknown measure,
we can use the training sample, based on which it is possible
to evaluate the mean vector and the covariance matrix. We use
three methods for evaluation. The first is the MCD method. The
second is the robust optimization method. In the third method,
the Wasserstein distance is used. Computational examples and
analyses of the results are given.

Index Terms—Optimal portfolio, machine learning, robust
method, Wasserstein distance, mean vector, covariance matrix,
cluster.

I. INTRODUCTION

THE problem of optimal portfolio finding has been
relevant since the publication of the work of Markowitz

in 1952 to the present day.
The investor has n assets, that are traded on the mar-

ket. The price of the ith asset at the moment of time
t is calculated by the recursive formula Si

t = Si
t−1r

i
t.

We assume that the random vectors Rt =

 r1t
· · ·
rnt

 are

independent and equally distributed, just like the random

vector R =

 r1
· · ·
rn

. The vector R will be called the vector

of profitabilities. The paper considers a one-step portfolio

y =

 y1
· · ·
yn

, in which capital at the initial moment

of time t0 is X0 =
∑n

i=1 yiS
i
0, at the final moment of

time t1 is X1 =
∑n

i=1 yiS
i
1 =

∑n
i=1 yiriS

i
0. Coefficients

yi– real numbers, equal to the number of units of the ith

asset, included in the investment portfolio. Obviously, the
final capital of the portfolio X1 = (

∑n
i=1 xiri)X0, where

xi =
yiS

i
0

X0
and

∑n
i=1 xi = 1. Further, the portfolio will

be called the vector x =

 x1

· · ·
xn

, and the scalar product

(R, x) is the portfolio profitability. The problem is to choose
the optimal vector (portfolio). A detailed analysis of the
optimal portfolio problems can be found in the works [2]
and [3].

Markowitz diversification. In the interpretation of
Markowitz, the quality of the portfolio is determined by
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two parameters, the average profitability and the risk. The
average profitability is calculated as mean E(R, x) = (R̄, x),
R̄ = ER. The risk is variance D(R, x) = (C̄x, x), C̄ is
covariance matrix, and C̄ = ERRT − R̄R̄T . In addition
to the variance, some other functional also can be used
as indicators for risk evaluation [4], [5], [6]. The portfolio
should be chosen in a way that the average profitability as
high as possible, while the risk as low as possible. Based on
this circumstance, the optimal portfolio problem belongs to
the optimization problem with vector criteria, which solution
usually gets across as the Pareto set. There is one way for
calculating Pareto optimal portfolios is the vector criteria
scalarization:

max
x

[(R̄, x)− λ
√

(C̄x, x)] (1)

n∑
i=1

xi = 1.

The objective function includes the positive parameter λ
with a predetermined set of values. The difficulty of the
problem is the mean vector and the covariance matrix cal-
culation are unknown in the probability measure P . Instead
of the unknown measure, we can use the training sample
V =< R1, R2, · · · , RN > to evaluate the parameters R̄
and C̄. For example, if the unknown distribution is a normal
distribution, the maximum likelihood estimates of R̄ and C̄
are noted as R̃ and C̃, where R̃ is sample mean and C̃ is
sample covariance matrix. The substitution R̃ and C̃ in (1)
instead of R̄ and C̄ makes it possible to find the sample-
dependent solution. If we have another sample, we will
obtain other values of R̃ and C̃. Therefore, if we use R̃ and C̃
instead of R̄ and C̄ in the problem (1), its solution will not be
robust against sample change, that can be discovered in [7],
[8], [9], [10]. In [11], the robust formulation of the optimal
portfolio problem is considered as one of the ways to obtain
the robust decision rule. Namely, the set of possible values of
sample means < R̃1, · · · , R̃K > and the corresponding set
of sample covariance matrices < C̃1, · · · , C̃K > are found.
To calculate sample means and sample covariance matrices
of these vectors, we use unsupervised learning. Therefore,
to obtain the values set of sample means and the values
set of sample covariance matrices, divide the sample into
clusters is proposed. The maximum likelihood algorithm is
proposed [12] to split the sample into two clusters, while the
dichotomous algorithm is proposed [13] to split the sample
into K clusters. In [11], the problem (1) is transformed into
the problem

max
x

min
i
[(x, R̄i)− λ

√
(C̄ix, x)] (2)

n∑
i=1

xi = 1.
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Other applications of robust optimization methods in fi-
nancial mathematics can be found in the works [14], [15].

II. PROBLEM SETTING. VALUE AT RISK APPROACH.

This paper proposes to consider the following formulation
of the optimal portfolio problem:

minα (3)

P (−(R, x) ≤ α) ≥ β,

(I, x) = 1

Let us assume that the sample vectors have a normal distri-
bution with expectation vector R̄ and covariance matrix C̄.
From the normal distribution assumption of sample elements,
that the random variable (R, x) ∈ N((R̄, x), (C̄x, x)). In
this case P ((R, x) ≥ −α) = 1 − Φ(−α−(R̄,x)√

(C̄x,x)
), where

Φ(x) = 1√
2π

x∫
−∞

e−
y2

2 dy is the Laplace function. Therefore,

1 − Φ(−α−(R̄,x)√
(C̄x,x)

) ≥ β, that is Φ(−α−(R̄,x)√
(C̄x,x)

) ≤ 1 − β. So,
−α−(R̄,x)√

(C̄x,x)
≤ Φ−1(1 − β). From this inequality, we can get

α ≥ −(R̄, x)−
√

(C̄x, x)Φ−1(1− β). Considering equality
−Φ−1(1 − β) = Φ−1(β), problem (3) can be rewritten as
follow:

max
x

((R̄, x)− Φ−1(β)
√

(C̄x, x)), (4)

(I, x) = 1

There is no problem in choosing λ with such problem
formulation. Namely, λ = Φ−1(β). However, the calculation
of R̄ and C̄ is still a question, let us consider three methods
to find them.

III. THE ROBUST PROBLEM. ROBUST STATISTICS
APPROACH.

In the first method, we will apply the well-known algo-
rithm MCD [16], [17], [18]. Let H1 as the subsample of
the sample V with |H1| = K. Then the sample covariance
matrix C(H1) and the sample mean vector m(H1) are calcu-
lated to this subsample. The ordered permutation π is calcu-
lated as π(i) < π(j) ↔ C−1(H1)(Rπ(i) −m(H1)), Rπ(i) −
m(H1)) ≤ (C−1(H1)(Rπ(j) −m(H1)), Rπ(j) −m(H1))).

Based on the permutation π, we form the set H2 =
{Rπ(i), i = 1, · · · ,K}.

Let us describe the MCD algorithm.
1. Let us choose the initial subset H1.
2. Calculate the sample mean m(H1) and the sample

covariance matrix C(H1). Find the ordered permutation π.
3. Choose the subset H2.
4. If ∆C(H1) > ∆C(H2), then H1 := H2, go to step 2,

else stop.
We will get the subsample of K elements H1, the sample

mean m(H1), and the sample covariance matrix C(H1) for
the subsample H1 while it stops. Let us take R̄ as the mean
normal law m(H1). To estimate the covariance matrix, con-
sider the ellipsoid (C−1(H1)(R−m(H1)), (R−m(H1))) ≤
d, where d = max

R∈H1

(C−1(H1)(R −m(H1)), R −m(H1))).

Let C be the covariance matrix of the normal law, that C =
αC(H1). While we calculate y, fact-based on the probability

TABLE I
DEPENDENCE OF FROBENIUS NORM ON α.

(THE SAMPLE IS CLOGGED BY 10 %)

α
0.5

(K=166)
0.3

(K=232)
0.1

(K=298)
0.01

(K=328)

Frobenius norm 4.4907 1.3692 0.2692 0.0139 0.0619

TABLE II
DEPENDENCE OF FROBENIUS NORM ON α.

(THE SAMPLE IS CLOGGED BY 15 %)

α
0.5

(K=166)
0.3

(K=232)
0.1

(K=298)
0.01

(K=328)

Frobenius norm 5.1012 1.6445 0.4132 0.1232 0.088

P ((C−1(H1)(R−m(H1)), R−m(H1))) ≤ y) ≈ K
N and the

random variable (C−1(R−m(H1)), (R−m(H1))) has a chi-
square distribution with L degrees of freedom. Thus, y is the
solution to the equation X2

L(y) =
K
N . Next, we use equality

1
dC

−1(H1) = 1
yC

−1, which follows C = d
yC(H1). Let us

take d
yC(H1) as C̄.

It is crutial to choose K, the number of subsample
elements in this method. The defining element of the choice
is the breakdown point, which is defined as an extreme ratio

ϵ∗ = inf

{
K
N : sup

V ′
||T (V )− T (V ′)|| = ∞

}
of the sample

V volume N and statistics T (V ). The statistic T (V ) is a
finite-dimensional vector. The norm used in the definition
is the Euclidean norm. The sample V ′ is obtained from the
sample V by distorting K arbitrary elements in an arbitrary
way. For example, the indicator ϵ∗ = 1

N in this sample mean.
This indicator of statistical robustness was introduced in the
work [20] and is widely used in robust statistics.

MCD method has large sample size and ϵ∗ = α, (0 < α ≤
0.5) subsample size K = [N(1 − α)] + 1. This important
result is presented in [21].

Example. Consider a sample have a two-dimensional
normal distribution with a given covariance matrix C1 and a
given mean vector m. The sample is clogged with elements
from the two-dimensional distribution, which is obtained as a
result of the transformation y = Aϵ+m, where A is the factor
of the Cholesky transformation of the covariance matrix C2,
m is the mean vector of the original normal distribution, ϵ is
a vector, consisting of two independent uniformly distributed
random variables on the interval [

√
−3,

√
3].

The results are presented in TABLES I, II, III. In TABLE
I the sample is clogged by 10%, in TABLE II the sample is
clogged by 15%, and in TABLE III the sample is clogged
by 20%.

The MCD method uses the parameter K, which, in our
opinion, determines the accuracy of estimating the covariance
matrix. In TABLE I, II, III, shows the dependence of the error
in estimating the covariance matrix for a clogged sample by
this method. In these tables, the sample size N = 330. The
error is the Frobenius norm of the difference between the
original and the resulting covariance matrices. In the last
column of the table, the Frobenius norm of the difference
between the covariance matrix C1 and the covariance matrix
of the whole sample is presented.
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TABLE III
DEPENDENCE OF FROBENIUS NORM ON α.

(THE SAMPLE IS CLOGGED BY 20 %)

α
0.5

(K=166)
0.3

(K=232)
0.1

(K=298)
0.01

(K=328)

Frobenius norm 5.729 1.9307 0.5645 0.2399 0.1159

(a) α = 0.5 (b) α = 0.3

(c) α = 0.1 (d) α = 0.01

Fig. 1. Illustration of MCD algorithm (the sample is clogged by 10%)

(a) α = 0.5 (b) α = 0.3

(c) α = 0.1 (d) α = 0.01

Fig. 2. Illustration of MCD algorithm (the sample is clogged by 15%)

(a) α = 0.5 (b) α = 0.3

(c) α = 0.1 (d) α = 0.01

Fig. 3. Illustration of MCD algorithm (the sample is clogged by 20%)

From TABLE I, II, III (columns 2, 3, 4, 5), we may con-
clude that the Frobenius norm decreases with decreasing α,
which indicates the good performance of the MCD algorithm.
From column 6 of TABLE I, II, III, we may found that the
Frobenius norm of the difference between the covariance
matrix C1 and the covariance matrix of the whole sample
is a quite large number, which also looks natural.

Figure 1, Figure 2 and Figure 3 illustrate the operation of
the MCD algorithm for a sample, clogged by 10%, 15% and
20%. The elements of the sample that fell into the ellipsoid
are dot-shaped. The remaining elements of the sample are
cross-shaped.

IV. ROBUST PROBLEM. THE ROBUST PROGRAMMING
APPROACH.

Consider the second way to calculate C̄ and R̄. In the
second method, we consider the set of possible values S
for C̄, the set of possible values T for R̄, and the minimax
problem statement to obtain the stable portfolio with respect
to the sample. That is, we will choose the best portfolio in
the worst situation.

The robust problem will look like this:

min
x

max
C̄∈S,R̄∈T

(Φ−1(β)
√

(C̄x, x)− (R̄, x)), (5)

(I, x) = 1

An analytical result can be obtained only for simple sets S
and T . For example, T = {R̄ : ||R̃−R̄|| ≤ ϵ1} and S = {C̄ :
C̄ = C̃+αUUT , 0 ≤ α ≤ ϵ22, ||U || = 1}. Here R̃ is the sam-
ple mean, C̃ is the sample covariance matrix. With fixed x, it
is necessary to find max

C̄∈S
(C̄x, x) and min

R̄∈T
(R̄, x). Calculating

max
C̄∈S

(C̄x, x) , we use the Cauchy-Bunyakovsky inequality.

As a result, we get (C̄x, x) = (C̃x, x) + α(U, x)2 ≤
(C̃x, x) + ϵ22||x||2. Calculating min

R̄∈T
(R̄, x), we also use the

Cauchy-Bunyakovsky inequality (R̄, x) ≥ (R̃, x) − ϵ1||x|.
Thus, the robust optimization problem is as follows:

max
x

((R̃, x)− Φ−1(β)

√
(C̃x, x) + ϵ22||x||2 − ϵ1||x||) (6)

(I, x) = 1

The objective function is a convex function in this prob-
lem. Considering the expression (C̃x, x) + ϵ22||x||2, which
we transform as (C̃x, x)+ ϵ22||x||2 = ((C̃+ ϵ22 ln)x, x), ln = 1 · · · 0

· · · · · · · · ·
0 · · · 1

, and coincides with the Tikhonov regu-

larization [22]. The second term of the objective function is
related to regularization in machine learning [19].

V. THE ROBUST PROBLEM. THE PROBABILITY
APPROACH.

The robust setting of problem (4) in the probability inter-
pretation as follows:

min
x

max
P∈Uϵ(P0)

(Φ−1(β)
√

(CPx, x)− (RP , x)), (7)

(I, x) = 1
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In problem (7), the set Uϵ(P0) = {P : D(P, P0) ≤ ϵ}, that
D(·, ·) is the metric on the set of probability measures. Vector
RP = EPR, matrix CP = EPRRT − RPR

T
P . The best

known metric between probability distributions P and Q in
Rn is the Wasserstein metric, which is defined as D(P,Q) =√
min
π

Eπd2(X,Y ), π(A,Rn) = P (A), π(Rn, B) = Q(B).

The Wasserstein metric is used in many works related to
find the optimal portfolio, the complete review of these works
is given in [23]. Below we restrict the empirical distribution
laws, generated by samples of the same size. Usually, the
empirical distribution is taken as the initial distribution.
When solving the problem (7), we will use the results of the
work [24]. We will use the metric d(X,Y ) = ||X − Y ||2.
To simplify problem (7), considering empirical distribution
laws PX(A) = 1

n

∑n
i=1 IA(xi), based on the sample

X = {x1, · · · , xn}, and PY (A) = 1
n

∑n
i=1 IA(yi),

where Y = {y1, · · · , yn} is another sample. The
Wasserstein metric D(Px, Py) for these distributions is
the square root of the solution of the finite dimensional
transport problem min

π

∑n
i=1

∑n
j=1 π(xi, xj)d

2(xi, xj)

with restriction
∑n

i=1 π(xi, yj) =
∑n

j=1 π(xi, yj) = 1
n .

Let us determine α2(i) = min
j

d2(xi, yj) for each

i, and π̄(xi, yj) =

{
1/n, j = α(i)
0, j ̸= α(i)

then for each

π the inequality
∑n

i=1

∑n
j=1 π(xi, xj)d

2(xi, xj) ≥∑n
i=1

∑n
j=1 π̄(xi, xj)d

2(xi, xj) = 1
n

∑n
i=1 α

2(i).
Therefore, the Wasserstein distance D(PX , QY ) ≥
1
n

∑n
i=1 α

2(i). By this token the ϵ -neighborhood of
the empirical distribution P0 of the original sample
Uϵ(P0) = {PY : D(P0, PY ) ≤ ϵ} contained in the set
Ūϵ(P0) = {PY : 1

n

∑n
i=1 α

2(i) ≤ ϵ2}. Therefore, the
inequality max

P∈Uϵ(P0)
(Φ−1(β)

√
(CPx, x) − (RP , x)) ≤

max
P∈Ūϵ(P0)

(Φ−1(β)
√

(CPx, x) − (RP , x)). Let the elements

of the sample Y = {y1, y2, · · · , yn}, which generates
an empirical distribution law from the set Ūϵ(P0), as
yi = Ri + αiUi, ||Ui||2 = 1, 1

n

∑n
i=1 α

2(i) ≤ ϵ2. Let us
estimate min

P∈Ūϵ(P0)
(x,RP ). To do this, consider the equality

(x,RP ) = (x, R̃)+ 1
n

∑n
i=1 αi(x, Ui), further the inequality

(x, R̃) + 1
n

∑n
i=1 αi(x, Ui) ≥ (x, R̃)− ||x||

n

∑n
i=1 αi. Let us

use the concavity of the square root,
√

1
n

∑n
i=1 α

2
i ≥ 1

nαi.

From here, (x,RP ) ≥ (x, R̃) − ϵ||x||. Consequently,
min

P∈Ūϵ(P0)
(x,Rp) ≥ (x, R̃) − ϵ||x||, and equality is

achieved. Let us estimate max
P∈Uϵ(P0)

(CPx, x). It is easy

to obtain the following equality for the quadratic
form, (CPx, x) = (C̃x, x) + 2

n

∑n
i=1 αi(Ri −

R̃, x)(Ui, x) + ( 1n
∑n

i=1 α
2
i (Ui, x)

2 − ( 1n
∑n

i=1 αiUi, x)
2).

The second term satisfies the chain of inequalities,
2
n

∑n
i=1 αi(Ri − R̃, x)(Ui, x) ≤ | 2n

∑n
i=1 αi(Ri −

R̃, x)(Ui, x)| ≤ 2
n

∑n
i=1 |αi(Ri − R̃, x)(Ui, x)| ≤

2||x||2
n

∑n
i=1 |αi|||Ri − R̃|| ≤ 2ϵ||x||2 max

i
||Ri − R̃||.

For the last term, the estimate looks like
1
n

∑n
i=1 αi(Ui, x)

2 − ( 1n
∑n

i=1 αiUi, x)
2 ≤ ϵ2||x||2.

Equality is achieved for Ui = x
||x|| and for αi,

satisfying the equations 1
n

∑n
i=1 α

2
i = ϵ2,

∑n
i=1 αi = 0.

Combining these inequalities, we obtain the estimate

max
P∈Uϵ(P0)

(Cpx, x) ≤ (C̃x, x)+ ||x||2(ϵ2+2ϵmax
R∈V

||R− R̃||).
From problem (7), we obtain the problem as follows:

max
x

((x, R̃)−

Φ−1(β)

√
(C̃x, x) + ||x||2(ϵ2 + 2ϵmax

R∈V
||R− R̃||)− (8)

ϵ||x||), (I, x) = 1

Comparing (6) and (8), we conclude, when using the
probabilistic approach, the Tikhonov regularization factor
of the covariance matrix exceeds the regularization factor
when using robust optimization. The difference depends on
the spread of the sample and the mean vector. Comparing
all three methods, we found that the MCD method does
not require a priori information from the sample. The ro-
bust optimization method requires information from the sets
of possible parameter values. The latter method requires
knowledge of one quantity, which can be estimated from the
sample. Therefore, the MCD method and the method, using
the Wasserstein distance, have an advantage over the robust
optimization method. Based on this, now focus on methods,
that have an advantage.

VI. COMPUTATIONAL EXAMPLE

For calculations, the sample of profitabilities ALRS and
ROLO for the period from 27.06.2014 to 19.03.2021, vol-
ume 298 is used, which is divided into two samples of
volume 149 and volume 149, respectively. The first part
of the sample (V1) is used to calculate the portfolio x,
and the second part (V2) is used to calculate the sample
mean V̄ = 1

|V2|
∑

R∈V2

(x,R). The sample variance D =

1
|V2|

∑
R∈V2

(x,R)2−V̄ 2, and the minimum portfolio profitabil-

ity Vmin = min
R∈V2

(x,R).

Method 1 is the MCD method described above.
Method 2 is the robust method. For the application of

this method, we should determine ϵ1, ϵ2. To do this, the L
pairs of subsamples V3, V4 with the same size were randomly
obtained from the sample V1.

For pair V3, V4, we calculate mean vectors m(V3),m(V4),
and calculate the norm of the difference m(V1) − m(V3)
and the difference m(V1) − m(V4). We should choose the
maximal value between these two values. Each pair V3, V4

corresponds to one value, while L pairs V3, V4 correspond
to L values. After that, we should choose the maximal value
between L values and set ϵ1 equal to this value.

For each pair V3, V4 we calculate covariance matrices
C(V3), C(V4), and calculate the Frobenius norm of the
difference C(V1)−C(V3) and the difference C(V1)−C(V4).
We should choose the maximal value between these two
values. Each pair V3, V4 corresponds to one value, while L
pairs V3, V4 corresponds to L values. After that, we should
choose the maximal value between L values and set ϵ2 equal
to this value.

Method 3 is another robust method. For the application
of this method, we should determine ϵ. The L pairs of
subsamples of the same size were randomly obtained from
the sample V1. For each such pair ϵ was calculated by
the formula ϵ2 = 1

L

∑L
l=1 α

2(l). Further, the maximum
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TABLE IV
DEPENDENCE OF V̄ , D, Vmin ON β .

β 0.6 0.7 0.8 0.9

V̄ (Method 1) 1.000855 1.000880 1.000903 1.000924

V̄ (Method 2) 0.999016 0.998979 0.998972 0.998935

V̄ (Method 3) 0.996775 0.996776 0.996777 0.996777

D(Method 1) 0.000977 0.000979 0.000980 0.000981

D(Method 2) 0.001167 0.001168 0.001168 0.001165

D(Method 3) 0.001521 0.001520 0.001520 0.001519

Vmin(Method 1) 0.864487 0.865256 0.865983 0.866663

Vmin(Method 2) 0.910368 0.911334 0.911438 0.913030

Vmin(Method 3) 0.614232 0.614315 0.614390 0.614458

was chosen from the obtained ones. In this example ϵ1 =
0.006717, ϵ2 = 0.007110, ϵ3 = 0.099896.

VII. ANALYSIS OF RESULTS

From TABLE IV, we may conclude that the average
profitability is better in Method 1, the risk is smaller in
Method 1, and the minimal profitability is higher in Method
2.

VIII. CONCLUSION

In this paper, the optimal portfolio problem was consid-
ered. Three methods of estimating the covariance matrix and
the mean vector were suggested. The first was the MCD
method. The second was the robust optimization method.
In the third method, the Wasserstein distance was used.
Computational examples and analyses of the results also were
given.
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