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Abstract—In a machine repairable system, when the number
of failure machines in the system reaches to a certain threshold,
in order to maintain the machines’ production efficiency,
repairers will accelerate the repair rate, although generally
this comes at a higher cost. Therefore, this paper discusses the
M/M/c machine repairable systems with two service rates. Using
Markov process theory, the steady-state reliability and queueing
indexes are obtained. Through building an optimization model,
the system is optimized according to the model analysis results.
Finally, the numerical experimental analysis of the system
steady-state indexes and optimization model is given.

Index Terms—machine repairable system, steady-state avail-
ability, variable repair rate, system optimization.

I. INTRODUCTION

REPAIRABLE queueing systems have been used widely
in computer systems[1], flexible manufacturing system-

s, production management, and fluid model[2]. The study
of machine repairable models started in the 1940s. Initially,
Palm[3] studied machine repair models with a single repairer.
Tian et al.[4] analyzed the complex queueing system model
using quasi birth and death process and matrix geometric
solution method. Gross et al.[5] systematically studied and
elaborated the classical machine repairable model M/M/c
with the application of finite source queueing, and deduced
the distribution law of the number of system failure machines
and waiting for repair time in a stable state through the
method of the classical birth and death process. Lv et al.[6]
studied the M/M/1 repairable queueing system. In this article,
the repair rate varies when the system’s customer count
approaches a specific threshold, which provides a theoretical
foundation and data source for the optimal design of related
service systems in real life.

The machine repairable queue phenomenon is more promi-
nent in the application of production and manufacturing
areas. Working closely with each component in industrial
production lines is essential to ensuring that industrial pro-
duction runs smoothly. Once one of the links goes wrong,
the production line’s efficiency will be reduced even when
it continues to run normally. To ensure productivity, how to
set up machine production operations and repairs is prac-
tical problems related to queueing theory. The N -strategy
of machining system is an effective measure to improve
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economic performance in the machine repairable system. The
repairer can perform auxiliary tasks, which not only improves
system efficiency but also saves costs. Chen et al.[7] studied
the reliability of the repair system of a single maintenance
server with N -strategy, M operating units and S warm spare
units. When a server fails, the repairer provides service at a
lower service rate, and through a large number of numerical
experiments, the influence of each system parameter change
on the system is measured. Li et al.[8] mainly studied
the replacement of the N -strategy based on the number
of failures of component 1 in the system, further gave the
expression of the average cost of the system, and found the
optimal strategy of the system through numerical analysis.
Liu et al.[9] considered the M/M/1 queueing model under
the N -strategy, constructed the social income function with
the benefit maximization as the starting point, and analyzed
the impact of each parameter on the equilibrium income.

To improve productivity, the system can stock a portion
of spare parts. Yue et al.[10] studied repairable queueing
systems with spare parts and obtained reliability indicators
such as the steady-state probability of the system using
Markov process theory and an iterative approach. Jain et
al.[11] studied the reliability index of machine-repairable
systems with M operating units and group standby units,
derived the explicit expression of reliability function and
system average failure time by using Laplace transform
technology, and analyzed the influence of various system
parameters on system reliability index by numerical results.

Queueing theory and reliability mathematical theory are
used widely in the optimal allocation of resources[12], [13],
[14], [15]. Meng[16] established a multi-criteria optimization
model for the optimization of the number of repairers and
illustrated the effectiveness and practicality of the optimiza-
tion model in enterprise management with examples. Jain et
al.[17] studied the queueing model with single server and sin-
gle working vacation under the policy, analyzed the system
performance index value under the optimal control policy,
and discussed the maximum revenue under the relevant
constraints, which provided a theoretical reference for the
transportation system and manufacturing system. Rational
allocation of the number of repair tools to minimize the cost
and time of repair is a typical optimization problem in the
random service process. In short, production is plagued by
repair and queueing issues, making it increasingly crucial
to research more realistic and reasonable queueing and
dependability issues related to machine repair.

II. MODEL DESCRIPTION

In the initial state, the system has m running machines, s
warm standby machines and c repairers.
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1) It is assumed that the lifetimes of the running and stand-
by machines obey exponential distributions with parameters
λ and α (0 < α < λ), respectively.

2) When the running machine fails, if there are some avail-
able standby machines, the failure machine is immediately
replaced by a standby machine; If no standby machines are
available, the system will start degraded operation until all
the machines fail and the system stops working.

3) The system contains c repairers. When the number of
failure machines is more than the number of repairers, the
failure machines obey the queuing rule of first-come first-
served in the waiting queue. Each repairer can only repair
one machine at a time, and the repaired machines are restored
as new.

4) When the number of failure machines n in the system
satisfies 0 ≤ n ≤ c, the repair rate of each repairer
obeys the exponential distribution of parameter µa. When the
number of failure machine is n > c, the repair rate of each
repairer will be accelerated, which follows the exponential
distribution with parameter µb, where µa < µb.

Let N (t) represents the number of failure machines in the
system at the time t, N (t) = 0, 1, 2 · · ·m+s. Then {N(t)} is
a Markov process with state-space Ω = {0, 1, 2 · · · ,m+ s}.
The state transition rate matrix Q of the system is shown as
follows:

Q =


−λ0 λ0

µ1 −(λ1 + µ1) λ1

. . .
. . .

. . .
µn −(λn + µn) λn

. . .
. . .

. . .
µm+s −µm+s


where

λn =

{
mλ+ (s− n)α, n = 0, 1 · · · s,
(m+ s− n)λ, n = s+ 1, s+ 2 · · ·m+ s− 1,

(1)

µn =

{
nµa, n = 1, 2 · · · c,
cµb, n = c+ 1, c+ 2 · · ·m+ s.

(2)

III. STEADY-STATE INDICATORS OF THE SYSTEM

Define the steady-state probability of the system as

πn = lim
t→∞

P{N(t) = n}, n ∈ Ω.

Then {πn, n ∈ Ω} satisfies the following system of linear
relationship equations {

πQ = 0,
πe = 1.

(3)

where π = (π0, π1, π2 · · ·πm+s) is a (m + s + 1)
dimensional row vector, e = (1, 1, · · · , 1)T is a (m+ s+ 1)
dimensional column vector.

Theorem 1 The steady-state probability of the system is

πn =
λn−1
µn

πn−1 =

n∏
i=1

λi−1
µi

π0, n = 1, 2 · · ·m+ s.

where

π0 = [1 +
c∑

n=1

An

n!µa
n + 1

c!µa
c

s∑
n=c+1

An

(cµb)
n−c +

K
m+s∑
n=s+1

m!
(m+s−n)! (

λ
cµb

)n−s]−1.
(4)

πn =



n−1∏
i=0

[mλ+(s−i)α]

n!µa
n π0, n = 1, 2 · · · c,

n−1∏
i=0

[mλ+(s−i)α]

c!µa
c(cµb)

n−c π0, n = c+ 1 · · · s,
s−1∏
i=0

[mλ+(s−i)α]

c!µa
c(cµb)

s−c
m!

(m+s−n)! (
λ
cµb

)n−sπ0,

n = s+ 1 · · ·m+ s.

(5)

Prove The equations (3) are written in component form
as follows

−λ0π0 + µ1π1 = 0, (6)

λnπn − (λn+1 + µn+1)πn+1 + µn+2πn+2 = 0,
n = 0, 1, 2 · · ·m+ s− 2,

(7)

λm+s−1πm+s−1 − µm+sπm+s = 0, (8)

m+s∑
i=0

πie = 1. (9)

From equation (6), we have

π1 =
λ0
µ1
π0.

From equation (8), we have

πm+s =
λm+s−1

µm+s
πm+s−1.

From equation (7), we obtain the following iterative for-
mula

λnπn − µn+1πn+1 = λn+1πn+1 − µn+2πn+2,
n = 0, 1, 2 · · ·m+ s− 2.

(10)

From equation (10) we obtain

πn =
λn−1
µn

πn−1 =
n∏
i=1

λi−1
µi

π0. (11)

Substitute equations (1) and (2) into equations (9) and
(11), we obtain equations (4) and (5).

To facilitate the calculation, we let

An =
n∏
i=1

[mλ+ (s− i+ 1)α] =
n−1∏
i=0

[mλ+ (s− i)α].

and

K =
As

c!µac(cµb)
s−c .

The steady-state indicators of the system are given as
follows:

1) The average number of failure machines in the system

E(L) =
m+s∑
n=0

nπn = K
m+s∑
n=s+1

n m!
(m+s−n)! (

λ
cµb

)n−sπ0

+
c∑

n=1

An

(n−1)!µa
nπ0 + 1

c!µa
c

s∑
n=c+1

nAn

(cµb)
n−cπ0.
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2) The average number of machines waiting for repair of
the system

E(Lq) =
m+s∑
n=c+1

(n− c)πn

= E(L)− c+ cπ0 +
c∑

n=1

(c−n)An

n!µa
n π0.

3) The average waiting time for a failure machine of the
system

T =
E(Lq)

Λ
,

where

Λ =
m+s−1∑
n=0

πnλn

= −(λ− α)K
m+s∑
n=s+1

(n−s)m!
(m+s−n)! (

λ
cµb

)
n−s

π0

+ mλ+ sα− αE(L).

4) The average number of machines in normal operation
of the system

E(Ln) =
s∑

n=0
mπn +

m+s∑
n=s+1

(m+ s− n)πn

= m−K
m+s∑
n=s+1

(n−s)m!
(m+s−n)! (

λ
cµb

)
n−s

π0.

5) The Probability that the failure machine in the system
does not need to wait for repair

P =
c∑

n=0

πn = π0 +
c∑

n=1

An
n!µan

π0.

6) Steady-state availability of the system

A = 1−K(
λ

cµb
)mm!π0.

IV. NUMERICAL EXPERIMENTS

Through the above analysis, we have obtained the steady-
state average value E(L) of failure machines in the system,
the steady-state average value E(Ln) of the machine in the
normal operating state, and the steady-state value E(Lq)
of the average number of failure machines waiting to be
repaired in the system. Considering the influence of system
parameters λ, α, µa and µb on system performance index,
the sensitivity analysis of parameters is carried out through
numerical experiments. In the experiment, we fixed the
system parameters as α = 0.7, λ = 1.5, µa = 2.5, µb = 3.5,
m = 10, s = 6 and c = 4.

Table 1 shows that the effect of the failure rate α of
the standby machine on each system indicators is relatively
small. This is because when the failure rate α of the standby
machine is low, the probability of damage to the standby
machine is small. Moreover, the damage of the standby
machine only increases the number of failure machines,
which does not affect the system operation. Therefore, the
failure of the standby machine has less impact on the system.

The data in Table 2 shows that E(L) and E(Lq) increase
as the failure rate λ of the running machines increases, the
average value E(Ln) of normal operating machines decreas-
es as λ increases. This is due to the fact that the higher the λ,
the greater the likelihood of failure of the running machine.
At this time, the number of failure machines will increase,

Table 1. System indicators with varying α, m and c.

(m, c) α E(L) E(Lq) E(Ln)

(10,2) 0.4 8.826 6.826 7.123

0.7 8.834 6.834 7.119

1 8.840 6.841 7.115

(10,4) 0.4 6.963 3.112 8.371

0.7 7.049 3.177 8.336

1 7.124 3.235 8.304

(15,4) 0.4 11.679 7.686 9.271

0.7 11.687 7.693 9.266

1 11.694 7.700 9.261

Table 2. System indicators with varying λ, m and c.

(m, c) λ E(L) E(Lq) E(Ln)

(10,2) 1.2 8.313 6.315 7.551

1.5 8.834 6.834 7.119

1.8 9.120 7.121 6.860

(10,4) 1.2 5.659 1.959 9.173

1.5 7.049 3.177 8.336

1.8 8.306 4.357 7.397

(15,4) 1.2 9.531 5.567 11.256

1.5 11.687 7.693 9.266

1.8 13.223 9.224 7.766

Table 3. System indicators with varying µa, m and c.

(m, c) µa E(L) E(Lq) E(Ln)

(10,2) 2.2 8.834 6.834 7.118

2.5 8.834 6.834 7.119

2.8 8.833 6.834 7.119

(10,4) 2.2 7.120 3.225 8.311

2.5 7.049 3.177 8.336

2.8 6.972 3.127 8.362

(15,4) 2.2 11.694 7.699 9.262

2.5 11.687 7.693 9.266

2.8 11.680 7.6875 9.270

correspondingly the number of normal opretaing machines
decreases, as a result, the system’s overall performance will
decrease.

According to Table 3, we find that the change in the
primary repair rate µa has a little impact on all indicators.
This is because there are relatively few repairers in relation
to the total number of running machines. After a period
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Table 4. System indicators with varying µb, m and c.

(m, c) µb E(L) E(Lq) E(Ln)

(10,2) 3.2 8.988 6.988 6.982

3.5 8.834 6.834 7.119

3.8 8.666 6.666 7.263

(10,4) 3.2 7.634 3.728 7.907

3.5 7.049 3.177 8.336

3.8 6.550 2.713 8.678

(15,4) 3.2 12.471 8.474 8.505

3.5 11.687 7.693 9.266

3.8 10.924 6.936 9.992

of time, the system begins secondary repair since there are
more failure machines, thus the primary repair rate µa has
less impact on various indicators. If the number of repairers
is relatively reasonable, such as when m = 10, c = 4,
E(L) decreases with the increase of the primary repair rate
µa, E(Lq) decreases with the increase of µa, and E(Ln)
increases with the increase of µa. At this point, the larger
the value of µa indicates that the system has fewer failure
machines and more normal running machines, indicating that
the repairer is making repairs more quickly.

In Table 4, E(L) decreases with the increase of secondary
repair rate µb, E(Lq) decreases with the increase of µb, and
E(Ln) increases with the increase of µb, the reasons are
the same as those analyzed in Table 3. Additionally, the less
repairers there are in the system, the more likely it is that they
are repairing at the secondary repair rate, and the more visible
this phenomena will be while all other system parameters
remain constant.

According to the above four tables, when the number of
repairers is less than the number of running machines, the
number of failure machines will increase, and increasing the
number of repairers will improve the system efficiency.

V. OPTIMIZATION ANALYSIS

Through the above analysis, we find that the change of
m and c has a significant impact on the system. To further
analyze the economic applicability, the unit time benefit
function W is introduced below to analyze the maximization
of system benefits. The following are the system benefit
parameters:

1) The revenue per unit time per normally running machine
is C1.

2) The stop work loss per unit time per failed machine is
C2.

3) When the number of failure machines in the system
E(L) ≤ c, the repair cost per machine per unit of time
is U1. When the number of failure machines in the system
E(L) > c, the repair cost per machine per unit of time is
U2.

4) When the machine enters the queue, the waiting cost
per machine per unit time is C3.

5) Multiple machines working at the same time can pro-
duce joint benefits, that is, the system has E(Ln) machines in

normal working condition, then the benefit of each machine
is C1(1 + E(Ln)

km ), where k is the proportionality coefficient,
and the value of k can be determined by hypothesis testing.

To facilitate the calculation, let Bn = C1(1 + E(Ln)
km ),

Then the revenue function of the system per unit time is

W = E(Ln)Bn − E(L)C2 − E(L)U − C3E(Lq)

=

{
E(Ln)Bn − E(L)C2 − E(L)U1, E(L) ≤ c,
E(Ln)Bn − E(L)C2 − cU2 − C3E(Lq), E(L) > c.

In the experiment, we fixed the system parameter as α =
0.7, λ = 1.5, µa = 2.5, µb = 3.5, m = 10, s = 6 and
c = 4. Suppose C1 = 100, C2 = 20, U1 = 30, U2 = 50,
C3 = 8 and k = 10. In practice, the values of C1 and C2

can be obtained by hypothesis testing. The change of benefit
function is shown in the following figure:

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
420

440

460

480

500

520

540

560

W

(10,2)
(10,4)
(15,4)

Figure 1. The variation of W with α.

According to the observation in Figure 1, it can be seen
that the change scope of W with α is limited, since there
are fewer repairers compared to running machines, and the
probability of accumulation of failure machines in the system
is large. However, since the failure rate of standby machines
is low, the number of failure machines is only increased
with a small probability, and the impact on system benefits
is small. Secondly, longitudinally, the benefit W is jointly
determined by m and c. Clearly, the higher the value of
m, the more revenue the system can generate per unit time.
However, if the value of c is too small, there will be an
excessive number of failure machines in the system, which
will not only lose its own benefits, but also bring higher
repair costs. Therefore, in Figure 1, when (m, c) = (10, 4),
the system gains the highest value.

According to the observation in Figure 2, it can be found
that the benefit W decreases with the increase of λ. Because
with the increasing value of λ, E(L) will become larger
and E(Ln) will become smaller, the system can create less
revenue per unit time, the repairers’ repair cost increases, so
the system benefit becomes smaller. And when m is larger
and c is smaller, as shown in Figure 2, when (m, c) = (15, 4),
the change of system benefit is more obvious.

According to the observation in Figure 3, it can be found
that the change of benefit W with µa is not instantly obvious.
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Figure 2. The variation of W with λ.
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Figure 3. The variation of W with µa.

This is because the secondary repair rate will begin more
quickly for the system the smaller the value of c, whereas
the primary repair rate µa has no effect on the system. When
(m, c) = (10, 4), the number of repairers is relatively large,
the variation of the primary repair rate µa will prolong the
time when the number of failure machines is less than the
number of repairers, thus the system is less likely to start
the secondary repair rate µb. At this point, the larger µa is,
the faster the repairers’ repair rate will be, the more normal
machines in the system will be, and the higher the benefit
will be, at the same time, the number of machines waiting
for repair will become less, the waiting time will become
shorter, the corresponding waiting cost will be lower, and
the system efficiency will be higher.

According to the observation in Figure 4, it can be found
that W increases with the increase of µb, indicating that
the number of failure machines is more than the number
of repairers at this time, the system starts the secondary
repair rate. In this way, the larger µb, the faster the overall
repair speed of the system, the more machines can operate
normally, and the machine can create the greater profit per
unit time. To a certain extent, it reduces the probability of

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

b

300

350

400

450

500

550

600

650

700

W
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(10,4)
(15,4)

Figure 4. The variation of W with µb.

increasing the number of failure machines, which will offset
some of the high repair costs and lost profits. In addition,
when (m, c) = (10, 2), µb has little influence on W , because
m is small, in a steady state, it can create less revenue per
unit time. Secondly, because the value of c is small, even
if µb increases, the system’s total repair speed will remain
somewhat slow, and the system generates more loss revenue,
etc. Therefore, the change of the system benefit is slow.

The conclusion of the numerical analysis show that it is not
wise to simply increase the number of machines in running or
decrease the number of repairer in order to minimize costs.
High repair rates can only result in high profits when the
system’s running machine number is suitably balanced with
the number of repairers.

VI. CONCLUSION

This paper studies the M/M/c machine repairable system
with two service rates. Firstly, the steady-state performance
index of the system is obtained by using the steady-state
equilibrium equation. Through numerical experiments, the
impacts of system parameters on the steady-state average
value E(L) of the failure machine, the steady-state average
value E(Ln) of the machine under normal operating condi-
tions, and the average value of waiting machines E(Lq) are
analyzed. Finally, the optimization model is established by
introducing the benefit function, and the influence of some
system parameters on the benefit function are analyzed by
numerical experiments. The experimental results show that
the increase of primary repair rate µa and secondary repair
rate µb will increase the system efficiency, which is consis-
tent to the accustomed understanding. Therefore, in practice,
when deciding the optimal strategy of the system, factors
such as the number of machines, the number of repairers
and the repair rate should be considered comprehensively.
The research of this paper provides theoretical and technical
support for the design and optimization of machine repairable
system with two service rates.
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