
 
Abstract—Wind energy, as new energy, becomes important 

support in the low-carbon transformation of the power industry. 
However, in wind farms, wind turbine fault diagnosis based on 
small-scale data is a thorny problem. To this end, this paper 
advances a wind turbine fault diagnosis method given feature 
selection and stacking model fusion. For unbalanced data, smote 
oversampling method is used to the effective instance of small 
class data and increase its proportion. RFECV is used to rank 
the importance of features, and then the features with high 
correlation are deleted according to the thermal map to reduce 
the dimension and obtain the feature subset. Then, XGBoost and 
LightGBM models based on 6-fold cross-validation is used to 
train the filtered data. To further improve the stability and 
generalization ability, a stacking fusion model based on logistic 
regression is trained using logistic regression. The results of this 
experiment are compared to other traditional methods by 
accuracy, ROC, and other indicators. The experimental results 
show that the strategy used in this paper has more satisfactory 
accuracy results than the traditional methods and can be used in 
wind turbine fault diagnosis engineering. 
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I. INTRODUCTION 
LIMATE change is a major challenge related to human 
survival and long-term social development. At this stage, 

China's goal for climate change is to achieve carbon 
neutrality. The carbon emissions from fossil energy activities 
in China account for about 85% of the total carbon emissions, 
so the low-carbon transformation of energy is the key to 
carbon neutralization [1]. At present, as new energy, wind 
energy is an important support in the low-carbon 
transformation of the power industry. By the first half of 
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2020, China's installed wind power capacity had exceeded 
216.75 million KW. In terms of proportion, the proportion of 
China's cumulative installed capacity is generally on the rise, 
ranking among the highest in the world [2]. At the same time, 
the safe operation and maintenance of wind turbines have 
become more and more important, which requires us to invest 
a lot of humans, material, and financial resources in this issue. 
Doing a good job of wind turbine fault diagnosis will greatly 
reduce the cost of the wind farm. 

The research on wind turbine fault diagnosis mainly focuses 
on the fault prediction method model based on fault physical 
model, data-driven model, and fusion analysis using the 
characteristics of these two models [3]. Based on the fault 
physical model, the remaining life of the unit equipment is 
estimated based on an in-depth understanding of the 
operation mechanism of the unit equipment. The data-driven 
method is to establish a model based on historical data and 
life data for fault diagnosis and analysis. At present, a large 
number of scholars begin to analyze the information collected 
in the SCADA system for fault diagnosis. SCADA system is 
a special system for monitoring and collecting real-time data 
of wind turbines. It can contain characteristic information 
related to the operation of the wind turbine, including wind 
speed, temperature, current, power, and voltage. For data 
processing work, if we want to predict whether the wind 
turbine fails, we need to obtain some effective information 
from the information collected by the SCADA system to 
facilitate us to predict the failure. Guo et al. observed and 
diagnosed the fan fault by analyzing the changing trend of 
temperature [4]. Wang et al. constructed a data-driven fault 
diagnosis method for wind turbines by using discrete entropy 
(Artemide) and the improved time-shift multiscale fluctuation 
of cosine pairwise constrained supervised manifold mapping 
(cpcsmm) [5]. Dong et al. calculated the accompanying 
changes in blade icing performance characteristic parameters 
by studying the phases between the transmitted energy of 
wind turbine blades in various stages and the parameters of 
characteristic information recorded in SCADA [6]. Zhang et 
al. used a weighted network and meta-network cloned from 
the original RESNET to solve the wind turbine fault 
diagnosis problem [7]. Pandit used a Gaussian processing 
algorithm based on the fan blade state variable evaluation 
operation curve to detect blade fault [8]. However, for the 
case of a large amount of data, the traditional algorithm will 
have some shortcomings, such as a long convergence process, 
slow operation, and low accuracy of training results.  
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The emergence and development of machine learning, and 
deep learning networks have greatly improved the 
shortcomings of traditional algorithms. Machine learning and 
deep learning methods play an extremely effective role in 
predicting whether faults occur, and are widely used by 
researchers, and have been proved to be very effective when 
there are many parameters and a large amount of data [9-15]. 
In the state detection field of machine and deep learning 
methods, in Zhao et al.'s literature, the deep automatic coding 
network (DAE) is regarded as an index to detect the working 
state of the wind turbine, and then restructure the error 
between the input value and the output value, to monitor the 
effective operation of the wind turbine [16]. Chen et al. 
defined a new comprehensive index that can evaluate the 
performance of different algorithms, and proposed a new 
migration learning algorithm to deal with data imbalance and 
different distribution [17]. Wang et al. contributed an idea of 
fan blade fault detection using the SCADA data depth 
automatic encoder (DA) model [18]. Xiang et al. contributed 
a fault diagnosis idea using an attention mechanism to assign 
weight to the features of LSTM, and finally, infer the fault 
component according to the residual [19]. Li et al. used 
transfer learning based on shared parameters to take the 
operation data like a wind turbine as the training data for fault 
detection, in order to solve the problem of insufficient data of 
wind turbines [20]. To solve the problem of data imbalance, 
Tong et al. adopted the strategy of combining adaptive 
weighting with traditional fixed weighting and constructed an 
adaptive weighted kernel limit learning machine algorithm 
[21]. Afrasiabi et al. proposed a wind turbine fault 
identification method using a generation countermeasure 
network (GAN) to extract features and a time convolution 
neural network (TCNN) to classify faults [22]. Literature first 
analyzed the SCADA data of wind turbines, then obtained the 
reconstructed value of SCADA data through DAE and 
established an XGBoost multi-classification fault 
identification model [23]. Reference used out-of-pocket 
estimation of random forest for feature selection and 
established a diagnostic model based on the XGBoost 
algorithm  [24]. Zhang et al. proposed a new non-smooth 
signal processing technique in order to mitigate the 
background noise, which can interfere with the fault signals 
of the wind turbine bearings, and introduced a particle swarm 
algorithm to extract the periodic shock fault information of 
the wind turbine  [25]. Taghinezhad et al. used an artificial 
neural network model to predict the turbine power profile of 
wind turbines, which is a very important aspect of the study 
of wind turbines [26]. Xiao et al. combined convolutional 
neural networks with recurrent neural networks, 
convolutional neural networks with long and short-term 
memory neural networks, convolutional neural networks with 
selected-pass recurrent units, and finally with convolutional 
neural networks to form four focal-loss-based cost-sensitive 
deep neural networks as the basic prediction models [27]. By 
analyzing the monitoring and data acquisition data, Korkos et 
al. proposed an adaptive neuro-fuzzy inference system, this 
can be used to detect failure problems of wind turbine blades 
in different combinations of parameters [28]. 

The desire for a large amount of data is generally difficult 
to achieve. For instance, for turbines that haven't been used 

for a year, the information stored in SCADA obviously can't 
meet the demand. In addition, there are some cases of 
SCADA data loss, especially in wind farms in remote areas. 
In these cases, the data information stored in SCADA is 
particularly unbalanced. For example, the proportion of fault 
type and normal type is very different, which seriously affects 
the accuracy of the research results. Deep learning and many 
other machine learning methods will also be deeply affected 
by the problem of data imbalance. The fault information of 
wind turbines provided by unbalanced and large characteristic 
data is very complex, which is needed in the process of model 
training and parameter adjustment. In this case, these 
methods may not contribute well. This motivates us to 
propose a new fault diagnosis method suitable for dealing 
with the above problems. 

In the field of fault diagnosis research based on SCADA 
data, subjective feature selection and traditional machine 
learning methods may produce unsatisfactory results. In this 
paper, a fault diagnosis method for wind turbines based on 
feature selection and stacked model fusion is proposed. 
Firstly, oversampling of the small-scale data is performed to 
balance the proportion of fault categories. Next, correlation 
analysis is performed on the data features. Then, the 5-fold 
cross-validation of RFECV is combined with the 
implementation of feature importance ranking to extract valid 
features. Finally, the stacking model fusion method is used to 
fuse two strong learners, and the stability and generalization 
ability of the model is improved through logical regression. 
The results show that the operation effect of this method is 
better than that of the traditional machine learning method. 

II. SCADA DATA PREPROCESSING 
SCADA (supervisory control and data acquisition) is the 

abbreviation of data acquisition and monitoring system. It is 
responsible for real-time monitoring of the operation data of 
wind turbines in wind farms and can be stably transmitted to 
the terminal. The data is collected every 10 minutes, 
including wind speed, wind direction angle, gearbox 
temperature, blade angle, and power generation. 

In this paper, SCADA is classified into normal and fault 
states based on warning data and status data. The abnormal 
data caused by communication signal and transmission 
equipment faults are then eliminated. This is done to reduce 
the interference of abnormal data in the model prediction 
results. When there is a large proportion difference between 
data categories, it will seriously affect the prediction of the 
model and cause meaningless classification results, because 
the prediction model built by unbalanced data will be more 
inclined to the label of multi-category samples. 

A. Sampling method via SMOTE 
In this paper, SMOTE (synthetic minority oversampling 

Technology) is used to synthesize a few class oversampling 
techniques [29]. Because the traditional random oversampling 
technology directly copies the samples of a few category 
labels, it is easy to cause the overfitting of classification 
results. SMOTE algorithm is improved on this basis. It 
randomly selects a sample ˆ

iX  from the near-neighboring 
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minority samples of each minority sample iX and establishes 
a link between the two samples. Then a sample is randomly 
selected from the connected samples and classified as a newly 
formed minority sample.  

Smote algorithm, its main thought is to synthesize new 
samples by analyzing samples on a small scale and then 
integrate those new samples into the original data set. The 
smote process is just as follows: 

First, regarding per sample X , the Euclidean distance from 
each minority sample to the other minority samples is 
calculated. 

 ( )2
1 2

1

N

i i
i

d X X
=

= −∑  (1) 

Second, the sampling ratio N is determined according to 
the set unbalanced sampling proportion of samples, and 
samples ˆ

iX  are randomly selected from the nearest neighbor 
minority samples of each minority sample iX . 

Third, replace the original samples ˆ
iX in the previous steps, 

which are obtained by random selection, into the following 
formula to obtain new samples. 
 new 

ˆ(0,1) ( )X x rand X X= + × −  (2) 

B. Feature Selection 
For the data collected by wind farm SCADA, there are 

many kinds of features, including features related to normal 
and abnormal categories, irrelevant features, and redundant 
features related to category labels. We can carry out feature 
selection according to the unit characteristics and the 
correlation analysis between features. We can also carry out 
feature selection according to the machine learning method. 
Compared with the former, the latter is more efficient and can 
fully analyze the relationship between features and category 
labels to retain the features with the best performance. In 
order to get the number of features that can make the 
experiment produce the best results, we will use rfecv, which 
is recursive feature elimination combined with cross-
validation. 

RFECV is divided into two stages [30]. The flow chart is 
shown in Figure 1.  

The first stage is RFE: recursive feature elimination and 
feature importance ranking.  

The second stage is CV: cross-validation. On the premise 
that the importance of features has been sorted, the number of 
features with the best performance is selected by cross-
validation. 

RFE, the full name is recursive feature elimination. Its core 
is to build the model repeatedly so as to find the optimum 
functionality. At the beginning of each model construction, 
first, delete the last optimal feature, then build the model in 
the remaining features, and continue to select the optimal 
feature. The first deleted feature is the most important feature. 

The specific steps of recursive feature elimination are: 
① All features are initial features.  
② Modeling on the current data set through the prediction 

model (random forest classifier is used in this paper), and 
each feature is given a weight.  

③ Then delete the least important features in the feature set. 
④ Execute step ② again, to perform recursively.  
Finally, the importance of all features will be evaluated. 
Cross-validation is used to prevent overfitting caused by 

two complex models [31]. Sometimes called cyclic 
estimation, it is a practical method that can statistically cut 
data samples into smaller subsets. In this way, a subset can be 
analyzed first, and the remaining subsets can be used as the 
subsequent confirmation and verification of this analysis. 
This method can be explained by the following formula. 

 ( )( )( )

1

1 ˆ( , ) , ,
N

k i
i i

i
CV f L y f x

N
α α−

=

= ∑  (3) 

The function ( , )CV f α  provides an estimate of the test 
error curve, and we find the tuning parameter α that 
minimizes it. 

Specific steps of cross-validation: ①  according to the 
importance of the features obtained by recursive feature 
elimination, take out the data sets with a different number of 
features each time. ② cross-validate these samples with the 
different number of features respectively. ③ finally select the 
number of features with the highest average score, that is, the 
feature with the best performance. 
 

 
 

III. FAULT DIAGNOSIS MODEL 

A. Stacking Model Fusion 
Stacking is a hierarchical structure as shown in Figure 2. 

The first layer is the base layer, which contains the prediction 
results of several base strength learners. The second layer is a  
 

 
Fig. 1. Flow chart of RFECV 
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model that can integrate the operation results of the grassroots 
level, usually a weak learner. Stacking is to integrate the 
operation results of the grass-roots level into sample 
characteristics, and the original sample is regarded as a new 
data set to divide a new training set, to train a new model and 
predict the sample. 

Because each learner in the basic level will predict the 
training set and test set, in the second layer, if they directly 
integrate the predicted training set and test set as the training 
set and test set of weak learners, it is very easy to produce 
overfitting. In this paper, the k-fold cross-validation method 
is used to deal with this problem. At the grassroots level, 
cross-validation is used for prediction. The basic learners 
cross verifies the feature list of the exercise set and test set of 
the training relative to the exercise set and test set of the 
second layer model respectively.  

B. XGBOOST 
XGBoost algorithm belongs to the boosting framework. 

The essence of the boosting framework algorithm is that the 
definition of gain is different when fitting the residual tree in 
each round [32]. The gain used by XGBoost is the difference 
between the structural score before splitting and the structural 
score after splitting. One of the highlights of XGBoost is to 
define a splitting criterion so that the loss of each optimal 
split point can be reduced the most than that without splitting. 
This is one of the reasons why XGBoost is efficient. The 

meaning of structural score: the minimum value of the loss 
function when the structure of the tree is known. XGBoost's 
gain definition is to subtract the structural score before 
splitting from the structural score after splitting and select the 
segmentation point with the largest gain as the optimal 
segmentation point. Its significance is the segmentation point 
where the loss of the model after splitting is largest than that 
before splitting. The result of this round of residual trees 
fitted by this gain definition method is very good. 

Model expression in iteration k : 
 ( ) ( ) ( )( ) ( 1) ( )k k k

i i if x f x h x−= +  (4) 

Where ( )( )k
ih X  represents the residual tree of the kth 

round of fitting. 
The loss function of the model in the round k is: 

 ( )( ) ( )( )( ) ( )

1

n
k k k

i i i
i

L L y f X h X
=

= − + Ω∑  (5) 

Where ( )( )k
ih XΩ represents the regularization term of 

the round k . 

 ( )( ) 2

1

1 *
2 j

n
k

i jh X T wγ λ
=

Ω = + ∑  (6) 

The Taylor second-order expansion expression of the loss 
function is: 

 
Fig. 2.  Model stacking process 
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ig  represents the first derivative of the i-th sample, also 
known as the first-order residual. ih represents the second 
derivative of the i-th sample, also known as the second-order 
residual. 

Because the meaning of the structure score is the minimum 
value of the loss function when the structure of the tree is 
known. Our purpose is to require the minimum value of the 
loss function. In the process of finding the extreme value, the 
constant term 1 can be removed and simplified as: 
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 = + Ω + 
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C. LightGBM 
LightGBM algorithm belongs to the boosting framework. 

The essential difference between the algorithms of boosting 
framework is how to fit a residual tree in each round of 
iteration [33].  

The innovation of the LightGBM algorithm:  
①Introduce the Goss algorithm to eliminate samples with 

small weight and reduce the amount of data before fitting the 
residual tree.  

②Then EFB algorithm is introduced to bind mutually 
exclusive features in the case of high-dimensional data, so as 
to reduce the number of features.  

③The discrete values are processed so that the input 
discrete values are directly supported by the model.  
④In the process of fitting the residual tree, the sample leaf-

wise method is used to reduce the number of splitting nodes, 
so as to reduce the amount of calculation.  
⑤The histogram method is used to improve the speed of 

finding the optimal segmentation point. 
The objective function of LightGBM is 

 
( )( ) 2

n 1
1 1

1,
2

 
n T

i i i
n n j

i j
L l y y f x T Wλ−

= =

= + + ϒ +∑ ∑
 (9) 

After dividing node O  into two parts with a certain 
segmentation point, the gain, in this case, is: the variance of 
node O  before segmentation minus the sum of the variance 
of two child nodes after segmentation 
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Because our goal is to compare the gain, we can remove 

1
N

constant terms

2

: i OX
i

i

O

g

n
∈

 
  
 

∑
  that have no effect on the 

comparison. 

So again, it is obtained: 
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In Goss, in the process of dividing node O , some samples 

may be discarded randomly, so the total number of samples 

of node O  decreases. Therefore, redefining the variance gain: 

 

2 2

: :1Gain
( ) ( )

i i

i i
i X L i X R

O l O r O

g g

n n d n d
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    = + 
 
  

∑ ∑
 

 (12) 

On represents the total number of samples of the O  node, 

l On represents the total number of samples of the left child 

node of the O  node, and r On  represents the total number of 

samples of the right child node of the O  node. 

The fitting process of LightGBM in the residual tree is to 
draw their respective histograms for the features of each node 
before node splitting, and then calculate the respective gain of 
each feature according to the histogram. This gain is divided 
according to different value ranges. This method of using the 
histogram to calculate the gain is to discretize the value, 
which can greatly improve the efficiency of selecting the 
optimal segmentation point in the later work. After that, the 
optimal splitting point of the leaf nodes is divided. 
Considering that LightGBM itself adopts a leaf-by-leaf 
growth mode, the splitting point with the greatest gain among 
the leaf nodes is considered as the optimal splitting point. 
This can be more efficient and achieve higher accuracy. 

D. Modeling Process 
This paper realizes wind turbine fault diagnosis based on 

smote, rfecv, and stacking model fusion as shown in Figure 3. 
The specific steps are as follows: 

① In the data pre-processing stage, SCADA data are 
screened to eliminate invalid data that interfere with the 
prediction results. Then a sampling oversampling is 
performed on a small scale of data to prevent meaningless 
classification results caused by data imbalance. 

②After preprocessing, the recursive feature elimination 
and cross-validation RFECV algorithm based on a random 
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forest classifier is used. In this paper, 6-fold cross-validation 
is used. 
③After feature selection, divide the data into a training set 

and test set according to the ratio of 0.67:0.33. 
④The stacking model fusion method is used to model the 

training set. The basic learner uses XGBoost and LightGBM. 
The second layer uses logical regression to fuse the results 
obtained by the basic learner to improve the stability. 
Meanwhile, 6-fold cross-validation is used to prevent 
overfitting during model training. 
⑤Test the prediction results according to the test set. Then, 

view the classification results through the confusion matrix. 
Test according to the model performance measurement 
indicators such as accuracy, AUC, recall, and balance score 
F1. The experimental results are compared with gradient 
lifting tree, XGBoost, and LightGBM. 
 

 
 

IV. CASE ANALYSIS  

A. Over-sampling 
This paper uses the status data, warning data, and SCADA 

data of a foreign wind farm from May 1, 2014, to April 9, 
2015. The SCADA data contains 49026 records and 61 
features. As shown in Table Ⅰ.  
 

 
 

After feature preprocessing, 6869 normal samples and 298 
fault samples are retained. After smote, the number of normal 

samples remains unchanged, and the fault samples become 
6869. 

B. Feature Selection 
Through RFECV feature selection, it can be seen that when 

the number of selected features is 48, the performance 
reaches the best.  

After correlation analysis combined with thermal diagram, 
this paper will select 46 features for later model training. 

As shown in Figure 4, the 48 features are sorted according 
to their importance, and 46 of them are selected as 
representatives in combination with the correlation 
thermodynamic diagram between the features. These 
characteristics are shown in Table Ⅱ.  

In machine learning, a confusion matrix is actually used to 
calculate the classification error  [34]. The confusion matrix 
allows researchers to intuitively understand the effectiveness 
of the classification algorithm they use. A confusion matrix is 
an n-dimensional square matrix, and the dimension of the 
square matrix represents the category. The row coordinates 
and column coordinates of the matrix can represent reality 
and prediction respectively. 

Through the confusion matrix, it is easy to see whether the 
system will confuse the two classes, which is also the origin 
of the name of the confusion matrix. The stacking model 
fusion is used to train the data after feature selection, and the 
normal data and fault data are classified. The confusion 
matrix is shown in Figure 5. 
 

 
 

 
 

 
Fig. 3.  Flowchart of fault detection for a wind turbine 

TABLE I 
CHANGE OF SAMPLE SHAPE COUNTER THROUGH SMOTE 

 Normal Failure 
Proportion 95.84% 4.16% 

Original dataset shape Counter 6869 298 
Resampled dataset shape Counter 6869 6869 

 

 
Fig. 4.  RFECV via automatic tuning of the number of features selected 

with cross-validation 

 

 
Fig. 5.  Confusion matrix of normal and fault samples 
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C. Model evaluation 
As can be seen from the classification report of the 

confusion matrix in Table Ⅲ, where 0 represents normal data 
and 1 represents fault data. The recall rate can explain the 
correctness of this category. The greater the recall rate, the 
better the recognition effect of this category. F1 score, also 
known as balanced f score, is defined as the harmonic 
average of accuracy and recall. The F1 score indicator 
combines the results of the outputs of precision and recall. F1 
score is a measure of classification problems. The maximum 
is 1 and the minimum is 0. 

  precision *  recall 1 2*
 precision  recall 

F =
+

 (13) 

Support indicates the practical number of samples 
belonging to a category. Micro avg does not distinguish 
between sample categories and calculates the overall 
accuracy, recall, and F1. Weighted average, as the name 

suggests, is to add weight to the macro average. Its weight 
refers to the ratio of the number of samples belonging to a 
certain category to the amount of all samples. It can be seen 
from the accuracy, recall, or F1 score that the classification 
results have reached a good level. 
 

 
 

 
 

Finally, the accuracy of stacking model fusion experiment 
results is compared with XGBoost, LightGBM, and GBDT, 
as shown in the following Table Ⅳ. 

We can see whether, from AUC, precision, recall, or F1, 
the classification scores after the fusion of score and stacking 
model are better than the other three classifiers. Although in 
recall the score of LightGBM on the score is better than that 
of stacking model fusion. However, after comprehensive 
consideration, for the AUC index that can best represent the 
classifier performance, the AUC value of stacking is 
significantly greater than that of XGBoost, LightGBM, and 
GBDT. Therefore, in this paper, the classifier performance 
after the integration of the stacking model will be better. 

V. SUMMARY 
This thesis advances a stacking wind turbine fault 

diagnosis algorithm on account of feature selection, which 
uses the actual detection data of wind farm SCADA to realize 
fault diagnosis. Aiming at the problem of unbalanced data of 
sample labels, smote oversampling algorithm is adopted to 
achieve data balance. Recursive feature elimination and 5-
fold cross-validation RFECV algorithm are used to select 
features with high performance according to the importance 
of features. Finally, using the stacking model fusion method, 
the training sets are trained by two basic learners respectively, 
and the 6-fold cross-validation is used. Then these training 
sets and test sets are fused by the logistic regression LR 
algorithm in the second layer. Experiments show that the 
accuracy of stacking is 0.99044, which is higher than that of 
other single learners. Wind turbine fault diagnosis on account 
of stacking model fusion provides new thinking for wind 
turbine fault diagnosis through data mining and big data 
analysis. 
 

TABLE Ⅱ 
THE FEATURE DESCRIPTION OF THE WIND TURBINE 

No. Feature Units No. Feature Units 

1 ava. windspeed m/s 25 Sys 2 inverter 2 
cabinet temp ℃ 

2 max. windspeed m/s 26 Sys 2 inverter 3 
cabinet temp ℃ 

3 min. windspeed m/s 27 Sys 2 inverter 4 
cabinet temp ℃ 

4 ava. Rotation r/s 28 Front bearing 
temp ℃ 

5 max. Rotation r/s 29 Rear bearing 
temp ℃ 

6 min. Rotation r/s 30 Pitch cabinet 
blade A temp ℃ 

7 ava. Power Kw 31 Pitch cabinet 
blade B temp ℃ 

8 max. Power Kw 32 Pitch cabinet 
blade C temp ℃ 

9 min. Power Kw 33 Rotor temp. 1 ℃ 

10 
ava. Nacelle 
position including 
cable twisting 

° 34 Rotor temp. 2 ℃ 

11 Operating Hours 35 Stator temp. 1 ℃ 
12 Production kWh 36 Stator temp. 2 ℃ 

13 Production minutes 37 Nacelle ambient 
temp. 1 ℃ 

14 ava. reactive 
Power Kw 38 Nacelle ambient 

temp. 2 ℃ 

15 max. reactive 
Power Kw 39 Nacelle temp ℃ 

16 min. reactive 
Power Kw 40 Nacelle cabinet 

temp ℃ 

17 ava. available P 
from wind Kw 41 Main carrier 

temp ℃ 

18 ava. available P 
technical reasons Kw 42 Rectifier 

cabinet temp ℃ 

19 
ava. Available P 
force majeure 
reasons 

Kw 43 Yaw inverter 
cabinet temp ℃ 

20 
ava. Available P 
force external 
reasons 

Kw 44 Fan inverter 
cabinet temp ℃ 

21 ava. blade angle A ° 45 Ambient temp ℃ 

22 Sys 1 inverter 3 
cabinet temp ℃ 46 Tower temp ℃ 

23 Sys 1 inverter 6 
cabinet temp ℃ 47 Control cabinet 

temp ℃ 

24 Sys 2 inverter 1 
cabinet temp ℃ 48 Transformer 

temp ℃ 

 
 
 

TABLE Ⅲ 
CLASSIFICATION REPORT OF THE CONFUSION MATRIX 

 Precision Recall F1_score Support 
0 0.97 0.95 0.96 2242 
1 0.95 0.97 0.96 2292 
Accuracy   0.96 4534 
Macro avg 0.96 0.96 0.96 4534 
Weighted avg 0.96 0.96 0.96 4534 
 
 

TABLE Ⅳ 
COMPARISON OF EVALUATION INDEXES OF EACH MODEL 

COMPARISON OF RESULTS 
index roc_acu precision recall f1_score 

stacking 0.99044 0.94916 0.96945 0.95920 
XGBoost 0.98821 0.93797 0.96989 0.95366 

LightGBM 0.98908 0.93813 0.97251 0.95501 
GBDT 0.97988 0.91779 0.94502 0.93121 
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