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Abstract—In this research, we apply a mathematical model
to investigate resonance in a 2Dxy rectangular basin for non-
homogeneous waves. The shallow water equations are used as
our governing equations. Analytical and numerical solutions
to the mathematical model are used to determine the natural
wave period responsible for resonance. Additionally, we explore
resonance that happens when various wave forms interact.
The numerical model are validated using comparisons with
analytical solutions. Both procedures give comparable results.
Additionally, we analyze the effect of modes and dimensions on
resonance.

Index Terms—Wave resonance, Natural resonant period, 2D
Shallow water equations, finite volume method

I. INTRODUCTION

SEICHE motions in lakes can be harmful when the period
of an external force on the water coincides with the

lake’s natural period. This phenomenon is called resonance,
and it can cause minor disruptions to the ecosystem surround-
ing the lake. Extreme versions of such occurrences result
in property damage and/or human fatalities. Therefore it is
essential to analyze this phenomenon and comprehend its
characteristics in order to avoid undesirable consequences.
Several studies have been conducted to explore the pres-
ence of resonance in lakes [1], [2], [3]. Meanwhile, several
academics have examined the resonance phenomenon itself,
concentrating on the one-dimensional case where the wave
mode is homogeneous in the y direction. For the 1D ap-
proach, the available literature includes field measurements
explained briefly in [4], [5], experimental studies [6], [7],
analytical explorations [8], [9], and studies combining experi-
mental and analytical approaches [10]. Using a multiple-scale
perturbation method, Wu and Liu [9] have shown that initial
ocean wave groups can cause a small-frequency resonant. In
addition, linear models have been used to investigate basins
with regular forms, constant depths, and friction-less bottoms
are [11], [12], [13], [14]. Furthermore, since resonant waves
can be highly dangerous to the surroundings, engineers
and researchers in related fields are particularly interested
in establishing the natural resonant period and magnitude
of resonant waves. Several scholars have used analytical
approaches to predict the resonant periods for various kinds
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of topographies. For example, the Linear Shallow Water
Equations model was used to investigate seiches and harbor
oscillations in basins of various one-dimensional geometric
forms, including their resonant periods [15], [16], [17], [18],
[19]. However, all of the studies cited have only undertaken a
1D approach, implying that the wave disruption that triggers
resonance occurs only in the x direction. Meanwhile, wave
disturbance on lakes may not be uniform in either the x or y
direction. Therefore, a two-dimensional analysis is required
to better model resonance and determine a more realistic
resonant wave period.

Previously, the 2D approach was used to identify the
presence of two kinds of seismic wave resonant modes
[20]. Others have applied a 2D potential-flow theory to
investigate the resonance modes of sloshing waves using a
time-independent finite difference method and the Boundary
Element Method [21], [22]. On the other hand, an experimen-
tal study has performed to record the dynamic of hydraulic
jumps in an oscillating rectangular container [23]. Another
study employs various iteration method to construct periodic
wave and solitary wave solutions for the long–short wave
resonance equations [24]. Few other scholars have dived
deeper into the subject, focusing not only at the resonance
phenomenon, but also at the natural frequency (period) that
corresponds to its occurrence. For example, Jung et al.
[25] assessed the effect of given natural frequencies on
homogeneous sloshing waves in a 2D rectangular tank using
level set method. Furthermore, Cueva et al. [3] have studied a
more specific case in which the natural frequencies of seiches
in Lake Chapala, Mexico are analyzed using the HAMSOM
model. Despite the fact that studies have been done to explore
the resonance phenomena of non-homogeneous waves and
their natural frequency (period), nearly none of them derive
the natural periods analytically, especially by using a 2D
model. One of the very few works addressing the derivation
of the natural period of seiches in a 2D rectangular basin is
presented by Rabinovich [26] who has derived the periods
in question using a Potential Theory. These results are
commonly utilized by engineers as practical guidelines for
estimating a basin’s resonant periods. However, the values
of natural periods stated in the cited study are only relevant
to a 2D rectangular basin when the width is half the length,
which means that the values are not applicable if the length
and width of the basin differ from that value. This study
extends Rabinovich’s findings by deriving a general formula
for the natural period of a 2D rectangular basin of any length.
A numerical scheme is formulated to simulate resonance in
2D rectangular basins of arbitrary dimensions with minimal
computational cost.

In our current research, we shall concentrate on determin-
ing the natural periods of seiches in a lake analytically. In
this scenario, the lake will be represented by the simplest
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2D domain, which is a rectangular closed basin. To further
explore the issue, study will be undertaken on a variety of
wave mode types. The 2D shallow water equations model, a
relatively simple model, will be used. Several prior studies
have employed shallow water equations to evaluate wave
propagation in various circumstances, particularly in 1D
cases. For instance, Magdalena et al. [27] used the equations
to model wave shoaling. while others extended this work
by considering rigid and porous obstacles in modelling fluid
flows [28], [29]. Rif’atin and Magdalena [30] have also ap-
plied the two-layer shallow water equations to study internal
wave propagation over submerged breakwaters. Andadari and
Magdalena [31] have implemented non-linear shallow water
equations to simulate wave run-up. In the case of 2D Shallow
Water Equations, the implementation can be found in [32],
[33], [34] to model different wave phenomena, such as wave
attenuation by porous structures, dam-break simulation, wave
refraction, and wave shoaling. Aside from shallow water
equations, there are a number of other models that may be
used to simulate traveling waves under various situations. A
study using regularized boundary integral method by Tsao
shows a significant affect at the dynamic characteristics
of the sloshing behavior at the presence of porous media
in a water tank [35]. Another study shows the use of
a new viscous-inviscid interaction (VII) method on local
behavior of the sloshing jet induced by the fluid impact
[36]. Meanwhile, Kumar deals with the (2+1)-dimensional
potential Kadomtsev-Petviashvili (pKP) equation, which is
used to describe the dynamics of a wave of small but finite
amplitude in two dimensions [37]. However, for this work,
the linear shallow water equations were selected since they
are simpler and much easier to solve, both analytically and
numerically. This is a significant benefit, given that we intend
to model the resonance phenomenon and derive the resonant
periods analytically and numerically. Moreover, numerous
previous studies for 1D cases have demonstrated their ability
to properly model resonance [15], [16], [38]. The shallow
water equations are therefore considered appropriate for this
study. Apart from obtaining the analytical solution for the
natural periods, we also solved the model numerically using
a staggered finite volume method. Aside from this one, a
study shows the use of finite volume element method in
space to precisely conserve the global mass and energy at
the discrete level [39]. Another study using the finite volume
element method (FVEM) in space and the discrete variational
derivative method (DVDM) in time by Yan derives schemes
for Gardner equation [40]. As the finite volume method is
devoid of damping error, it is ideal for investigating changes
in wave amplitude caused by physical phenomena. It is used
to formulate a highly efficient and accurate numerical model.
Thus, this paper presents a novel and complete study of
resonance in a generalized rectangular two-dimensional basin
by analytically and numerically solving the Shallow Water
Equations.

Furthermore, this paper is organized as follows. Section
2 introduces the two-dimensional Shallow Water Equations
used to represent the physical movements of seiches, while
Section 3 discusses the derivation of the analytical natural
resonant period for each basin. In Section 4, we describe a
computational scheme based on the staggered finite volume
method. In Section 5, the numerical findings are presented

and compared to the analytical solutions. Section 6 concludes
with a succinct conclusion.

II. MATHEMATICAL MODEL

Fig. 1. The illustration of wave propagation over a 2D rectangular basin

In this section, a mathematical model to investigate the
resonance phenomenon is discussed. We consider waves
propagating in a lake with wave elevation η, horizontal
velocity u, and vertical velocity v as depicted in Figure
1. The approaching wave flows from the lake’s edge to
its centre, entering the domain from the outside. The term
h = η + d denotes the total water depth. We assume that
the value of η is much smaller than h, so we can rewrite the
total depth as h ≈ d, which is essentially the water depth
measured at the undisturbed water condition.

The 2Dxy Shallow Water Equations consist of one mass
conservation equations and two equations for momentum on
the x−axis and momentum on the y−axis, respectively.

ηt + (hu)x + (hv)y = 0, (1)

ut + gηx = 0, (2)

vt + gηy = 0, (3)

where g = 9.81m/s2 denotes acceleration due to gravity.
This paper aims to solve Equations (1) - (3) analytically
and numerically for 2D rectangular lakes for various waves
modes.

III. ANALYTICAL SOLUTIONS

From the equations (1), (2), and (3) above, we will then
solve the analytical solutions in this segment. The solution
allows us to discover the natural resonant frequency of a
wave as it propagates over a rectangular 2D basin.

The wave is assumed to be monochromatic. As such, the
functions η, u, and v are defined below.

η(x, y, t) = Ae−ikxxe−ikyye−iωt, (4)

u(x, y, t) = αAe−ikxxe−ikyye−iωt, (5)

v(x, y, t) = βAe−ikxxe−ikyye−iωt. (6)

These assumed solutions allow us to define a dispersion
relation, from which the analytical resonant frequency of a
wave propagating in a rectangular basin is obtained.

First, we substitute Equations (4) and (5) into (2) will yield

iαω + igkx = 0, (7)
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Thus,

α =
−gkx
ω

. (8)

Substituting (4) and (6) to (3) yields

iβω + igky = 0, (9)

which may also be written as

β =
−gky
ω

. (10)

After we obtained α and β, then we proceed to substitute
them into Equation (1), hence

ω − ghk2x
ω

−
ghk2y
ω

= 0, (11)

ω2 − gh(k2x + k2y) = 0, (12)

ω =
√
gh(k2x + k2y). (13)

From the dispersion relation above (13), we could define
the natural wave period as follows

T =
2π√
gh

(k2x + k2y)
− 1

2 . (14)

Assume a rectangular basin with length L(x = (0, L)) and
width l(y = (0, l)). As kx = mπ

L and ky = nπ
l , the natural

wave period can be written as

T =
2π√
gh

(
(
mπ

L
)2 + (

nπ

l
)2
)− 1

2

(15)

Where m and n denote the number of nodal lines across
and along the basin, respectively. When m = 1 and n = 0,
we can consider the domain to be a 1D closed rectangular
domain. In this case, the natural period would be equal to
T = 2L√

gh
. This is the formula for the natural resonant period

of a 1D rectangular closed basin [15]. The formula for the
natural period obtained using our 2D model confirms the
result from a 1D model. Additionally, this implies that the
derived formula is general; it is equally applicable in 1D and
2D domains.

IV. NUMERICAL METHOD

Using a staggered finite volume method, we will solve
Equations (1) - (3) numerically. First, consider the computa-
tional domain x = [0, L] and y = [0, l] with the observation
time t = [0, T ]. Figure 2 illustrates the numerical domain
that has been divided into rectangular grids of ∆x ∗∆y. We
also divided the time interval t into Nt time steps.

After setting up the domain, we then continue to approx-
imate the mass conservation equation (1) at units centered
on points labeled ηi,j , while the units centered on points
labeled by ui− 1

2 ,j
(the blue square) and vi,j− 1

2
(the red

square) are respectively used for calculating the momentum
equations in x-direction (u) (2) and in y-direction (v) (3),
with i = 0, 1, 2, ..., Nx and j = 0, 1, 2, ..., Ny. The values
of the surface elevation (η) and water depth (h) are computed
at full-grid points xi,j using the mass conservation equation
(1). Meanwhile, the values of the horizontal velocity in x-
direction (u) and y-direction (v) are computed at half-grid
points xi− 1

2 ,j
and xi,j− 1

2
using the momentum equation (2)

and (3), respectively.

Fig. 2. Illustration of 2D staggered grid discretization.

Here, we consider wave resonance in a rectangular basin,
thus the water depth is a constant. The numerical scheme
is written below. The approximation of η at spatial partition
point xi,j and time partition point tn represented by ηni,j ,
with n = 1, 2, ..., Nt.

(16)

ηn+1
i,j − ηni,j

∆t
+

(hu)n
i+ 1

2 ,j
− (hu)n

i− 1
2 ,j

∆x

+
(hv)n

i,j+ 1
2

− (hv)n
i,j− 1

2

∆y
= 0,

un+1
i+ 1

2 ,j
− un

i+ 1
2 ,j

∆t
+ g

ηn+1
i+1,j − ηn+1

i,j

∆x
= 0, (17)

vn+1
i,j+ 1

2

− vn
i,j+ 1

2

∆t
+ g

ηn+1
i,j+1 − ηn+1

i,j

∆y
= 0. (18)

Equations (16), (17), and (18) allow a numerical solution
to be obtained for the case of waves propagating in a two-
dimensional basin with a flat bottom.

V. RESULTS AND DISCUSSION

In this section, we will implement the numerical scheme
from the previous section to simulate resonance in a 2D-
rectangular basin. Numerous simulations are conducted to
reproduce the resonance of each mode parameter (n or m)
in a rectangular basin of uniform depth. All simulations
presented in this section are performed for T = 30 s
using several computational domains, which are [20, 10]m,
[20, 20]m, and [10, 30]m with a water depth of d = 10
m, uniformly. To fulfill the stability condition, we set the
time step for each iteration as ∆t = 0.5∆x√

gd
. Each domain

is then partitioned into smaller sections with a length of
∆x = 0.2 m and a width of ∆y = 0.2 m. All the initial
velocities along the x- and y-axes equal zero. The boundaries
at x = 0 and y = 0 are open. All other boundaries are
hard walls. A harmonic wave will then enter from one or
both open boundaries with an amplitude of 0.1 m and an
angular frequency of ω = 2π

T , with a period of T as written
in Equations (15).

Figure 3 shows resonance (indicated by the gradual in-
crease in wave amplitude) in a 2D rectangular basin with
mode of m = 1 and n = 0, compared to the same
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Fig. 3. Simulation results of the resonance phenomenon in a rectangular
basin (l = 0.5L)with mode m = 1 and n = 0.
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Fig. 4. Simulation results of the resonance phenomenon in a square basin
(l = L)with mode m = 0 and n = 2.
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Fig. 5. Simulation results of the resonance phenomenon in a rectangular
(l < L and l > L)and square basin (l = L)with mode m = 2 and n = 0.

occurrence in a 1D closed rectangular basin. The comparison
is acceptable since this mode configuration of m = 1, n = 0
represents the 1D closed rectangular basin presented in [15].
The natural period of a wave in a 1D basin is exactly the
same as that of a wave in a 2D basin (see Section 3).
The profiles of both waves are also identical (Figure 3).
In addition, take a look at Figure 4, where resonance in
a square basin of mode m = 0, n = 2 is shown. Notice
that the resonant wave profile is similar to the one presented
in Figure 3. However, there is a slight difference. The
wave amplitude fluctuates throughout the observation period
instead of undergoing a gradual increase. Despite the fact that
the wave amplitude fluctuates during the simulation, we can
still see an increasing trend dominating the plot. Therefore,
the captured phenomenon is still considered resonance.

Furthermore, in order to further explore the resonance
in a 2D domain, simulations also conducted for different
configurations of L and l as well as various values of mode
m and n. To analyze wave profile differences caused by
differing L and l configurations, we can take a look at Figure
5. It is shown in the figure that for m = 2, n = 0, when
L = l (square basin), the resonant wave amplitudes are much
smaller compared to that in rectangular case (L < l), and the
periods much larger. In cases where L > l, the resonant wave
profile and period are found to be exactly the same with the
one for square basin case. The results provided in Figure
5 are explained by the effect of varied modes and length
configurations on the resonant wave’s maximum amplitude.
The results of the simulations with varied modes and length
configurations are summarized in Table I.

TABLE I
AMPLITUDES FOR EACH MODE OF EVERY BASINS FOR FLAT BOTTOM

CASE MEASURED WHEN T = 30S.

Mode No. Rectangular Square Rectangular
m n (L > l) (L = l) (L < l)
1 0 1.403 1.403 2.469
2 0 1.368 1.368 1.542
0 1 2.469 1.403 1.008
1 1 3.275 2.806 3.149
2 1 1.370 2.430 2.527
0 2 1.542 1.368 1.004
1 2 2.753 2.430 3.467

From Table I, we can draw some conclusions about the
effect of modes and length configurations on resonant wave’s
maximum amplitudes. To begin, when the mode parameters
are set as m > n, a basin with the length configuration
L > l will have a smaller amplitude than a basin where L
is smaller than l. On the other hand, when m < n, basins
where L > l have larger amplitudes than basins where L
is smaller than l. Second, most of the basins with non-
zero m and n values have greater amplitudes than those
with at least one parameter equal to zero. This phenomena
occurs in rectangular as well as square basins. Thirdly, for
cases where one mode has a value of zero (m = 0 or
n = 0), the resonant wave amplitude increases if the value
of L (for n = 0 case) or l (for m = 0 case) decreases,
resulting in the pattern demonstrated in Figure 5. This can
be explained by a decrease in period when a wave enters a
narrow channel and vice versa. Since the period is much
smaller in a narrow basin, the wave amplitude increases
more quickly. This is because a wave in a narrow channel
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possesses more energy compared to a wave entering a wider
channel, resulting in a faster increase in wave amplitude.
The part of the basin that produces this effect corresponds
with the non-zero mode of the rectangular basin or channel.
In this case, we have explicitly established that the mode
m corresponds with length L and n corresponds with l.
Therefore, if m ̸= 0, n = 0, the value of L is the one that we
need to assess. When m = 0, n ̸= 0, we need to observe l.
The wave resonant amplitudes will be inversely proportional
to changes in L or l.

Now, to observe the differences on the resonant wave
profile in each mode and each length configuration further,
we have conducted several simulations with various param-
eter values. First, we will evaluate the relative wave period,
which is the ratio between the resonant period for a mode
(m,n) and the resonant period of the fundamental mode
(m = 1, n = 0), in a rectangular basin with a length of
L = 20 m and a width of l = 0.5L = 10 m. The relative
wave periods are denoted by Tmn/T10. Comparisons be-
tween analytically derived solutions, numerically calculated
periods, and Rabinovich’s results [26] are listed in Table II.

TABLE II
COMPARISON OF ANALYTICALLY-DERIVED, NUMERICALLY-OBTAINED,

AND RABINOVICH’S RATIOS OF NATURAL RESONANT PERIODS FOR
EACH MODE OF RECTANGULAR BASIN (l = 0.5L) FOR FLAT BOTTOM

CASE.

Mode No. Mode Forms Relative Period
m n Tmn/T10

Analytical Rabinovich Numerical

1 0 1.000 1.000 1.0049

2 0 0.500 0.500 0.5024

0 1 0.500 0.500 0.5054

1 1 0.447 0.447 0.4705

2 1 0.354 0.354 0.423

0 2 0.250 0.250 0.252

1 2 0.243 0.243 0.253

In Table II, it can be seen the comparison between the nat-
ural relative periods we derived, analytically and numerically,
and the ones obtained by Rabinovich [26] using a Potential
Theory. Evidently, our analytical solutions are exactly the
same as those derived by Rabivonich using a different
mathematical model. Comparison between the analytical and

numerical wave relative periods shows that the values are
quite similar. Therefore it is also acceptable to say that our
numerical model confirms the analytical solutions fairly well.
In addition, we have also undertaken the comparisons for
length configurations L = l and L < l. The comparisons
for a 2D closed square basin are presented in Table III for
L = l = 20 m. Meanwhile, the comparisons for L < l
scenario are displayed in Table IV for l = 30 m and L = 10
m.

TABLE III
COMPARISON OF ANALYTICALLY-DERIVED AND

NUMERICALLY-OBTAINED RATIO OF NATURAL RESONANT PERIODS FOR
EACH MODE OF SQUARE BASIN (l = L) FOR FLAT BOTTOM CASE.

Mode No. Mode Forms Relative Period
m n Tmn/T10

Analytical Numerical

1 0 1.000 1.0049

2 0 0.500 0.5024

0 1 1.000 1.0049

1 1 0.7071 0.8545

2 1 0.4472 0.4978

0 2 0.500 0.5024

1 2 0.4472 0.4978

For Tables III and IV, we did not compare our analyt-
ical solutions and numerical results to those obtained by
Rabinovich, since only data for the case of l = 0.5L are
available. Therefore, Table III and IV will only present and
compare our analytical and numerical derived natural relative
periods. From both tables, it is quite clear how different
the wave natural relative periods in square and rectangular
basins (L < l). In general, the relative periods in rectangular
basins with L < l are considerably larger than those in
square basins. These are also generally larger than or equal
to those in rectangular basins with L > l. In addition, the
numerically derived relative periods are also quite similar to
the analytical ones. This indicates that our numerical scheme
can successfully approximate the analytical solutions for all
variations of modes and length configurations.

VI. CONCLUSION

2Dxy Shallow Water Equations are able to accurately
simulate resonance phenomena in a 2Dxy rectangular basin.
The model investigated the oscillations in different uniform-
depth-basins with various parameters (m and n). The model
was solved analytically to determine the general formula for
the natural resonant period for waves propagating in a lake,
expressed in terms of the natural resonant period of waves
propagating in a lake with no bottom friction. A numerical
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TABLE IV
COMPARISON OF ANALYTICALLY-DERIVED AND

NUMERICALLY-OBTAINED RATIO OF NATURAL RESONANT PERIODS FOR
EACH MODE OF RECTANGULAR BASIN (L < l) FOR FLAT BOTTOM CASE.

Mode No. Mode Forms Relative Period
m n Tmn/T10

Analytical Numerical

1 0 1.000 1.0108

2 0 0.500 0.5049

0 1 3.000 3.0117

1 1 0.9487 1.0116

2 1 0.4932 0.5047

0 2 1.500 1.5051

1 2 0.8320 0.9453

scheme is then constructed using a finite volume method on
a staggered grid. The numerically derived natural resonant
periods are then compared against the analytically derived
and Rabinovich’s [26] solutions to validate the numerical
scheme. Moreover, simulations of the resonance phenomena
in other types of basins, such as square and different rect-
angular shapes, are done to investigate the trend. For closed
basins with rectangular type, if the wave parameters fulfill
m > n, waves in basins with L > l have lower amplitudes
than waves in basins with L < l, and vice versa for m < n.
Furthermore, waves in basins with parameters of m ̸= 0 and
n ̸= 0 have higher amplitudes compared to waves in basins
with at least one of their parameters equal to zero.
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