
 

Abstract—Power system is the primary basis for national 

development, and electricity load prediction is an essential part 

of the power system. Accurate short-term load forecasting can 

ensure the stable operation of the power system. To improve the 

accuracy of short-term load forecasting, a hybrid prediction 

model with an improved Carnivorous Plant Algorithm (ICPA) 

to Optimize the Group Method of Data Handling (GMDH) and 

Long Short-term Memory (LSTM) is proposed. This prediction 

model includes Improved Complete Ensemble Empirical Mode 

Decomposition Adaptive Noise (ICEEMDAN), Information 

Entropy (IE), LSTM, GMDH, and ICPA. Firstly, ICEEMDAN 

is applied to the original load data to obtain the Intrinsic Mode 

Functions (IMF) with different characteristic information. The 

obtained IMFs are reconstructed according to the IE. Then, the 

reconstructed IMFs are predicted using LSTM and GMDH 

forecasting models, respectively. Finally, the final forecasting 

results are weighted by the optimal weights obtained using 

ICAP. To verify the performance of the model, two power load 

datasets are selected as test datasets. And Mean Absolute 

Percentage Error (MAPE), Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), and inequality coefficient (TIC) 

are selected as indicators. The prediction model proposed in this 

paper outperforms other prediction models in all indicators. 

 

Index Terms—short-term load forecasting, long short-term 

memory (LSTM), group method of data handling (GMDH), 

improved carnivorous plant algorithm (ICAP). 
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I. INTRODUCTION 

ue to the rapid development of the social economy and 

technology of science, power resources have become 

increasingly important in the daily life of people. This also 

leads to increasing demand for electricity [1, 2]. The high 

accuracy of electric power prediction plays an irreplaceable 

role in ensuring a stable electric power supply. In particular, 

STLF not only supplies a reliable basis for the secure and 

stable running of the whole power system, and whole power 

system scheduling planning but also saves the consumption 

of power generation energy for society [3]. However, in the 

case of the rapid growth of power demand, the precision of 

the current load forecasting cannot guarantee the reasonable 

dispatch of the power system, resulting in the phenomenon 

that the supply of power resources usually exceeds power 

demand. Therefore, how to improve power load forecasting 

is the current trend of research. 

Scholars in the field of electricity load have classified load 

prediction into the following three types based on the load 

prediction period [4]: Short-Term Load Forecasting (daily 

load prediction and weekly load prediction) for economical 

operation planning, real-time control, and safety analysis [5, 

6]. Medium-Term Load Forecast (monthly and annual load 

forecast) for fuel supply, unit maintenance planning, etc. And 

Long-Term Load Forecasting (3-5 years or even longer load 

prediction for whole power system, equipment procurement, 

etc. STLF runs through the power system to ensure the stable 

running and reasonable dispatch of the whole power system. 

Besides, STLF is the basis of Medium-Term and Long-Term 

Load Forecasting. Therefore, Scholars have proposed many 

STLF methods, including heritage forecasting methods and 

new artificial intelligence forecasting methods [7]. 

In 1971, Christiaanse used an adaptive system based on 

general exponential smoothing to forecast hourly load data 

[8]. Subsequently, Charytoniuk et al. proposed a predictive 

model combining the advantages of nonparametric regression 

application. And the validity of the model was verified in 

hourly load data [9]. Considering the complex random 

characteristics of load data, J. Li et al. proposed the STLF 

model based on multiple linear regression (MRL) [10]. To 

achieve optimal distribution system operation planning, a 

simple load prediction method incorporating Autoregressive 

Integrated Moving Average (ARIMA) is proposed by J.C. 

Lopez [11]. These traditional prediction models are simple to 

use and fast to predict. However, because the nonlinearity of 

power load data is very complex, the prediction accuracy and 

stability of traditional load prediction methods are low [12]. 

Researchers and academics in related fields have proposed 

many new artificial intelligence neural network prediction 
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methods to solve these problems. W. Liu et al. proposed the 

STLF model combining the advantages of the GMDH neural 

network and proved through experiments that the forecasting 

precision of the proposed STLF model is higher as compared 

to the ARIMA forecasting model [13]. H. Bian et al. proved 

that the BP neural networks have good prediction ability and 

prediction stability with high prediction accuracy in the field 

of STLF [14]. H. Shi et al. proved that the load prediction 

model based on the Recurrent Neural Network (RNN) has a 

good prediction effect and prediction stability in the field of 

STLF [15]. Shahzad and Afshin experimentally proved that 

long-short-term memory (LSTM) neural network has high 

prediction accuracy and high adaptability in the field of 

short-term load prediction [16]. 

Although the statistical forecasting model and the artificial 

intelligence forecasting model can accomplish high-precision 

short-term load forecasting, some problems also exist, such 

as long convergence time, high complexity, and complexity 

linear modeling. To solve the above problems, various hybrid 

forecasting models have been widely introduced into the 

research of power load forecasting [17,18]. To increase the 

precision of power load forecasting, P. Singh used a novel 

evolutionary-based algorithm to solve the optimal network 

weights for a neural network prediction model [19]. LSTM 

and convolutional neural networks (CNN) are combined by 

Rafi et al to form a new hybrid prediction mode. This load 

prediction model is used in the Bangladesh power system for 

validation, and they concluded that this hybrid power load 

prediction model has greater stability and higher forecasting 

precision compared to the single prediction model [20]. In 

addition, Zheng et al. proposed a hybrid load forecasting 

model that combines an adaptive network fuzzy inference 

system (ANFIS), multilayer perceptron (MPL), and seasonal 

autoregressive integrated moving average (SARIMA), in 

addition to demonstrating the validity and stability of the load 

forecasting model experimentally [21]. 

Due to the randomness and uncertainty of the electricity 

consumption of customers, the time series of the electric load 

has complex characteristics. In addition to this, load data with 

different complexity also have different feature messages, 

which results in the prediction accuracy of the load prediction 

methods will vary depending on the data information features. 

Therefore, the Intrinsic Mode Function (IMF) load prediction 

methods combined with the signal analysis method has also 

received a lot of enthusiasm from academics and researchers. 

There are various methods for signal analysis, including 

EMD, which decomposes complex data into multiple IMFs, 

and each IMF will contain different local feature information 

[22]. EMD has been improved to obtain CEEMDAN, which 

effectively solves the transmission of white noise [23]. Li et 

al. suggested a hybrid power load forecasting model with a 

signal decomposition process combining CEEMDAN, Gated 

Recurrent Unit (GRU), and Improved Grey Wolf Optimizer 

(IGWO) and verified that the hybrid load forecasting model 

with good forecasting precision and strong nonlinear fitting 

ability [24].  

In summary, a hybrid STLF model that incorporates the 

advantages of LSTM and GMDH neural networks to increase 

the forecasting precision is proposed in this paper. The main 

contributions of this paper are as follows: (1) In the process 

of power load data handling, to more effectively capture the 

features information of the power load data, this paper uses 

ICEEMDAN to decompose the raw electric load data into 

multiple IMF components containing different characteristics. 

(2) In the paper, Information Entropy (IE) is introduced to 

avoid the prolonged prediction time and increased prediction 

error caused by too many IMF components. The specific step 

is to reconstruct the IMF with the same IE. (3) This paper 

proposed to use LSTM and GMDH to predict the restructured 

components separately. Then the results of two predictions 

are weighted and summed to obtain better prediction results. 

(4) In the paper, ICPA is proposed to find the optimal weights 

for the prediction results of two neural networks to increase 

the forecasting precision. (5) This paper tests six different 

prediction models on two daily average load datasets. The 

average absolute percentage error (MAPE), the root means 

square error (RMSE), the mean average error (MAE), and the 

inequality coefficient (TIC) are used to analyze the validity of 

the prediction mod. 

II. DATA PROCESSING METHODS 

The two load data sets in the experiment are derived from 

the 5-year average daily loads of two regions in Chongqing, 

China, and each data set contains 2119 load data. The load 

data in the first four years of each dataset is used as the 

training set, and the electric load data in the fifth year is used 

as the test set. 

A. Normalization 

The data after the normalization process as the input value 

of the neural network will improve the forecasting precision 

and stability of the neural network [25,26]. Therefore, it is 

essential to normalize the two sets of raw data before making 

predictions. Normalization is the process of scaling a set to [0, 

1] according to certain rules. The processing is shown in the 

equation(1). 

 

 
-

-

min

max min

P P
P

P P
 =   (1) 

 

Where, P denotes the load value before normalization, Pmin 

is the smallest value in the original load data, as well as Pmax 

is the biggest value in the original load data. 

B. Improved Complete Ensemble Empirical Mode 

Decomposition Adaptive Noise (ICEEMDAN) Algorithm 

Because they are influenced by many factors, electric load 

data have a high degree of complexity. If the power load data 

is forecasted straight, the forecast accuracy will result in low 

prediction accuracy due to its high complexity. This study 

decomposes the raw load data into multiple IMF components 

and then performs separate forecasting to solve this problem. 

EMD, which decomposes the original data into data series 

with different characters, is the most commonly used method 

in data processing [27]. EEMD is an EMD-based resolution 

method that solves the modal mixing problem in the EMD 

decomposition process [28]. However, the results obtained in 

EEMD decomposition will produce reconstruction errors. In 

order to eliminate errors, CEEMDAN which takes the total 

mean value of IMF components of each order of EEMD is 

commonly used in related fields [29]. The IMF components 

decomposed by CEMMDAN still have defects and contains 
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Fig.1.ICEEMDAN decomposition of dataset 1(a) and dataset 2(b) 

 

residual noise [30]. For this problem, Colominas at el. 

proposed a new method called ICEEMDAN, which was 

obtained by improving on the basis of CEEMDAN. The 

difference be- tween the new method and CEEMDAN is that 

CEEMDAN directly appends Gaussian white noise in the 

decomposition process, while ICEEMDAN appends the kth 

IMF component of white noise after EMD decomposition 

[31]. The original load data is defined as P. Ek (·) denotes the 

kth order IMF component generated by the decomposition of 

the original data by EMD. N (·) indicates the local average of 

the solved signal, and Wi denotes the white noise sequence 

with a mean of 0. β is the standard deviation of white noise. 

The decomposition steps are as follows. 

Step1: Add the white noise sequence Wi to the original load 

time series to construct the new series. 

 

 ( ) ( )( )i i

0P P+ E W=   (2) 

 

Step2: The EMD decomposition method is used to process 

the load time series after adding noise to obtain the first set of 

residuals (R1). 

 

 ( )

1 ( ( ))iR N P=   (3) 

 

Step3: The first IMF component is obtained by subtracting 

the residuals from the original data series. 

 

 1 1-d P R=   (4) 

 

Step4: The IMF of white noise is selected according to the 

order of the IMF components of the load data to be added to 

the residue obtained in the previous step. The EMD method is 

applied with the decomposition of the second set of residuals 

R1+βE(W(i)). d2 denotes the second IMF component. 

 

 ( )

2 1( ( ( )))iR N R E W= +   (5) 

 2 1 2d R R= −   (6) 

 

Step5: Repeat the above steps until the remaining residuals 

are no longer decomposed. All components and residuals are 

exported. The original data is decomposed as the equation(7). 

 

 ( ) ( ) ( )
K

i

i=1

P t = IMF t + R t   (7) 

 

The IMF components of the two load data sets are shown 

in Fig.1. 

C. Information Entropy (IE) 

Due to the high complexity of the raw load data, too many 

IMF components containing different feature information are 
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TABLE I.  
INFORMATION ENTROPY OF THE IMFS OF DATASET 1 AND DATASET 2 

IMF 1 2 3 4 5 6 7 8 9 10 11 
DATA 1 2.9051 3.6603 3.6486 3.5408 3.3697 3.1306 3.2407 3.5819 3.5598 3.2301 3.6679 
DATA 2 3.4354 3.5883 3.5601 3.3854 3.5611 3.3883 3.4242 3.5918 3.6111 3.1035 3.6121 

obtained. Since the forecasting model in this study forecasts 

each IMF component separately, the more IMF component 

there is, the longer the forecasting time will be. In addition, 

too many IMF components can also lead to an increase in the 

error of prediction results. To solve the above problem, IE is 

introduced, which measures the information and uncertainty 

of the data. The lower the IE value of a set of data means that 

the set of data is more orderly, on the contrary, the higher the 

IE value of a set of data means that the set of data is more 

disorderly [32]. After decomposing the raw data into multiple 

IMF components using ICEEMDAN during data processing, 

the information entropy of each IMF component is calculated 

according to equation (8). Then, the IMF component with a 

similar IE was restructured. The calculation formula of IE is 

as equation (8). 

 

 2

=1

( )= log ( )
N

k k

k

IE X - P P   (8) 

 

 IE denotes the information entropy value. X is the set of 

load data. N is the numberers of data in the set of load data. P 

represents the probability. Pk is the percentage of the kth load 

data in the data set. The information entropy of each IMF 

component for the two load datasets is shown in TABLE I. 

Based on the data in TABLE I, after reconstructing the 11 

IMF quantities in Data 1, four IMF components are obtained. 

The first component consists of IMF5, IMF6, IMF7, IMF10, 

the second component consists of IMF4, IMF8, IMF9, the 

third component consists of IMF2, IMF3, IMF11, and the last 

component is IMF1. In addition, after reconstructing the 11 

IMF quantities in Data 2, four IMF components are obtained. 

The first component consists of IMF1, IMF4, IMF6, IMF7, 

the second component consists of IMF3, IMF5, IMF2, IMF8, 

the third component consists of IMF9, IMF11, and the fourth 

component is IMF10. 
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Fig.2.Forecast results before and after data processing for dataset 1 

 

D. Experimental verification 

To prove the applicability of the load data preprocessing 

method, comparative experiments on the two load datasets 

are designed separately, and the experimental model LSTM 

was trained and predicted before and after preprocessing of 

the two datasets. The experimental results are shown in Fig.2 

and Fig.3, and the RMSE, MAE, and MAPE of the prediction 

results are shown in TABLE II, and TABLE III. 

According to the experimental results, both electricity load 

data sets have better prediction results after being processed 

by the processing method (ICEEMDAN) proposed in the 

paper. These experimental results also prove that the data 

processing method proposed in the paper is very effective. 

The following conclusions can be drawn from the three 

indicators (MAPE, RMSE, and MAE). Compared with the 

prediction results without data preprocessing using the data 

preprocessing method proposed in this paper, the RMSE, 

MAE, and MAPE of the load data set 1 preprocessed by the 

preprocessing method in this paper are reduced by 56.9847, 

40.0003, and 0.5382%, respectively. And compared with the 

results of the prediction without preprocessing using the 

preprocessing method proposed in this paper, the RMSE, 

MAE, and MAPE of the load data set 2 preprocessed by the 

preprocessing method in this paper are reduced by 75.9663, 

67.4526, and 0.8575%, respectively. In conclusion, after the 

preprocessing method proposed in this paper, the prediction 

precision and efficiency have been significantly improved. 
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Fig.3.Prediction results before and after data processing for dataset 2 

III. PREDICTIVE MODELS 

A. The Group Method of Data Handling  (GMDH) 

To predict the fish population in marine rivers, Ivakhenko 

proposed the GMDH prediction model [33]. GMDH is a kind 

of neural network that uses polynomial iteration to obtain a 

nonlinear relationship between input and output and therefore 

is also called a polynomial network. The network structure of 

the GMDH neural network is shown in Fig.4, and its structure 

is layered. The neurons in the input layer of the network are 

only responsible for passing the input signal to the neurons in 

the middle layer; each neuron in the hidden layer and each 

neuron in the output layer are only connected to two neurons 
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in the previous layer. So, the neurons in each layer of the 

GDMD neural network are independent [34]. The input data 

are defined as P = (P1, P2, P3, . . . Pn). The predicted output is 

(
iO ), and the actual output is (Oi). The relationship of each 

neuron of the GDMH is shown in the equation (9). 
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f e O f

= + +

+

+

+

+

+
  (9) 

 

The equation (9) is known as the Ivakhnenko polynomial. 

Where, Ok, l represents the output of the lth neurons of the kth 

layer of the network, Ok-1, i represents the output of the ith 

neurons of the kth layer of the network, Ok-1, j represents the 

output of the jth neurons of the kth layer of the network. And 

O0, i represents input (Pi). ak, l, bk, l, ck, l, dk, l, ek, l are polynomial 

coefficients. 

In order to make the error between the predicted and actual 

outputs as small as possible, the GMDH neural network uses 

regression analysis to obtain the coefficients of the quadratic 

polynomial in the equation (9). The least-squares method is 

used to optimize the coefficients of the quadratic equation.  

 

 

2

1

( )
N

i i

i

O O

R
N

=

−

=


  (10) 

 

R, the target amount to be minimized, denotes the error. 

The full binomial of the GMDH can be expressed as shown 

in the equation (11) and (12). 

 

 O P =   (11) 
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  (12) 

 

The polynomial coefficients (β) of binomial can be found 

using the least squares formula. 

 

 T 1 T( )P P OP −=   (13) 

 
TABLE II.  

COMPARISON OF PREDICTIVE INDICATORS BEFORE AND AFTER 

PRE-PROCESSING FOR DATASET 1 

 Before pre-processing After pre-processing  

RMSE 196.4812 139.4965 

MAE 153.7032 113.7029 

MAPE (%) 2.0943 1.5561 

 
TABLE III.  

COMPARISON OF PREDICTIVE INDICATORS BEFORE AND AFTER 

PRE-PROCESSING FOR DATASET 2 

 Before pre-processing After pre-processing  

RMSE 146.2597 70.2934 

MAE 117.9565 50.5039 

MAPE (%) 1.5485 0.6910 

In GMDH neural networks, any two neurons of one neural 

layer are used as input to produce neurons of the new neural 

layer. After the accumulation of multilayer neural networks, 

many neurons will be generated, and too many neurons will 

lead to a complex structure of DMGH neural networks and a 

long convergence time. In order to solve the above problems 

without degrading the low prediction accuracy of the GMDH 

neural network, the elite pool rule is introduced in this study. 

If the number of neurons m is less than or equal to the size of 

the elite pool M, no processing is done to the neurons of this 

layer of the network. On the contrary, the mean squared error 

Di is calculated for the neurons of the next layer, and Di is 

calculated as shown in the equation (14).  

 

 
2

2 2

1

1
( ) , 1,2, ,

2
i i i N

j

D O O i C
=

= − =  (14) 

 

Then, each neuron is ranked in ascending order according 

to the magnitude of the mean squared error Di of their outputs. 

According to the set elite pool size M, the first M neurons 

among the generated neurons by this layer of the network are 

selected as the input neurons of the next layer, and the other 

neurons in the layer are discarded. The simple structure of the 

GMDH after using the elite pool rule is shown in Fig.4. The 

square neurons in the figure represent the discarded neurons. 

 

P1
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O

 
Fig.4.The simple structure of the GMDH  

 

B. The Long Short-Term Memory (LSTM) 

LSTM neural network is a particular RNN, which is 

widely used in image processing, text recognition, and power 

load prediction due to its good ability to store long sequence 

data and learn long-term dependencies [35]. Compared with 

the general RNN, each LSTM unit has a forgetting gate, input 

gate, output gate, and storage unit, and the structure of LSTM 

is shown in Fig.5. The input gate determines the information 

that is stored in the unit with the newly entered information. 

The forget gate is used to forget some information that has an 

impact on the load prediction result from the output of the 

previous unit. The output gate is used to output the processed 

information to the next LSTM cell. The memory cell is used 

to store the useful information transmitted from the previous 

LSTM unit to this unit [36]. LSTM constantly optimizes the 

weights in the unit during training, and the weights are shared 

among all units. Therefore, with the model parameters fixed, 

the integration scale changes continuously at different times, 

this approach solves the problem of gradient disappearance 
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and reduces the frequency of gradient explosion [37]. The 

units of LSTM are calculated as follows.  

 

 1( )t xi t hi t ii W x W h b −= + +   (15) 

 1( )t xo t ho t oo W x W h b −= + +   (16) 

 
1( )t xf t hf t ff W x W h b −= + +   (17) 

 ( )1 1tanht t t t xs t hs t ss f s i W x W h b− −= + + +   (18) 

 tanh( )t t th o s=   (19) 

 

Where, it denotes the input gate; xt is the input at the 

current moment; σ is the tanh activation function that 

converts values to [-1, 1]; Wxs, Wxi, Wxf, and Wxo represent the 

weight matrix of the input Xt. Ht refers to the output at the 

current moment; Ht-1 is the output at the previous moment; 

Hxs Hxi, Hxf, and Hxo represent the weight matrix of Ht-1; bi, bf, 

bo and bs denote the deviation vectors; ft is the forgetting gate. 

st denotes the input cell vector at the current moment. 
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Fig.5.The structure of the LSTM  
 

C. Carnivorous Plant Algorithm (CPA) 

Based on the ability of carnivorous plants to adapt to harsh 

environments, K. Meng proposed a new global optimization 

algorithm called the carnivorous plant algorithm (CPA) [38]. 

In nature, most plants are producers and are food for animals. 

But there are exceptions, such as carnivorous plants, which 

can attract, capture and eat small animals such as butterflies 

and mice by secreting special enzymes to obtain nutrients that 

growth and reproduction. CPA simulates how carnivorous 

plants survive in very harsh environments, such as preying on 

prey and growing and reproducing. CPA has been proven to 

be powerful in solving multi-latitude latitude variables and 

multiple locally optimal solutions. CPA mainly consists of 

four processes: carnivorous plants attract, capture, and digest 

prey, and carnivorous plant growth and reproduction. The 

process of the algorithm is as follows: 

Step1: CPA is a new type of population-based intelligence 

optimization algorithm, so it needs to initialize the population 

of individuals. First, the population individuals are randomly 

generated and initialized according to the set total number of 

population individuals N. The population includes prey and 

carnivorous plants. The number of carnivorous plants is Nc, 

and the number of prey is Np. 
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Where, m is the dimension of each individual, and P is the 

value of each dimension. 

The objective function is found according to the problem 

faced. Based on the values of each individual and the function, 

the fitness value of each individual is calculated. 

 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

 (    )

(  )

 (    )

m

m

N N N m

f P P P

f P P P

 Fit 

f P P P

 
 

 
 
 =
 
 
 
 

  (22) 

 

Fit represents the fitness matrix of the population, and f is 

the objective function. In the follow-up process, the degree of 

adaptation is used as an important criterion for selecting the 

optimal solution. 

Step2: The individuals in the population are arranged in 

ascending order according to the fitness values. The first Nc 

individuals in line were defined as carnivorous plants, and the 

remaining Np individuals were considered prey. The aligned 

fitness matrix is shown below: 
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  (23) 

 

Where, fp and fc represent the adaptation values of prey and 

carnivorous plants, respectively. SortedFit is the ranking of 

fitness. 

Step 3: Carnivorous plants and prey in the population are 

grouped. Carnivorous plants and prey are sorted in ascending 

order according to fitness values. The carnivorous plants and 

prey in the same ranking were assigned together, and then the 

remaining prey was sequentially assigned to the carnivorous 

plants in the order of ranking. 

Carnivorous plants need to hunt for prey in order to survive, 

so they emit sweet smells to attract prey close to them. When 

a predator captures prey, the prey has two possibilities, to be 

captured or to escape, so the attraction rate is introduced. If 

the random number is less than the attraction rate, the prey is 

captured by the carnivorous plant. On the contrary, the prey 

escapes. The equation for the growth of carnivorous plants 

after prey capture is as follows: 
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     i, jG Gr rand =    (25) 

 

Where, PCi,j denotes the value of the ith carnivorous plant 

at the jth position. PPv,j denotes the randomly selected prey. 

NPC is a newly grown carnivorous plant. Gr, a predefined 

value, is a growth rate. If the prey escapes predation by the 

carnivorous plant, the prey will continue to grow. NPP is the 

new growth of the prey whose growth equation is as follows: 

 

 
, , ,   (1  )  ,  i j u j v jNPP G PP G PP u v=  + −     (26) 
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Step 5: Carnivorous plants reproduce after preying on prey. 

However, not all carnivorous plants will reproduce, only the 

first-ranked carnivorous plants do. The reproduction process 

is as follows： 
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, ,

,

, ,

( ) (

)(

)

) (

v j i j i v

i j

i j v j i v

PC PC f PC f PC
 mate

PC PC f PC f PC

− 
= 

− 
  (29) 

 

Where, PC1, j represents the value of the jth position of the 

carnivorous plant ranked first. PCv,j denotes the value of the 

jth position of the randomly selected carnivorous plant. Rr is 

the set reproduction rate. 

Step6: Newly produced carnivorous plants and prey are 

added to the population as a new population. The number of 

individuals in the new population is [N+NG+NR], where NG is 

the number of newly grown individuals; NR is the number of 

new individuals for the reproduction parameter. The fitness 

value of each individual in the new population is calculated 

and then ranked again according to the fitness value. The first 

N individuals are selected as the next round of populations. 

Step7: Step2~Step6 are repeated until the error is less than 

the set value or the number of iterations is greater than the set 

value. Finally, the optimal solution is output. 

D. Improved Carnivorous Plant Algorithm (ICPA) 

In the population of CPA, each individual represents the 

solution to the problem, and each fitness value represents the 

error value. If the initialization population is not reasonable, 

the solution obtained is a locally optimal solution. Meanwhile, 

during the growth and reproduction of carnivorous plants, the 

diversity of the population may be reduced if prey individuals 

are not reasonably selected. The above situation can lead 

difficult to obtain a globally optimal solution. 

(1) In order to change the pseudo-randomness of the initial 

population and increase the diversity of the population, the 

traditional method of randomly generating individuals with 

the rand function is abandoned in the population initialization 

stage and the Sobol sequence is introduced to initialize the 

population. The population generated by the Sobol sequence 

has better diversity and is more evenly distributed in space. 

Each dimension of the population of individuals generated by 

the Sobol sequence is composed of radical inversions with 

base two, except that each dimension has its different matrix 

of radical inversions. 

(2) In the process of continuous update of the population of 

CPA, the parameter random number will be used to judge the 

direction of the update, so to prevent the final solution from 

being a locally optimal solution introduce Gaussian Mutation. 

Gaussian Mutation is defined as shown in the equation(30). 
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Where, μ denotes the expectation of the gaussian mutation, 

and σ2 denotes the variance of the Gaussian Mutation. After 

Gaussian Mutation is introduced into CPA, the equation (25), 

(27) and (28) will be changed. The changed formula is shown 

below. 
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Fig.6.The workflow of the hybrid prediction model 
 

To verify that the improved CPA has better results, a set of 

experiments comparing the search effect before and after the 

improvement in the test function. The test functions are 

shown in TABLE IV. The test functions in the experiment 

have different meanings. F1 is a separable function of 

single-peaked variables, and F2 is an inseparable function of  
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TABLE IV.  
TEST FUNCTIONS 

Function Formula Boundary Number of parameters(D) 

F1 
2

1 1( ) D

i iF X X==  [-100,100]d 20 

F2 
1 2 2 2

2 1 1( ) 100( ) ( 1)D

i i i iF x x x x−

= +
 = − + −   [-50,50]d 20 

F3 
2

3 1( ) 10 (2 ) 10D

i i iF X X cos X=
 = − +   [-30,30]d 20 

F4 4 1( ) ( ) 0.1D

i i i iF X X sin X X== +  [-24,24]d 20 
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Fig.7.Convergence curve of F1 Fig.8.Convergence curve of F2 
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Fig.9.Convergence curve of F3 Fig.10.Convergence curve of F4 

 
TABLE V.  

PERFORMANCE INDEX OF THE ALGORITHM 

Function Algorithm MEAN BEST WORST 

F1 
CPA 1.8911E-4 2.9369E-19 9.3745E-4 

ICPA 4.3442E-5 5.3028E-21 3.1801E-4 

     

F2 
CPA 3.5618E-2 9.7638E-5 9.52E-2 

ICPA 1.1795E-2 8.5650E-5 9.25E-2 

     

F3 
CPA 6.1756E-2 3.4872E-7 0.1311 

ICPA 2.2015E-2 1.2434E-14 0.1226 

     

F4 
CPA 3.4154E-5 3.0839E-13 1.4732E-4 

ICPA 2.5093E-5 9.2011E-16 1.4343E-4 

 

single-peaked variables. The main effect of these two test 

functions is to verify the optimization accuracy of the 

algorithm. F3 is a separable function of multimodal variables, 

and F4 is an inseparable function of multimodal variables. 

The main effect of these two test functions is to prove the 

global search ability of the optimization algorithm. Through 

experiments, the iterative diagrams graph of the algorithm 

before and after optimization on the four test functions are 

obtained, and shown in Fig.7-Fig.10 respectively. 

The optimal solution found by the algorithm will be 

different each time. To exclude the impact of the above issues 

on the analysis of the algorithm, The CPA before and after the 
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improvement is run 100 times in each of the test functions, 

and then the average, worst, and best value of the optimal 

solution of each test function is analyzed. The indicators are 

shown in TABLE V. From Fig.7-Fig.10, it can be clearly 

observed that the improved CPA has significant improvement 

in terms of convergence accuracy and convergence speed. In 

addition, the performance indices in TABLE V show that the 

improved CPA has a significant improvement in optimization 

accuracy and stability compared to the original CPA. 

IV. FRAMEWORK OF HYBRID MODEL 

The data applied in the experiments are from two regions 

in Chongqing, China, Firstly, the load data is normalized to 

ensure that the power load data are in a uniform magnitude. 

ICEEMDAN is used to decompose the normalized data to 

obtain IMFs containing different characteristic information. 

To reduce the errors arising from predicting multiple IMFs, 

the IMFs reconstructed by information entropy are predicted 

respectively using GMDH and LSTM, and the weights 

obtained from the ICAP in the training set are weighted to 

obtain the prediction final results. The load prediction model 

combines the prediction advantages of both neural networks 

and avoids the possibility of large errors in a single model 

with different feature data. The two prediction models give 

full advantage to their respective strengths to make the whole 

prediction model very reliable and make the prediction result 

more accurate. The workflow of the proposed hybrid load 

forecasting model is shown in Fig.6. 

V. CASE AND RESULTS 

A. Description of experimental data and experimental 

tools 

In this paper, two sets of raw load data are applied to the 

load prediction model for experiments. In the experimental 

process, considering the existence of weekly periodicity of 

the historical load, the previous seven average daily load data 

are used as the input to predict the average daily load value on 

the eighth day. In this paper, the proposed load prediction 

model is constructed using MATLAB software in 64-bit 

version 2019a under Windows 10 system. 

B. Prediction accuracy assessment metrics 

Analysis of the load prediction model results is an integral 

part of the prediction research. And the indicators used for the 

analysis of forecasting results are different in different fields. 

However, each prediction model can be evaluated using three 

performance indicators: MAPE, RMSE, and MAE [39-42]. 

The above three metrics and TIC are selected the indicators 

for the analysis of load prediction results in this paper. The 

formulas for calculating performance indicators are equations 

(34) - (37): 
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Where, Oi represents the true value; Oi denotes the output 

value of the prediction model. N represents the number of 

output values. MAE represents the absolute error between the 

true and predicted load values. RMSE represents the standard 

deviation between the true and predicted values. MAPE can 

indicate the overall performance of the load prediction model, 

and the closer its value is to 0, the more perfect the prediction 

model is. The TIC value varies between 0 and 1 (0 < TIC <1). 

If the TIC value is closer to 0, the prediction model is more 

accurate. 

C. Data processing 

Firstly, the two sets of raw load data are normalized. Then 

the normalized load data are decomposed using ICEEMDAN 

to obtain IMF components. In the decomposition, 500 sets of 

Gaussian white noise with a standard deviation of 0.002 are 

added to the normalized load data. After the components are 

obtained, the components are reorganized according to the 

information entropy of each IMF component in TABLE I. 

The reorganized sequence is shown in Fig.11 and Fig.12. 

 

 
Fig.11.Sequence diagram of IMFs recombination for dataset 1. 

Engineering Letters, 30:4, EL_30_4_50

Volume 30, Issue 4: December 2022

 
______________________________________________________________________________________ 



 
Fig.12. Restructured IMFs for dataset 2 
 

D. Prediction results and comparative analysis 

The four IMF components obtained after reorganization in 

each dataset are trained and predicted by LSTM and GMDH 

neural networks respectively, and the optimal weights of the 

two sets of load prediction results are found using ICAP. The 

prediction results are shown in Fig.13-Fig.16. The optimal 

weight is shown in TABLE VI. The MAE, RMSE and MAPE 

are calculated for each component of the prediction results as 

shown in TABLE VII and TABLE VIII. According to the data 

from TABLE VII and TABLE VIII, It is concluded that in 

Data 1, the LSTM prediction model has better predictions on 

the IMF1 and IMF2 components with MAPEs of 3.2114% 

and 0.6776%, respectively. Conversely, the IFM3 and IMF4 

components are better predicted in the GMDH with MAPE of 

0.9882% and 0.0929%, respectively. In Data 2, the LSTM 

predicted effect better for IMF1 and IMF4 components with 

MAPE of 1.6715% and 2.3070%, respectively. However, in 

GMDH, IMF2 and IMF3 components have better prediction 

effects, with MAPE of 0.5596% and 0.1891%, respectively. 
From Fig.13-Fig.16, it can be clearly observed that in both 

dataset 1 and dataset 2, the main error of the prediction model 

derived from the prediction results of high complexity IMF 

components. To obtain a more accurate result, the results of 

the two prediction models are weighted according to the 

weights in TABLE VI. The prediction results for the two data 

sets are shown in Fig.17 and Fig.18. 
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Fig.13.LSTM prediction results for dataset 1 
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Fig.14.GMDH prediction results for dataset 1 
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Fig.15.LSTM prediction results for dataset 2 
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Fig.16.GMDH prediction results for dataset 2 

In order to better prove the superiority and stability of the 

proposed hybrid short-term load prediction model, a set of 

comparison experiments is designed to compare the hybrid 

prediction model proposed in this paper with other models: 

Autoregressive Integrated Moving Average model (ARIMA); 

Back Propagation Neural Network (BPNN); ICAP optimized 

Back Propagation Neural Network (ICAP-BPNN); Elman 

neural networks (Elman); ICEEMDAN-IE-LSTM prediction 

model; ICEEMDAN-IE-GMDH prediction model. In taking 

into account that the weights obtained by the neural network 

prediction model during the training process are somewhat 

random, which can lead to differences in the results of each 

prediction, the load data were predicted 10 times with each 

prediction model and the average of the 10 results was taken 

as the final prediction result of that model. 
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Fig.17.Predicted results for dataset 1 
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Fig.18.Predicted results for dataset 2 

 

The values of the three prediction performance indicators 

(MAE, RMSE, MAPE) for the seven models in the two load 

data sets are shown in TABLE IX and TABLE X, separately, 

and The curve of the load prediction result obtained for the 

two load data sets in the six comparative forecasting models 

and the proposed load forecasting model are shown in Fig.19 

and Fig.20. 

From two tables, TABLE IX and TABLE X, it can be 

visualized that the proposed hybrid load forecasting model 
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TABLE VI.  
WEIGHTING OF THE RESULTS OF THE TWO MODELS 

 LSTM  GMDH 

 IMF1 IMF2 IMF3 IMF4  IMF1 IMF2 IMF3 IMF4 

DATA1 0.4022 0.6886 0.1250 0.0313  0.5978 0.2114 0.8750 0.9687 

DATA2 0.8940 0.1875 0.3750 0.7923  0.1060 0.8125 0.6250 0.2077 

 
TABLE VII.  

PERFORMANCE INDICATORS FOR THE COMPONENTS IN DATASET 1 

 LSTM  GMDH 

 IMF1 IMF2 IMF3 IMF4  IMF1 IMF2 IMF3 IMF4 

MAE 71.2300 51.0746 30.0591 19.0318  74.3556 69.2046 12.8873 1.6060 

RMSE 97.3432 80.3292 37.4092 23.9529  100.1384 94.5165 15.8189 1.9960 

MAPE (%) 3.2114 0.6776 2.5239 1.7035  3.4963 0.9311 0.9882 0.0929 

 
TABLE VIII.  

PERFORMANCE INDICATORS FOR THE COMPONENTS IN DATASET 2 

 LSTM  GMDH 

 IMF1 IMF2 IMF3 IMF4  IMF1 IMF2 IMF3 IMF4 

MAE 36.9449 16.8356 15.8433 51.7063  53.7725 14.5963 14.2093 59.3307 

RMSE 48.7821 20.7297 21.3168 64.7373  68.3134 18.0742 18.0173 73.1093 

MAPE (%) 1.6715 0.6407 0.2071 2.3070  2.4258 0.5596 0.1891 2.6493 

 
TABLE IX.  

PERFORMANCE INDICATORS OF DIFFERENT PREDICTION MODELS IN DATASET 1 

 RMSE MAE MAPE 

ARIMA 396.4881 324.5295 3.6431 

BPNN 203.6553 153.5245 1.7335 

ICPA-BPNN 148.4271 107.2128 1.2486 

Elman 689.3004 531.0372 6.3195 

ICEEMDAN-IE-LSTM 170.5295 138.9977 1.7208 

ICEEMDAN-IE-GMDH 282.5200 220.6250 2.5221 

Proposed Method 134.0026 98.3204 1.0716 

 
TABLE X.  

PERFORMANCE INDICATORS OF DIFFERENT PREDICTION MODELS IN DATASET 2 

 RMSE MAE MAPE 

ARIMA 172.5263 137.5452 1.7699 

BPNN 194.8758 141.9265 1.6554 

ICPA-BPNN 142.1766 114.2722 1.4128 

Elman 460.4889 374.9198 4.9040 

ICEEMDAN-IE-LSTM 70.2934 53.5039 0.6910 

ICEEMDAN-IE-GMDH 123.7725 92.8659 1.1955 

Proposed Method 68.6581 52.6895 0.6875 

outperforms the other kinds of comparison models in three 

performance indicators. The RMSE, MAE, and MAPE of the 

proposed load forecasting model are 134.0026, 98.3204, and 

1.0716% in dataset 1, and 68.6581, 52.6895, and 0.6875% in 

dataset 2, respectively. 

In both datasets, the prediction models that incorporate the 

ICEEMDAN method, such as the ICEEMDAN-IE-LSTM 

and the proposed forecasting model, have higher prediction 

accuracy than the prediction models that do not incorporate 

the ICEEMDAN method, such as Elman, ARIMA and BPNN. 

Particularly, compared with the Elman model, the RMSE, 

MAE, and MAPE of the proposed load prediction model 

improved by 80.56%, 81.49%, and 83.04%, separately, in 

dataset 1, and by 85.09%, 85.95%, and 85.98%, separately, in 

dataset 2. The above results indicate can indicate that the 

hybrid forecasting model combining the ICEEMDAN and 

the machine learning methods proposed in this paper has a 

remarkable advantage in power load forecasting. In addition, 

the result also highlights the efficacy of ICEEMDAN. And 

the proposed hybrid load forecasting model achieves a huge 

improvement in terms of forecasting accuracy compared with 

the single traditional prediction model. 

BPNN has a relatively strong non-mapping ability and 

strong self-adaptive capability, and is a common prediction 

model in the field of prediction. However, BPNN has the 

disadvantages such as easy falling into local minima and slow 

convergence speed. To solve the above problems, academics 

often use intelligent optimization algorithms to optimize the 

internal structure of BP to reach better prediction results. In 

TABLE IX and TABLE X, the MAE to predict results of the 

BPNN and ICPA-BPNN prediction models are 153.5245 and 

107.2128 in dataset 1 and 141.9265 and 114.2722 in dataset 2, 

respectively. The conclusion that the prediction precision of 

the BP optimized with ICPA has been significantly improved, 

and ICAP is very effective in the actual prediction process 

can be clearly summarized. 

The proposed load hybrid forecasting model not only has 

data processing to enhance the forecasting precision but also 

combines the advantages of two single sets of models, LSTM 

and GMDH. Compared with the LTSM neural network, the 

MAPE, MAE, and MAPE of the proposed hybrid short-term 

load forecasting model in electricity load dataset 1 are greatly 

improved by 37.73% 29.26%, and 21.42%, respectively. And 

in electricity load dataset 2 the RMSE, MAE, and MAPE
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Fig.19.Predicted results for dataset 1 

 

improved by 2.330%, 1.520% and 0.510%, respectively. In 

addition, compared with the GMDH neural network, the 

RMSE, MAPE, and MAE of the proposed load prediction 

model improved by 52.57%, 55.44%, and 57.51%, separately. 

And in dataset 2 RMSE, MAE and MAPE improved by 

44.53%, 43.25%, and 42.49%, respectively. These results 

verify that the proposed hybrid load forecasting model is 

significantly effective in using ICPA to combine LSTM and 

GMDH, and then compared with single method, the three 

results indicators of the proposed hybrid forecasting model 

are significantly improved. 

From the raw data, it can be observed that the complexity 

of dataset 1 is significantly higher than that of dataset 2. The 

ARIMA prediction model has a significant difference in its 

prediction results when predicted in dataset 1 and dataset 2. 

In addition to, in dataset 1, ICEEMDAN-IE-GMDH model 
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Fig.20.Predicted results for dataset 2 

 

TABLE XI.  
MAXIMUM AND MINIMUM ABSOLUTE ERROR PERCENTAGES FOR EACH MODEL  

 Data1  Data2 

 Max Min  Max Min 

ARIMA 0.1428 2.4190e-04  0.0785 3.5680e-04 
BPNN 0.0897 4.4974e-06  0.0639 2.1517e-06 

ICAP-BPNN 0.1003 2.8989e-05  0.0453 1.1901e-05 

Elman 0.2989 2.3071e-04  0.1886 4.3506e-05 
ICEEMDAN-IE-LSTM 0.1079 4.5425e-05  0.0398 9.3641e-05 

ICEEMDAN-IE-GMDH 0.1237 6.4915e-06  0.0651 6.4704e-05 
Proposed Method 0.0795 1.3812e-04  0.0345 7.9465e-05 

 

Engineering Letters, 30:4, EL_30_4_50

Volume 30, Issue 4: December 2022

 
______________________________________________________________________________________ 



 

0.00 0.02 0.04 0.06 0.08
0

40

80

120

160

 

Proposed Method

F
re

q
u

e
n

c
y

MAPE

Max=0.0795

Min=1.3812E-4

 

0.00 0.05 0.10 0.15
0

10

20

30

40

50

 

ARIMA

F
re

q
u

e
n

c
y

MAPE

Max=0.1428

Min=2.4190E-4

 

0.00 0.03 0.06 0.09
0

20

40

60

80

100

 

BP

F
re

q
u
e
n
c
y

MAPE

Max=0.0897

Min=4.4974E-6

 

0.000 0.037 0.074
0

20

40

60

80

100

120

140

160

 

ICPA-BP

F
re

q
u

en
cy

MAPE

Max=0.1003

Min=2.8989E-5

 
 

0.0 0.1 0.2 0.3
0

20

40

 

Elman

F
re

q
u

e
n

c
y

MAPE

Max=0.2989

Min=2.3071E-4

 

0.00 0.03 0.06 0.09
0

20

40

60

80

100

 

ICEEMDAN-IE-LSTM
F

re
q

u
e
n

c
y

MAPE

Max=0.1079

Min=4.5425E-5

 

0.00 0.03 0.06 0.09 0.12
0

20

40

60

80

100

 

ICEEMDAN-IE-GMDH

F
re

q
u

e
n

c
y

MAPE

Max=0.1237

Min=6.4915E-6

 
Fig.21.MAPE for each model in dataset 1 
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Fig.22.MAPE for each model in dataset 2 
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Fig.23.TIC for each model in dataset 1 Fig.24.TIC for each model in dataset 2 

  

TABLE XII.  
THE SPEARMAN VALUE OF THE LOAD FORECASTING MODEL 

 Dataset 1 Dataset 2 

BP 0.9842 0.9853 

ICPA-BP 0.9901 0.9914 

ICEEMDAN-IE-LSTM 0.9868 0.9959 

ICEEMDAN-IE-GMDH 0.9883 0.9960 

Proposed Model 0.9974 0.9989 

Elman 0.9311 0.9566 

ARIMA 0.9756 0.9633 

 

has significantly poorer prediction results compared to other 

models, with the MAPE of 2.5221%, ranking fifth among all 

models. However, in dataset 2 with smaller complexity, the 

prediction results of the ICEEMDAN-IE-GMDH have the 

MAPE of only 1.1955%, ranking third among all models. For 

load data of different complexity, the prediction results of 

general prediction models will have instability, and if load 

data of higher complexity is encountered, the load prediction 

result will have larger errors. Nevertheless, the proposed load 

prediction model combines the advantages of two neural 

networks (LSTM and GMDH), and its load prediction results 

outperform the other six prediction models in both datasets 

with excellent prediction precision. The proposed hybrid load 

forecasting model has good stability and precision for both 

high-complexity and low-complexity power load data. 

To better prove the superiority of the proposed short-term 

load forecasting model, the absolute error percentages and 

the inequality coefficient (TIC) of each prediction model in 

different data sets are calculated as shown in Fig.21-Fig.24. 

In addition to this, as shown in TABLE XI, the maximum and 

minimum values of the absolute error percentage of each load 

prediction model are selected for analysis.  

Fig.21 illustrates the AMPE error distribution of the load 

prediction model proposed and the six comparison prediction 

models in dataset 1. And Fig.22 illustrates the AMPE error 

distribution of the load prediction model proposed and the six 

comparison load prediction models in dataset 2. The smallest 

values of MAPE for the proposed prediction model in this 

paper are 0.0795 and 0.0345 in the two data sets, which are 

both smaller than the values of other prediction models. The 

MAPE values of the prediction models proposed are mainly 

in the range of 0-0.01. And the experimental load prediction 

results are 285 days in total, in data set 1, the MAPE value of 

the proposed hybrid load prediction model is less than 0.01 

for 165 days, in dataset 1, the MAPE value of proposed load 

prediction model is less than 0.01 for 210 days. In the two 

datasets of different complexity, the floating range of MAPE 

of other load prediction models varies widely, but the floating 

range of MAPE of the proposed hybrid load prediction model 

is basically unchanged, which also demonstrates the strong 

stability of the proposed hybrid load prediction model. Other 

than that, the prediction model combining the ICEEMDAN 

method has less variation in the MAPE float range compared 

to other prediction models. The above results indicate that 

processing the data by the ICEEMDAN method improves the 

adaptability of the model and can make the model prediction 

more stable. 

Fig.23 and Fig.24 represent the TIC values between the 

predicted and true values of load seven prediction models in 

the two experimental data sets, respectively. From the above 

two figures, it can be visually visualized that the proposed 

forecasting model has a TIC of 0.007 in dataset 1 and 0.0042 

in dataset 2. The TIC values of the proposed load forecasting 

models are minimal compared with the TIC values of other 

load forecasting models. Due to the fact that the smaller TIC 

value of the forecasting model indicates the higher prediction 

precision of the forecasting model, and by analyzing the TIC 

values of the prediction models, it can be clearly concluded 

that the proposed hybrid load forecasting model has a better 

prediction performance than the other six prediction models. 

The correlation between the predicted and actual values of 

each load forecasting model is calculated by the formula of 
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the correlation coefficient. The correlation values between 

the predicted and actual values of each forecasting model are 

shown in TABLE XII. From the data in TABLE XII, it can be 

visually observed that the highest correlation between the 

predicted and actual values of the short-term load forecasting 

model is 99.89% in the less complex dataset 2. In addition, 

the correlation between the predicted and actual values of the 

prediction model is lower in the more complex dataset 1 than 

in dataset 2, but it is still the highest correlation among all the 

models, reaching 99.74%. The above results fully prove the 

validity of the short-term load model proposed in this paper. 

VI. CONCLUSION 

In this paper, a hybrid short-term load forecasting model 

that is based on ICEEMDAN, IE, LSTM, GMDH, and ICAP 

is proposed. ICEEMDAN is used in raw load data processing 

to decompose the original daily average load data into several 

IMF components with different characteristics of information. 

The value of IE for each IMF component is calculated. Then 

IMF components with similar IEs are reorganized to avoid 

cumulative prediction errors. In the power load prediction, 

the proposed load prediction model combines the prediction 

advantages of the LSTM and GMDH models to obtain the 

best power load prediction results. The reconstructed IMF 

components are predicted by both methods respectively, and 

then the final prediction results are obtained by weighting the 

prediction results of both by ICAP. After the validation of the 

experiments on two power load datasets, the hybrid load 

forecasting model proposed in this paper is very effective and 

outperforms other prediction models in four aspects: MAE, 

RMSE, MAPE, and TIC. In summary, the hybrid short-term 

load forecasting method proposed in this paper effectively 

reduces the prediction error, increases the prediction stability, 

and improves the prediction accuracy. In this paper, only the 

weekly periodicity of power load data is considered when 

studying short-term load forecasting, and the effects of other 

factors are not considered. Therefore, in future research, the 

influence of more factors on short-term load forecasting, such 

as weather, humidity, and holidays, can be considered. 
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