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Abstract—For the large-scale dynamic differential equations

with irreversible mass matrix, based on the state space
representation method in modern control theory, we proposed a
new fast numerical solution method for its vibration response
by ingenious mathematical transformation and iteration
iterative calculation. Compared with the traditional solution
method of MATLAB/Simulink module, the process of the
modeling and calculation of this method is very simple and fast.
As long as the high-order coefficient matrix corresponding to
each block equation is written, it can be solved iteratively
quickly. When it is applied to the analysis of large-scale system
dynamics problems in engineering, its computational efficiency
and economy can be significantly improved.

Index Terms—dynamic differential equations, irreversible
mass matrix, state space, numerical solution, fast solution

I. INTRODUCTION
n the study of large-scale system dynamics, in order to
facilitate the engineering application, the method of

solving its vibration differential equations must have the
characteristics of high efficiency and practicability [1].
Because the mathematical models of the large-scale system
dynamics can ultimately be reduced to second-order
differential equations with multiple degrees of freedom, in
order to improve their computational efficiency, they are
usually first expressed as the matrix equations (i.e.,
[ ]{ } [ ]{ } [ ]{ } { }  && &M X C X K X P , in which [M], [C], [K] are
the mass, damping, and stiffness matrices of the system; {X},
{ }&X , { }&&X are the generalized displacement, velocity, and
acceleration vectors of the system; {P} is the generalized
load vector of the system), and then the corresponding
numerical method is used to solve its numerically. Among
the existing numerical methods, the Newmark-β method [2],
Wilson-θ method [3], Houbolt method [4], Hiber-Hughes α
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method and β-θ collocation method [5], Park method [6], and
Zhai method [7] are the most common ones. However, when
these methods are used to analyze the dynamics of large-scale
systems, the coefficient matrix corresponding to the second
derivative (i.e., the mass matrix [M]) must be diagonally
reversible. However, for a large number of practical
engineering problems, because the mass of the small
components in the system is usually neglected (e.g., the mass
of the shock absorber in the railway vehicle [8], the mass of
the rubber bushing in the suspension of the truck cab [9]), the
mass matrix [M] in the vibration differential equations is
often irreversible, which we call it the dynamic differential
equations with irreversible mass matrix, as follows
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where, ai is the mass coefficient; ka , bij, kjb are the damping

coefficients; cij, dij, kjc , kjd  are the stiffness coefficients, iz&&

is the acceleration vector; jz& , kz & are the velocity vectors; zj,

jz are the displacement vectors, ( )if t , ( )kf t are the acting
loads; m is the number of systems with mass, n is the number
of systems without mass. Here, the mass matrix of the system
for Eq. (1) is M=diag(a1,a2,…,am,0, …,0), it can be seen that
M is irreversible.

At present, the most effective solution method to this kind
of dynamic differential equations with irreversible mass
matrix (seen in Eq. (1)) is to solve it with the help of
MATLAB/Simulink module [10]. Although this solution
method is feasible for some small-scale system dynamics
problems, in fact, there are often dozens or even hundreds of
equations in many large-scale system dynamics, which
brings great inconvenience to its modeling and solving
process. In order to improve the efficiency and economy of
solving this kind of differential equations, based on the state
space representation method in modern control theory, we
proposed a new fast solution method of its vibration response
through ingenious mathematical transformation and iterative
solution.

II. NUMERICAL SOLUTION OF THE DYNAMICAL
DIFFERENTIAL EQUATIONS WITH IRREVERSIBLE MASS MATRIX

The following is an introduction to the solving process of
the dynamic differential equations with irreversible mass
matrix. The solving process is divided into four steps.
Step 1. Equation transformation
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According to Eq. (1), dividing the two sides of each
equation by the coefficients of its highest derivative, and
converting them into the following forms
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Step 2. Extraction of coefficient matrix from block
equation

Representing Eq. (2) as the following three matrix
equation forms, and extract its coefficient matrix:

(1) Composite system equation for systems with and
without mass:
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Taking the velocities and displacement of each subsystem
in the composite system as the state variable, the coefficient
matrix [A1] and generalized load vector [F] are extracted
according to Eq. (3).

(2) Mass system equation:
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Taking the displacement of each subsystem in the mass
system as the state variable, the coefficient matrix [A2] is
extracted from Eq. (4).

(3) Massless system equation:
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Taking the displacement of each subsystem in the massless
system as the state variable, the coefficient matrix [A3] is
extracted from Eq. (5).
Step 3. State space equation
According to the velocity and displacement variables of

each degree of freedom in the composite system with and
without mass, taking the displacement and velocities of each
subsystem in the composite system as the components of the
state vector, the state vector can be obtained, that is
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Therefore, according to the coefficient matrix of each
block equation extracted in step 2, the following state space
equation can be obtained.

{ } [ ]{ } [ ]{ } &X A X B U (7)

where,
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. Here, [O] is the zero matrix, [I]

is the identity matrix.
Step 4. Iterative solution
According to the state space Eq. (7), when Δt is small

enough, the following relationship can be obtained:
1{ } { } { }k k kt   &X X X (8)

where, Δt is the time integral step; subscripts k and k-1
represent the current step t=kΔt and the previous step
t=(k-1)Δt, respectively.

Then, substituting Eq. (8) into Eq. (7), the following
relationship can be obtained.

 1{ } [ ] { } { } [ ]{ }k k k kt   & &X A X X B U (9)
Thus, Eq. (9) can be transformed into the following form

  1[ ] [ ] { } [ ]{ } [ ]{ }k k kt    &I A X A X B U (10)
According to Eq. (10), the following expression can be

obtained.
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   &X I A A X B U (11)

Therefore, according to Eq. (11), the integral recurrence
formula of the system response for dynamical differential
equations with irreversible mass matrix can be obtained, that
is
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According to the initial conditions, i.e.,
0{ (0)} { }X X (13)

The discrete values of the displacement, the velocity, and
the acceleration corresponding to each step can be calculated
successively according to the integral recurrence formula
(12).

It is worth noting that, for linear systems, [A]k and [B]k in
Eq. (12) are constant [A], [B], and their values can be easily
obtained from Eq. (7), for nonlinear systems, the dynamic
equation is simply written in incremental form, and different
[A], [B] matrices are used in different integration periods, and
the integration in each period is consistent with the linear
situation.

In order to analyze the accuracy of the calculation formula,
Eq. (8) is expanded by Taylor, as follows

2
1

1({ } ) { } { } { }
2k k k kt t    & &&X X X X (14)

Thus, according to Eq. (8) and Eq. (14), the truncation
error can be obtained, that is

21{ ( )} ({ } ) { } { }
2k k kE t    &&X X X X (15)

That is to say, {E(X)} has [O(Δt2)] order accuracy, and
{ ( )}E &X also has [O(Δt2)] order accuracy.

As stated above, for the dynamical differential equations
with irreversible mass matrix, we can easily extract the
coefficient matrix of each sub equation by using computer
software programming, and then the dynamic responses of
the system can be obtained by iterative calculation quickly.

III. CALCULATION EXAMPLE

A. Vibration response solution of the quarter railway
vehicle vibration model
Taking the 1/4 vehicle vibration model [11] shown in Fig.

1 as an example, using the established integral recurrence
formula (12) to calculate its vibration response, and
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comparing the results with the Matlab/Simulink method.
Here, the masses mc=14 398 kg, mt=1 379 kg; the damping
coefficients Cp=28 300N·s/m, Cs=60 000 N·s/m; the spring
stiffness Kp=2.74×106 N/m, Ks=5.68×105 N/m; the rubber
joint stiffness Kpd=40×106 N/m, Ksd=20×106 N/m; the
external excitation zv=0.5sin6t.

Fig. 1. 1/4 railway vehicle vibration model

According to Newton's second law, the vibration
differential equations of the system shown in Fig. 1 can be
obtained, as follows
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Let Δz2=zsd1-zsd2, Δz1=zpd1-zpd2, according to Eq. (16), the
following expression can be obtained.
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Then, substituting Eq. (17) into Eq. (16), the matrix of the
high order terms in Eq. (16) can be converted into the
standard form as shown in Eq. (1), that is
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At this time, according to the solution steps as stated in
section II, Eq. (18) can be expressed as the following form,
that is
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Hence, according to the established integral recurrence
formula (12), the vibration responses of the system shown in
Fig. 1 can be calculated by iteratively solving Eq. (19). The
comparison curves of the acceleration and displacement ofmc

between the calculation result and the Simulink simulation
result are shown in Fig. 2 and Fig. 3.
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Fig. 2. Calculation results of the acceleration of mc under two calculation
methods
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Fig. 3. Calculation results of the displacement of mc under two calculation
methods

It can be seen from Fig. 2 and Fig. 3, the responses of the
system obtained by the two calculation methods are
consistent, indicating that, the new fast numerical calculation
method established is correct. It is worth noting that, the
Matlab/Simulink method is only suitable for solving
low-degree-of-freedom systems, it is difficult to be used to
solve the large-scale structural systems. In addition, the
Matlab/Simulink method not only requires an incredible
modeling time, but also requires considerable computational
memory. Therefore, the method established can effectively
solve the problem of the large-scale dynamical differential
equations with irreversible mass matrix, and provide reliable
technical support for the analysis of dynamic characteristics
of the large-scale structural systems.

B. Vibration response solution of the railway vehicle
vertical vibration model
Taking the vertical dynamic model of railway vehicles [12]

shown in Fig. 4 as an example, the vibration responses of the
system are calculated according to the integral recurrence
formula (12). In Fig. 4, zc, zt1, and zt2 are the vertical
displacement of the car body, the front bogie frame, and the
rear bogie frame; βc, βt1, and βt2 are the pitching displacement
of the car body, the front bogie frame, and the rear bogie
frame; zw1~zw4 are the vertical displacement of the wheelset;
zpd1~zpd8 and zsd1~zsd4 are the vertical displacement of the two
ends of the primary and secondary vertical dampers; zv1~zv4

are the random input of the track irregularities. The
parameters values of the vehicle are as follows: the masses of
the car body, the bogie frame, and the wheelset are
Mc=3.4×103 kg, Mt=3 000 kg, Mw=1 400 kg; the moments of
inertia of the car body and the bogie frame are Jc=2.277×106

kg·m2, Jt=2 710 kg·m2; the vertical stiffness of the primary

and secondary suspension are Kp=5.5×105 N/m, Ks=4×105

N/m; the vertical damping of the primary and secondary
suspension are Cp=60 000 N·s/m, Cs=80 000 N·s/m; the
rubber joint stiffness of the primary and secondary vertical
dampers are Kpd=5×106 N/m, Ksd=5×106 N/m; the equivalent
linear contact stiffness between the wheel and the rail is
KH=8×107 N/m; the half distances of the vehicle and the
bogie wheelbase are Lc=9 m, Lt=1.2 m; the vehicle running
speed v=250 km/h; the external excitation zv1=1.5sin(20t).

Fig. 4. Railway vehicle vertical vibration model

According to the solution steps shown in Example 1, the
vibration responses of the system shown in Fig. 4 can be
obtained, as shown in Fig. 5.
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Fig. 5. The vertical vibration responses of the railway vehicle system: (a) the
vertical vibration responses of Mc; (b) the vertical vibration responses of Mt
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It should be noted that, for complex systems, using the
method established in this paper, only a few simple steps of
transformation and iterative solution are needed to calculate
the vibration response results. In addition, the higher the
degree of freedom of the system is, the more advantageous
the method is.

IV. CONCLUSIONS

In this paper, we have proposed a new fast numerical
solution method to solve the large-scale dynamic differential
equations with irreversible mass matrix. Compared with the
traditional solution method of the MATLAB/Simulink
module, the method proposed in this paper can effectively
shorten the modeling time, and significantly improve the
solving speed of dynamic differential equations with
irreversible mass matrix. When it is applied to the analysis of
large-scale system dynamics problems in engineering, its
computational efficiency and economy can be significantly
improved.

This study provides a new numerical method for solving
the large-scale dynamic differential equations with
irreversible mass matrix.
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