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Abstract—In this paper, we investigated a model of a two-
species prey predator with a Holling type III interaction.
The interior equilibrium point’s behaviour was explored. The
theory was used to investigate the presence and stability of
equilibriums, as well as the system’s sensitivity behaviour. We
derived an analytical expression of the prey and the predator
that appeared in the system. Finally, our analytical results are
interpreted ecologically and compared to the numerical outputs
using MATLAB programme. We found a very good agreement
between the numerical and analytical results.

Index Terms—Prey-predator; Stability analysis; HPM; Nu-
merical simulation; Sensitivity analysis;

I. INTRODUCTION

ECOLOGY is concerned with the stability of ecological
systems and the persistence of species within them are

of interest to ecologists. Mathematical models of ecological
systems have been used to explore the stability of a range
of systems, reflecting these concerns. Due to its worldwide
existence and importance, the dynamic connection between
predator and prey has long been and will continue to be
one of the major issues in mathematical ecology. For the
Lotka–Volterra type predator–prey system, much great work
has been done. Holling postulated that the predator has three
functional responses, which are referred to as Holling type
I, Holling type II, and Holling type III. He proposed the
Holling type II form as follows:

φ(x) =
gx

a+ x
(1)

where φ(x) is the number of prey consumed by single
predator, x is the prey density, g is the time available for
searching and a is a constant of proportionality, termed the
‘discovery rate’ by Holling. The absorption of substrate by
microorganisms in microbial dynamics kinetics is commonly
described by a Holling type II response function. This is
always true when the predator is an invertebrate. In addition,
he proposed the Holling type III response function, which
takes the form [1, 2].

φ(x) =
gx2

a2 + x2
(2)
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II. MATHEMATICAL MODEL

Continuous time models with differential equations and
discrete time models with difference equations are the two
forms of mathematical models used in population theory.
As shown in several studies, research on interspecific inter-
actions has primarily focused on continuous prey-predator
models of two variables, where the dynamics consist only
of stable equilibrium. However, discrete-time prey-predator
models may provide a significantly wider set of dynamics
than continuous-time models. We consider predator-prey
systems of the Lotka-Volterra type [3,4].

dx

dt
= rx(1− x

k
)− αx2y

a2 + x2
(3)

dy

dt
=
mαx2y

a2 + x2
− dy − δy2 (4)

with the initial conditions,
x(0) = l1 and y(0) = l2,∀ l1l2 ≥ 0,
where x and y are the prey and predator densities respec-
tively. The intrinsic growth rate, the carrying capacity, the
conversion factor, and the natural death rate are represented
by the parameters r, k, m, and d. The intra-specific com-
petition rate is represented by δ and the predation rate is
denoted by α. The existence of equilibrium points and the
local stability of the fixed points are discussed in the third
and fourth sections. In the fifth section, we have discussed the
sensitivity analysis. We studied the dynamical behaviour of
the system numerically and analytically in the sixth section.
Numerical simulation is covered in the seventh section. The
results and discussion in the eighth section and our work’s
conclusion is in the ninth section.

III. EQUILIBRIUM POINTS

To find the equilibrium points of the system, we have
considered the following equations

rx(1− x

k
)− αx2y

a2 + x2
= 0 (5)

mαx2y

a2 + x2
− dy − δy2 = 0 (6)

(i) The trivial equilibrium is E0 = (0, 0) always exists.
(ii) The predator free equilibrium is E1 = (k, 0)
(iii) The coexistence equilibrium is E∗ = (x∗, y∗)
Now (5) becomes

r(1− x∗

k
)− αx∗y∗

a2 + x2∗
= 0 (7)
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mαx∗2

a2 + x∗2
− d− δy∗ = 0 (8)

mαx∗2

a2 + x∗2
− d = δy∗ (9)

mαx∗2 − d(a2 + x∗2)

δ(a2 + x∗2)
= y∗ (10)

By substituting the equation (10) in (7) we get,

r(1− x∗

k
)− αx∗

a2 + x∗2
[
mαx∗2 − d(a2 + x∗2)

δ(a2 + x∗2)
] = 0 (11)

rkδα4 + 2a2x∗2rkδ + rkδx∗4 − rδa4x∗

−2a2rδx3∗ − rδx∗5 −mα2kx∗3 + kαda2x∗

+dαkx∗3 = 0 (12)

−rδx∗5 + rkδx∗4 + (dαk − 2a2rδ −mα2k)x∗3

+2a2rkδx∗2 + (kαda2 − rδa4)x∗

+rkδa4 = 0 (13)

A1x
∗5 +A2x

∗4 −A3x
∗3 +A4x

∗2 −A5x
∗ +A6 = 0 (14)

where
A1 = −rδ; A2 = rkδ; A3 = −(2a2rδ + mα2k −
dαk); A4 = 2a2rkδ; A5 = (rδa4 − kαda2); A6 = rka4δ.
There are three different sign alterations. There are no no-
ticeable changes when we substitute x by –x. So, according
to Descarte’s sign rule, there are exactly three positive roots.
Because of this, the roots are real, negative or complex with
a real negative part, and the point of equilibrium is a node.

IV. STABILITY ANALYSIS

Around the prey - predator equilibrium point, the varia-
tional matrix of the system [5-11, 20, 21] is as follows:

v(x, y) =

[
a11 a12
a21 a22

]
(15)

where a11 = r(1− 2x
k )− (a2+x2)2αxy−2αx3y

(a+x)2

a12 = − αx2

a2+x2

a21 = (a2+x2)2αxmy−2αmx2y
(a2+x2)2

a22 = mαx2

(a2+x2) − d− 2yδ

(i) the trivial equilibrium point E0 = (0, 0)
The Jacobian matrix of system at E0 is

v(0, 0) =

[
r 0
0 −d

]
(16)

The characteristic equation is∣∣∣∣ r − λ 0
0 −d− λ

∣∣∣∣ = 0 (17)

Therefore the eigenvalues are λ = r,−d, so the equilibrium
point E0(0, 0) is a saddle point.
(ii) the predator free equilibrium point E1=(k, 0)
The Jacobian matrix of system at E1 is

v(k, 0) =

[
−r − αk2

(a2+k2)

0 mαk2

(a2+k2) − d

]
(18)

The charactertic equation is∣∣∣∣∣ −r − λ − αk2

(a2+k2)

0 ( mαk2

(a2+k2) − d)− λ

∣∣∣∣∣ = 0 (19)

−r − λ = 0, (
m2 − d(a2 + k2)

a2 + k2
)− λ = 0 (20)

If λ = −r < 0 and λ = −d(a
2+k2)−mαk2
a2+k2 < 0

The roots are real, distinct and negative, so the system is
asympotically stable.
(iii) the coexistentence equilibrium E∗ = (x∗, y∗)
The charactersic equation is∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = 0 (21)

where a11 = r(1− 2x
k )− (a2+x2)2αxy−2αx3y

(a+x)2

a12 = − αx∗2

a2+x∗2

a21 = (a2+x∗2)2mαx∗y∗−2αmx∗y∗

(a2+x∗2)2

a22 = ( mαx
∗2

a2+x∗2 − d− 2δy∗)− λ

i.e., λ2 +Bλ+ C = 0 (22)

where

B = [r(1− 2x∗

k
)− (a2 + x∗2)2αx∗y∗ − 2αx∗3y∗

(a2 + x∗2)2
]

([
mαx∗2

a2 + x∗2
− d− 2δy∗]) (23)

C = [− αx∗2

a2 + x∗2
][
(a2 + x∗2)2mαx∗y∗ − 2αmx∗y∗

(a2 + x∗2)2
] (24)

When we replace λ by −λ, there are two sign modifications.
So by Descarte’s rule of sign, there are two negative roots
when

r(1− 2x∗

k
) >

(a2 + x∗2)2αx∗y∗ − 2αx∗3y∗

(a2 + x∗2)2
(25)

As a result, the roots are real, distinct, negative, or complex
with a negative real portion. Therefore, the equilibrium point,
is a node. As a result, the system is asymptotically stable.

V. SENSITIVITY ANALYSIS

In Equations (3) and (4), we have sensitivity index
solutions that determine the changes in the value of the
state variable that doubling the parameters yields [18-20].
In Figures 1 and 2, it is seen that by doubling the intrinsic
growth rate of prey species, the population of prey increases
and attains its maximum of 600 in 3 days and decreases
to 0.01mgl−1 at the end of 5 days. When the carrying
capacity k is doubled, the prey population increases by
10mgl−1, and it increases slightly when the predation rates
α and a are doubled. Increasing the parameter d by a factor
of two increases the predator population by 0.001 in five
days. The intra-specific competition rate (δ), predation rate
(α), and decrease in predator population are negligible. The
semi-relative sensitivity as well as logarithmic solutions
determine the changes that doubling parameters yields in
the value of a state variable. From Figure 3 and 4, doubling
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Fig. 1. Sensitivity analysis of the prey population
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Fig. 2. Sensitivity analysis of the predator population

the parameter r increases the prey population also increases
by 2.5 in 3 days and again decreases by 0.0001 in end of
5 days. Also, when the parameters k, α and a are doubled,
the prey population grows slightly. When the parameters
δ, d and α are doubled, the predator population changes
slightly. However, the predator population decreases by 5
in 5 days on doubling the parameter a and increases by
3 in 5 days by the effect of the parameter m. Moreover,
logarithmic sensitivity solutions calculate the percentage
change in the value of a state variable induced by doubling a
parameter. In Figure 5 and 6, it is seen that by doubling the
parameter r of prey species, the prey population increases
to a maximum of 1000% in 3 days and decreases to 0.01%
in the end of 5 days. Also, the population increases by
100% in 5 days by doubling the parameter k. The predation
rates indicate a slight increase in the prey population.
Furthermore, doubling the parameter d reduces the predator
population by 50% in 5 days, and the parameters δ, α,
and a result in a minor decrease in the predator population.
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Fig. 3. Semi-relative sensitivity of the prey population
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Fig. 5. The sensitivity of the prey population on a logarithmic scale
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Fig. 6. The sensitivity of the predator population on a logarithmic scale

VI. ANALYTICAL EXPRESSIONS OF NONLINEAR
EQUATIONS. (3) AND (4) USING HPM

Estimated analytical solutions of the system of equations
(3) and (4) using the HPM [12-16]

(1− p)[dx
dt
− rx] + p[

dx

dt
− rx+

rx2

k
+
αx2y

a2

−αx
4y

a4
+
αx6y

a6
] = 0 (26)

(1− p)[dy
dt

+ dy] + p[
dy

dt
+ dy − mαx2y

a2

+
mαx4y

a4
− mαx6y

a6
+ δy2] = 0 (27)

with initial conditions as follows x0(0) = l1 and y0(0) = l2
According to the HPM, we obtain the approximate analytical
expressions for prey and predator as follow:

x(t) =
e(−2td+5rt)

a4k(r − d)(3r − d)
[a4(−d2)(l21)e2dt−4rt

+a4(d2)(l21)e
2dt−3rt]− 3a4l21r

2e(2dt−4rt)

+3a4l21r
2e(2dt−3rt)4a4dl21re

2dt−4rt

−a2dαkl21l2e(td−3rt)] + a2dαkl21l2e
(2td−4rt)

+3a2αkl21l2re
(td−3rt) − 3a2αkl21l2re

(2td−4rt)

+dαkl41l2e
(td−rt) − dαkl4l2e(2dt−4rt)

−αkl41l2re(td−rt) + αkl41l2re
(2td−3rt)

−4a4dl21re(2dt−3rt) (28)

y(t) =
αl21ml

2
2e

(2rt−1)e−dt

2a2r
− αl41ml

2
2e

(4rt−1)e−dt

4a4r

+l2e
−dt +

αl61ml
2
2e

(6rt−1)e−dt

6a6r
− ml22α(e

dt−1)e−2dt

δ
(29)

VII. NUMERICAL SIMULATION

We have obtained very new and closed expressions for the
prey and predator populations presented in equations (28)
and (29). We compared our analytical solutions obtained by
HPM with the numerical simulation. To test the accuracy
of our approximate analytical expressions, the system was
also solved by using Matlab software for all possible values
of the parameters and we received a satisfactory agreement
between them.
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Fig. 7. Comparison of the analytical and the numerical result in prey-
predator model (3) and(4)
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Fig. 8. Prey population series with varying values of the intrinsic growth
rate r from 4 to 6.Here the other parameters k, α, d,m are all fixed.

VIII. RESULT AND DISCUSSION

Equations are very new expressions for prey-predator
populations. We compared and reported the prey populations
by HPM with numerical simulation using MATLAB software
for all possible values of the parameters r, k, α, d,m, δ, and
a. In Figure 7, the findings are matched in both analytical
and numerical simulation. Figure 8 shows that, when the
parameter (intrinsic growth rate) r increases, the population
of prey also increases. Figure 9 shows that, as the parameter
(natural mortality rate) d increases, so does the predator
population. Figure 10 depicts that, prey population increases
over time t as intrinsic growth rate r increases. Figure
11 depicts that, as natural death rate d increases, the
predator population decreases over time t. Other parameters
k, α, δ and m donot affect the state variables. As seen
in all the figures, our approximate analytical expressions
are a better way to measure the populations of prey
and predator. We can also use the same method to get
approximate analytical solutions for other nonlinear systems.

IX. CONCLUSION

In this paper, we have investigated the dynamics of the
prey-predator model. The stability analysis has been carried
out For all possible values of the system’s parameters,
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Fig. 10. Prey populations with varying values of the parameters r and time
t .

Fig. 11. Predator populations with varying values of the parameters k and
time t.

we have provided a new and closed form of approximate
analytical solutions to the prey-predator system in this paper.
The proposed model is examined by using HPM. Analytical
and numerical techniques are extensively utilised for solving
nonlinear differential equations. Our logical and numerical
results are adequate to study the proposed model. With
a few iterations, we have achieved good results. So, the
HPM is preferable for solving other nonlinear differential
equations.
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