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Abstract—The exponentially stable analysis and observer- 

based dynamic output feedback control of T-S fuzzy networked 
systems with state delay and communication delay are studied in 
this paper. The mathematical model of networked systems with 
state delay and communication delay is established by T-S fuzzy 
method. Then, the fuzzy observer of the systems is designed by 
using the systems output. With Lyapunov stability theorem and 
linear matrix inequality method, the sufficient conditions for the 
exponential stability of networked systems and error systems 
are obtained. On this basis, the design strategy of dynamic 
output feedback control of networked systems is given. The 
simulation and experimental results show that the proposed 
control strategy is effective and feasible. 
 

Index Terms—Networked systems, fuzzy control, observer, 
exponential stable, delay 
 

I. INTRODUCTION 

etworked control systems refer to the control systems in 
which the components of the control loop exchange 

information through the communication network [1 2] . 
Commands and feedback of the control systems are 
transmitted in the form of packets in the network. The 
important feature of networked control systems is that it 
connects cyberspace and physical space, so it can perform 
many tasks over a long distance. Moreover, the information 
of networked control systems is transmitted through the 
network, which saves unnecessary wiring, reduces the 
complexity of the systems, and reduces the cost of designing 

and erecting the systems [3 5] . The important feature of 
networked control systems is that each controller can 
efficiently share information, integrate information in large 
physical space and make decisions. Many advantages and 
wide applications of networked control systems have 

attracted the attention and research of many scholars [6 9] .  
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In recent years, the research on nonlinear networked 
control systems has gradually attracted extensive attention. 
As we all know, T-S fuzzy control is an effective method to 
deal with nonlinear systems. The work of introducing T-S 
fuzzy control method into nonlinear networked systems is 
gradually carried out, and fruitful research results have 

emerged [10 13] . Zare et al. proposed a new control design 
method for a class of nonlinear systems represented by T-S 
fuzzy model by using augmented Lyapunov-Krasovskii 
functional, linear matrix inequality approach and parallel 

distributed compensation method [14] . The dissipation 
analysis of T-S fuzzy networked control systems with 
voluntary defense strategy was studied in [15]. A new delay 
product relaxation condition was proposed, which fully 
excavates the time-varying delay information under the given 
conditions. Using reciprocal convex matrix inequality, true 
integral inequality and linear convex combination method, a 
new criterion and corresponding control algorithm were 
given. The finite-time synchronization problem of sampling 
control for T-S fuzzy complex dynamic networks with 
coupling delays was studied in [16]. Based on Lyapunov 
stability theory, a suitable Lyapunov functional was 
constructed by using Kronecker product, and a new sufficient 
condition was established by using the average residence 
time method. The problem of fault detection for discrete 
time-delay fuzzy networked control systems with 
quantization and packet loss was studied in [17]. The 
input-output method and two term approximation method are 
used to transform the discrete fuzzy networked systems into 
the form of interconnection of two subsystems, and two term 
approximation method is used to approximate the 
time-varying delay. By eliminating the coupling between 
Lyapunov matrix and system matrix, the sufficient conditions 
for the stability of the systems are obtained. 

However, the above research results only study the state 
feedback controller design of nonlinear networked systems, 
which requires that the systems states are measurable. In 
reality, the systems states are usually unknown or partially 
known, which makes the state feedback controller design 
suffers from strong resistance. In order to overcome the 
unobservable problem of the systems states, it is necessary to 
design the state observer of the systems and use the observed 
states for control design. Therefore, the observer-based fuzzy 
control design technology of networked control systems 

urgently needs to be studied [18 22] . Li et al. investigated the 
defense control problem of T-S fuzzy systems with multiple 
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transmission channels against asynchronous denial of service 

attacks [23] . A new switching security control method was 
proposed to tolerate asynchronous denial of service attacks 
acting independently on each channel. By using the piecewise 
Lyapunov-Krasovskii functional method, the sufficient 
conditions for the exponential stability of the newly 
constructed switching systems were obtained. The problem of 
observer-based robust fuzzy control for actuator saturated 
nonlinear networked systems was studied in [24]. T-S fuzzy 
method was used to establish a fuzzy observer. The saturation 
fuzzy control law was designed according to the estimated 
states of the observer. By constructing a new Lyapunov 
functional, the stability of the systems was analyzed, and the 
design strategy of the controller was given. Chen et al. studied 
the observer-based controller design problem for a class of 

discrete-time nonlinear networked systems [25] . Considering 
the influence of data packet loss on systems performance in 
the process of data transmission, the mean square exponential 
stability condition and H  controller design method are 

obtained by using Lyapunov functional method. 
Although the observer-based feedback control of 

networked systems has been designed in the above research 
results, and the asymptotic stability of the systems has been 
analyzed, the exponential stability of networked systems, 
especially the exponential stability of networked systems with 
time delay is not considered. Motivated on the above analysis, 
the dynamic output feedback fuzzy controller of the nonlinear 
networked systems is designed to make the systems states and 
error systems states exponentially stable.  
 

II. PROBLEM FORMULATION 

Consider the following typical networked systems with 
time delay shown in Figure 1 

Rule i :    

IF     1( )z t  is 1
iM  and 2 ( )z t  is 2

iM  ,…, and ( )nz t  is i
nM , 

THEN        ( ) ( ) ( ) ( )i di ix t A x t A x t d B u t    ,  

                   )()( txCty i       qi   ,  ,2  ,1                  (1) 

   ( ) ( )x t t         [ ,0]t d  ,                               

where 1 2( ) [ ( )   ( )     ( )]Tnz t z t z t z t   is the premise variable, 

( ) nx t R  is the systems state, q  is the number of IF-THEN 

rule, )  ,  ,2  ,1   ;   ,  ,2  ,1( nkqiM i
k    are fuzzy sets, 

( ) mu t R  is the control input, ( ) ly t R  is the systems 

output, , n n
i diA A R   are constant matrices, n m

iB R   are 

input matrices, l n
iC R  are output matrices, d  is time delay, 

1 2( ) [ ( )   ( )     ( )]T n
nt t t t R      is the initial condition 

of the state. 
 

 
Figure 1. A typical networked control systems 

In Figure 1, sc and ca  are the sensor-controller and the 

controller-actuator delay respectively. The communication 
delay is given by sc ca    . Using single point fuzzification, 

product inference engine and central fuzzy elimination 
method, the global fuzzy model of the systems (1) can be 
described as 
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The following fuzzy observer based on T-S model of the 
systems (2) will be designed as 

1
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where iL  are constant matrices. 

And then, the fuzzy controller based on the above observer 
will be designed as 





q

i
ii txKtztu

1

)(ˆ))(()(  ,                          (4) 

The observer error is defined as 
              )(ˆ)()( txtxte  ,                               (5) 

The closed-loop systems can be obtained from equations (2) 
- (5), 

1 1

( ) ( ( )) ( ( ))[ ( ) ( )
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( ) ( ),                  [   0],

q q

i j i di
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The error systems will be obtained, 

1 1
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q q

i j i i j di
i j
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( ) ( ),                                      [   0],e t t t d,    

 (7) 
where )()()( ttt   . 

The purpose of this paper is to design a controller in the 
form of (4) such that the closed-loop systems and the error 
systems exponentially stable. 

Remark 1. The systems studied in this paper is networked 
systems with both state delay and communication delay. The 
networked systems is modeled as differential equations with 
state delay and input delay. 
 

III. MAIN RESULTS 

Definition1 ]7[
 For the systems (2), if there exist constants 

0  and 1 , such that 

0
|| ( ) || sup {|| ( ) ||}e t

d s
x t s   

  
 ,  0t , 

the systems (2) is exponentially stable. 

Lemma1 ]8[  The linear matrix inequality  
( ) ( )

0
* ( )

Y x W x

R x

 
 

 
 

is equivalent to 

( ) 0R x  , 1( ) ( ) ( ) ( ) 0TY x W x R x W x  , 

where ( ) ( ), ( ) ( )T TY x Y x R x R x   depend on x . 

Theorem1 For the given constants 0  and 

qji   ,  ,2  ,1,  ， if there exist matrices n l
iL R  and 

positive-definite matrices , n nP Q R  , such that the following 

matrix inequality holds， 
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     (8) 
the error systems (7) is exponentially stable. 
Proof. Lyapunov function is selected as 

2 ( )( ( )) ( ) ( ) ( ) e ( ) ,
tT T s t

t d
V e t e t Pe t e s Q e s ds 


    

where 0  is a constant to be determined, , n nP Q R   are 

positive-definite matrices. 
Following the state trajectory of the systems (7), we obtain 
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It can be seen from [6], 
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therefore 
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    Substituting (8) into the above equality, we obtain 

( ( )) 2 ( ( ))V e t V e t  , 

then 
2 2 2

max max( ( )) ( (0))e [ ( ) ( )] || || et t
dV e t V e P d Q       .           

(9) 
It is easy to know from the expression of ( ( ))V e t  

2
min( ( )) ( ) || ( ) ||V e t P e t .                         (10) 

Combing (9) and (10), we obtain 

max max
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|| ( ) || || || e
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d

P d Q
e t
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
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with Defintion1, we know that the error systems (7) is 
exponentially stable. 
Theorem2 For the given constants 0, 0    and 

qji   ,  ,2  ,1,  ，if there exist a constant 0  ，matrices 

,n l m n
i jL R K R    and positive-definite matrices 

1 1 2, , , , R ,n nP Q P Q Q   such that the following matrix 

inequalities hold, 
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)(ˆ))(()(  , the 

closed-loop systems (6) and the error systems (7) are 
exponentially stable. 
Proof. Lyapunov function is selected as 
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where 0   is a constant to be determined, 1 1 2, , n nP Q Q R   

are positive-definite matrices. 
Following the state trajectory of the systems (6), we obtain 
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where 0 is a constant, and  

1 1 1 2 12 .T
i iPA A P Q Q P I         

If the matrix inequality (12) holds, the above equality can 
be rewritten as 

1
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According to Theorem 1, when the matrix inequality (11) is 
established, the error systems (7) is exponentially stable, that 
is, the error )(te  is exponentially stable, and the state )(tx  

of the closed-loop systems is also exponentially stable 
according to the equation (14), such that the closed-loop 
systems (6) and the error systems (7) are exponentially stable. 
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q q
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equation (13) can be rewritten as 
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therefore 

    
2

2 2
max 1 max 1 max 2

( ( )) ( (0))e

           [ ( ) ( ) ( )] || || e .

t

t
d

V x t V x

P d Q Q



   







  
          

(15) 

It is easy to know from the expression of xV  
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Combing (15) and (16), we obtain 
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the closed-loop systems (6) is exponentially stable. It is also 
known from Theorem1 that when the matrix inequality (11) 
holds, the error systems (7) is exponentially stable, so that the 
closed-loop systems (6) and the error systems (7) are 
exponentially stable. 

In a word, when the matrix inequalities (11) and (12) hold, 
the closed-loop systems (6) and the error systems (7) are 
exponentially stable. 
Remark 2. In the theorem 2, the sufficient condition (11)-(12) 
are not linear matrix inequalities, which cannot be solved by 
the tool of the LMI toolbox in MATLAB. An equivalent 
sufficient condition in terms of linear matrix inequality will be 
given in the following theorem. 
Theorem3 For the given constants 0, 0    and 
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         (18) 

where 

1 2 2 ,T
i iA X XA Q Q X       

with the controller 1

1

ˆ( ) ( ( )) ( )
q

i i
i

u t z t K X x t 



 , the 

closed-loop systems (6) and the error systems (7) are 
exponentially stable. 
Proof. In the matrix inequality (11), let i iM PL , then the 

matrix inequality (11) can be changed as the equation (17). 

Multiplying the matrix 1 1 1
1 1 1( ,   ,   )diag P P P    on both sides 

of the matrix inequality (12), and let 1
1
 PX , we can obtain 

2
1

2
2

0 0,
di i j
d

A X B K X

e XQ X

e XQ X









 
    
    

 

where 

1 2 2 .T
i iA X XA XQ X XQ X X XX         

Letting j jK K X , 1 1Q XQ X , 2 2Q XQ X  and with 

Lemma1，the above inequality is equivalent to equation (18). 

Remark 3. When   is determined, the conditions (17) 

and (18) are linear in theorem3, which can be easily solved by 
using the LMI toolbox in MATLAB. 
 

IV. SIMULATION 

Consider networked control systems (2) with delay, where 
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1 1

2 2

6 1 2 0.2 1 0.1

1 2 1 , 0.4 1 0.1 ,

1 0 3 1 0.4 0.5

2 0.1 0.2 0.1 1.5 0

2 1 1.5 , 4 0.1 0.1 ,

1 0.2 4 0.1 0.2 0.1

d

d

A A

A A

     
         
        
   
          
         

 

   
 

3 1 2

3 3

1 2

3

2
1

5 1 0.1 2 1

0.3 0.7 0.1 , 1 , 1 ,

2 2 4 3 0.1

1.5 0 0.2 0.1

0.1 2 0.2 , 2 ,

1.6 0.1 0.7 1.5

0.1 0.3 1 , 1 2 0.2 ,

2 0.5 1 , 0.2, 0.3,

( ( )) 0.5sin (

d

A B B

A B

C C

C d

z t t





      
                
            
   
        
       

  

    

 2

2
3

), ( ( )) 0.7cos( ),

( ( )) 1 0.5sin ( ) 0.7cos( ),

max{ , } 0.3.

z t t

z t t t

d d









  

 

 

Using the algorithm in [4], the controller can be obtained as 

 ( ) 2.4593 0.5482 1.5392 ( )u t x t  . 

Using the observer-based fuzzy control approach proposed 
in this paper to solve the linear matrix inequalities (17)-(18), 
we obtain the feedback matrices, 

 
 
 

1

2

3

1.4726 1.7430 1.3327 ,

1.8594 2.4842 1.8973 ,

1.3668 0.8543 1.5899 ,

2.3970 0.9802 2.6738

0.9802 1.5790 1.5987 ,

2.6738 1.5987 1.6892

K

K

K

X

 

 

  

 
   
  

 

and the observer gain matrices, 

 
 
 

1

2

3

1.6794 0.6455 1.4992 ,

2.4795 1.4987 2.8654 ,

0.4632 0.3673 2.4467 ,

T

T

T

L

L

L

 

  

  

 

The dynamic output feedback fuzzy controller can be 
designed, 

2

2

2

( ) 1.4323sin ( ) 0.1347cos( )

          0.3421sin ( ) 2.3513cos( )

ˆ          0.1866sin ( ) 1.1286cos( ) ( ).

u t t t

t t

t t x t

 


  

 

By selecting the initial value condition such as 

6

(0) (0) 3

2

 
 
    
  

. 

the comparison results of the systems states 

1 2 3( ), ( ), ( )x t x t x t  with two algorithms as Figure 2-4. 

 

 
Figure 2. The response curves of the systems state 1( )x t  

 

 
Figure 3. The response curves of the systems state 2 ( )x t  

 

 
Figure 4. The response curves of the systems state 3( )x t  
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Figure 2 shows the comparison curves of the systems state 

1( )x t  with two different algorithms. The solid line is the 

control effect curve obtained by the algorithm of Theorem 3, 
and the dotted line is the control effect curve obtained by the 
algorithm in [4]. The solid line can converge to 0 within 5 
seconds and the dotted line can converge to 0 within 8 
seconds. The smoothness of the solid line is very good, and 
there is basically no overshoot, while the dotted line has large 
vibration and overshoot, and the amplitude reaches 2. 

Figure 3 shows the comparison curves of the systems state 

2 ( )x t  with two different algorithms. The solid line is the 

control effect curve obtained by the algorithm of Theorem 3, 
and the dotted line is the control effect curve obtained by the 
algorithm in [4]. The solid line can converge to 0 within 6 
seconds and the dotted line can converge to 0 within 7 seconds. 
The solid line has good smoothness and small overshoot, and 
the amplitude reaches 2.5, while the dotted line has large 
vibration and overshoot, and the amplitude reaches 9. 

Figure 4 shows the comparison curves of the systems state 

3( )x t  with two different algorithms. The solid line is the 

control effect curve obtained by the algorithm of  Theorem3, 
and the dotted line is the control effect curve obtained by the 
algorithm in [4].The solid line can converge to 0 within 5 
seconds and the dotted line can converge to 0 within 10 
seconds. The solid line has good smoothness and small 
overshoot, and the amplitude reaches 0.4, while the dotted line 
has large vibration and overshoot, and the amplitude reaches 
2.5. 

In a word, the algorithm given in Theorem 3 is superior to 
[4] in convergence speed and smoothness. 
 

V. CONCLUSION 

The dynamic output feedback control of T-S fuzzy 
networked systems with state delay and communication delay 
is studied. The main work is as follows: (1) Considering the 
influence of communication delay caused by network on 
systems performance, the mathematical model of networked 
systems with state delay and communication delay is 
established by T-S fuzzy method. (2) The exponentially stable 
state observer is designed by using Lyapunov stability theory 
and linear matrix inequality method. (3) Using matrix 
inequality transformation, the nonlinear exponentially stable 
condition is transformed into linear matrix inequality, and the 
design method of dynamic output feedback fuzzy control is 
obtained. The innovation of this paper is that the influence of 
communication delay on fuzzy networked systems is 
considered, and the exponential stability condition and 
control design process can be easily solved by MATLAB. 
The design method proposed in this paper can be extended to 
other types of networked systems, such as distributed delay 
networked systems, time-varying delay networked systems, 
random delay networked systems and so on, which will be our 
next research work. 
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