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Natural Heuristic Algorithms to Solve Feature
Selection Problem

Yu-Cai Wang, Jie-Sheng Wang *, Jia-Ning Hou, Yu-Xuan Xing

Abstraci—In most data mining tasks, feature selection is an
essential pre-processing stage. Select the most importamt
attributes to reduce the dimension of the data set, thus
improving the accuracy of the classification. Natural heuristic
algorithms are widely used in encapsulated feature selection.
Based on the wrapper feature selection method, 7 natural
heuristic algorithms are used to solve feature selection problems
and perform performance comparison, which include Slime
Mold Algorithm (SMA), Whale Optimization Algorithm
(WOA), Harris Hawks Optimization Algorithm (HHO), Marine
Predator Algorithm (MPA), Butterfly Optimization Algorithm
(BOA), Cuckoo Search (CS) and Firefly Algorithm (FA). At the
same time, performance tests are carried out on 21 standard
UCI data sets to verify the performance of various algorithms,
and the convergence curves and accuracy boxplots of 7 natural
heuristic algorithms on 21 data sets are given. The simulation
results were evaluated according to the mean and standard
deviation of fitness, the number of selected features, and the
running time, with the optimal value in bold. By comparing the
comprehensive performance indexes, MPA obtained the highest
average fitness value in most data sets (16 data sets), followed by
FA (6 data sets). SMA obtained the best performance and finds
the minimum eigenvalues (20 data sets) in multiple data sets
and has an advantage in computing time.

Index Terms—feature selection, natural heuristic algorithm,
KNN classifier, performance evaluation

I. INTRODUCTION

W ITH the development and upgrading of computer
science and information technology, many data sets
have been produced, the complexity and diversity of data
have also increased, the original feature dimension has
become higher and higher, and the training space and time
complexity of classification model has also increased.
High-dimensional data has disadvantages, such as data
redundancy and long modeling time, which makes data
analysis very difficult [1]. At this point, more excellent and
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efficient feature selection algorithms are needed to
rationalize the processing of many original data and screen
out more practical features with classification algorithms.
Based on the above factors, feature selection is more
concerned by academic circles. Feature selection techniques
are knowledge discovery tools that understand problems by
analyzing the most relevant features, with the aim of building
better classifiers by listing the important features, which also
helps reduce the computational burden. The high correlation
of features often results in multiple equal-optimal features,
which leads to the instability of the traditional feature
selection methods, thus reducing the reliability of the selected
features. Stability is the robustness of feature preference to
the perturbation of training samples. When evaluating feature
selection performance, the high stability and classification
accuracy of the feature selection algorithm are very important.
Feature selection algorithms help to understand the
relationship between features and target variables, reduce the
computational requirements to solve specific problems,
effectively reduce dimension in high-dimensional data sets
with fewer observations than features, help to improve
predictive performance for solving specific problems, and in
terms of cost efficiency and time efficiency has been
improved. Feature selection 1s considered to be an immediate
solution to this problem. The aim is to determine which
features to use in the classification task without significantly
reducing the prediction accuracy of the classifier [2]. As an
effecive data pre-treatment method, feature selection
technology can eliminate irrelevant and redundant features,
reduce the dimension of data set, enhance the generalization
ability of the model, and reduce excessive fitting [3].

For the imitial test results, feature selection is maimly
studied on supervised learning algorithm. However, there are
also many problems in practical problems. The selection task
of test result calculation is often carried out in the case of not
knowing the category. For these factors, supervised test result
and unsupervised test result algorithm come into being. In
1988, Siedlecki et al. described two types of feature selection
algorithms, supervised and unsupervised [4], in which both
markers and information of training data could be understood
under supervised conditions. At this stage, the primary task of
test results is to select the sub-feature set from the initial
feature set, so as to maximize the accuracy of the training
classifier, or to minimize the feature dimension on the
premise of ensuring the accuracy. In 1992, Doak et al
described two types of feature selection algorithms [5]. Later,
Belkin et al. proposed a learning algorithm based on manifold
in 2003 [6]. The visibility of manifold space is high and data
display 1s easy. The commonly used methods include
principal component analysis. In 2003, Zhu et al. proposed a
semi-supervised learning method [7] based on the selection
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of supervised and unsupervised characteristics and
considering advantages and disadvantages, thus reducing the
classification cost and mmproving the performance of the
algorithm. Based on the selection mechanism, feature
selection can be divided into three categories: filter, wrapper
and embedded. Filters can be divided into information gain
(1) [8], gain ratio (GR) [9], mutual information (M) [10],
Laplacian score [11], Fisher score (FS) [12], etc. Wrapper
feature selection is based on the performance of the final
model to be used. In other words, a wrapper selects a subset
of a particular model that best fits its performance. In terms of
the final model performance, the wrapper 1s superior to the
filter, but its disadvantage is that it is computation-intensive
and requires multiple training of the model. The most
representative packaging feature selection method 1s based
on LVM. For large data sets, the search space is very large, so
complete search is not feasible. Therefore, meta-heuristic
algorithms are widely used in feature selection with the form
of wrapper. Finally, the embedded feature selection
algorithm performs feature selection in the traiming process,
inheriting the advantages of filter and wrapper feature
selection methods. (1) There is an interaction between the
selected learning algorithm and the feature. (2) Can record
dependencies at a lower cost than wrappers, so they do not
need an iterative set of evaluation features. In fact, the
embedded approach uses machine learning methods to find
the final subset [13].

In recent years, feature selection has become more diverse
and diversified, with more suitable search strategies and more
comprehensive evaluation criteria springing up. Many
algorithms from other fields have also been introduced into
feature selection. At the same time, algorithm fusion research
has become more popular, such as the synthesis of filters,
search strategies, filters and wrappers, evaluation criteria,
unsupervised feature selection and supervised feature
selection. Heuristic algorithm is a highly coupled calculation
method between the problem and the problem to be solved,
which can provide a feasible solution according to the
calculation method that people can accept, the size of space,
etc., under normal circumstances, the deviation range
between the possible solution and the optimal solution cannot
be predicted in advance. This technique can reduce
computational complexity by sacrificing computational
accuracy. In this paper, seven different heuristic algorithms
(SMA, WOA, HHO, MPA, BOA, CS and FA) are compared
on 21 typical UCI data sets based on the encapsulation
selecion mechanism so as to find the relative optimal
algorithm in different data sets. The structure of the paper is
arranged as follows. The second section introduces seven
new natural heuristic algorithms (SMA, WOA, HHO, MPA,
BOA, CS and FA). In section 3, S-type transfer function,
K-nearest neighbor classifier (KINN) and fitness function are
mtroduced, and the feature selection architecture based on
natural heuristic algorithm 1s presented. The fourth section
carries on the experiment simulation and the result analysis.
Finally, the conclusion of the paper is given.

II. NATURAL HEURISTIC ALGORITHM

A. Shime Mold Algorithm (SMA)
As SMA was proposed by Professor L1 and Mirjalili et al.

in 2020. In this algorithm, it mainly simulates the foraging
and diffusion behavior of slime meold, and simulates the
adaptive weight generated by positive and negative
propagation waves to form the optimal connection path. The
main operators of SMA include approaching food (odor
index), wrapping food and acquiring food.

(1) Approaching to the food

Slime molds use smells in the environment to get closer to
food. Its convergence behavior is expressed mathematically,
and Eq. (1) is used to simulate its contraction mode.

X, @0)+0, (WX, 0~ X,0)r < p o

t+1) g ) %, e p
where, v, is between [~@.a] ; v, is between [-1.1] ; the
current iteration number is denoted by ¢ ; represents the
individual position with the best adaptation found at present
is denoted by X, ; the location of the slime mold is denoted
by X ; the weight of the slime mold is denoted by & ; two
individuals randomly selected from the slime molds are
devoted by X, and X, ; 7 is between [0.1]; the threshold
for controlling exploration and exploitation is denoted by 2 ;
P is shown in Eq. (2); a is shownin Eq. (3); @ is shown in
Eq. (4); » is shown in Eq. (5); ¥ is shown in Eq. (6).

p = tanh | S() - BF | (2)
v, = rand[~b, b] (3)
a = arctanh(— [F’mﬁ%ﬁ;}ﬁ J +1) 4
b-1- {ﬂJ (5)
Max FEs
I+7- log[lzi‘g(i) +1], condilion
W (SI(FEs)) = B (6)

1-r7-log M+l ,others
BF -WF

where, i=12,3...n; 80 is the fitness value indicated by
X . the best adaptive value currently obtained is denoted
by BF ; FEs isthe quantity currently assessed; Max_ FEs jg
the maxamum quantity assessed; the weight of slime molds in
positive and negative feedback mechanisms is denoted by
W, Condition S(i) represents the top half of the ranking in
the population; the value suitable for X is denoted by S();
the sequence of adaptive values in ascending order is denoted
by ST ; 7 represents the random number in [0.1] ; the best
adaptive value obtained in the current iteration is denoted by
BF ; the worst fit obtained during the current iteration is
denoted by T

{2) Packages of food

The relationship between venous width and food
concentration was mathematically simulated by Eq. (6). The
parameters ¥ in Hq. (6) are used to simulate the uncertainty
of venous contraction mode. At higher concentrations of food,
weight in nearby areas increased. At lower concentrations of
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food, the area loses weight and the slime molds continue to
explore other areas. The evolution formula is shown in Eq.

(7:

rand-(UB—-LB)+ LB, rand < z
Y = X,0+0,(F-X0-X,0). r<p (0
— =
DX @) F
The upper and lower limits of the search range are
represented by UB and LB ; rand and ¥ represent random
values of [0.1]; rand is used to control whether random
update 1s selected; ¥ is used to determine whether to enter the
exploration and exploitation phase.

B. Whale Optimization Algorithm (W0OA)

WOA was proposed by Mirjalili et al in 2016. Tt is
inspired by the behavior of whales chasing prey. When
hunting other fish, whales can do two things, one is to
surround the prey, and one is to soak in the net. A round is
when all the whales move on to the other whales. A bubble
net is a way for a whale to swim 1n a circle through the water
and then blow bubbles to expel prey. In each swim, the whale
randomly selects these two movements. As they surround
their prey, they randomly decide whether to swim to the best
place. The whale optimization algorithm has the following
steps.

{1) Initially determine the whale population size as X, and
randomly generate the position of a whale. Then the
parameter a,4,C. [, pand Max_Iter of WOA algorithm are
nitialized.

{2) The fitness of each whale 1s calculated and compared to
determine the most suitable individual, which is defined as
X"

(3) Enter the algorithm loop.

If p<05 and |4|<1, each whale updates the current
position as shown in Eq. (8);, Otherwise, update the individual
whale position as shown in Eq. (9).

X+ =X (- AD (8)
X(t+)=X,, —A4-D (9)
A=2a-r-a (10)
D=C-X,,, —X| (11)

where, 4 represents the convergence factor; the distance
between the individual and the optimal whale position is
denoted by p . It can be calculated from Eq. (10) and (11)
respectively. » is between [0.1]; as the number of iterations
increases, ¢ will decrease from 2 to 0; the location of a
random whale in the current population is denoted by X, .

If = 0.5 | then each whale is calculated according to Eq.

(12).

X (ti)=D e -cos2al) + X' () (12)

D =X (H)-X)| (13)

where, the distance to the food for whale 7 is denoted by B
! is a random value between [-L1]; b is the helical

constant.

(4) Bvaluate the whale population again and find out the
global best individual whale and its location.

(5)If the termination condition of WOA is met, it will stop.
Otherwise, go to Step 2.

(6) Output the global optimal solution X .

C. Harris Hawks Optimization Algorithm (HHO)

HHO was a new meta-heuristic algorithm proposed by
Heidan et al in 2019 [14]. In the HHO algorithm, eagle is
used to represent the candidate solution, and the optimal
solution is called the prey. Harris eagles try to use their
powerful eyes to track their prey and then pounce on what
they find. HHO algorithm is mainly composed of three parts:
exploration stage, transformation stage between exploration
and exploitation stage, and exploitation stage.

(1) Exploration phase

A Harris eagle perches randomly in a certain area and finds
prey by two strategic means, as shown in Eq. (14).

Xrand (T)
g=05
—H |and (T)i 26X(T) ‘:
X(+D)= (14)
[Xrabbzt (T)
g<05

—X, @]l +r0 -1,

where, individual positions in the current iteration and the
next iteration are denoted by 4'(ry and X (.1 ; the number of
iterations is denoted by 7 ; the individual position selected at
random is denoted by X ,..; (£) ; prey position is denoted by
KXot () o K ~# and ¢ are random numbers between
[0.1]; ¢ is used for the strategy to be adopted in random
selection; X,,(7) is the average individual position, as
shown in Eq. (15).

XLy X @) as)
k=1

where, the position of the k -th individual in the population is
denoted by &, (7) , the size of the population is denoted by
M

{2) Transformation between

exploitation

stage exploration and

The HHO algorithm relies on escape energy of prey, and
escape energy is expressed in Eq. (16).

E:2E0[lr]
T

where, the mitial energy of prey is denoted by E; ; the
number of iterations is denoted by 7 ; the maximum number
of iterations is denoted by 7. When | E [ 1, the exploration
phase will be entered; When |E|<1 | it will enter the
exploitation phase.

(16)

(3) Exploitation stage

Definition: 7 is a random number between [0.1], which is
used to choose different exploitation strategies.

1) When 0.5 < El<l and rz05 adopt a soft siege
strategy shown in Eq. (17).
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XA D= AV (D) - E[JX (1) - Xy | (A7)

(18)

where, the difference of the current position of the prey
individual is denoted by AX(z) ; J is a random number
between [0,2].

2) When | £[<0.5 and #=0.5 the hard siege method is
adopted to update the position, as shown in Eq. (19).

X+ =X, . (0)-E[AX(D)]

AX(T) = Xrabbit (T) 7X(T)

(19)

3) When 05<|E <] and r<0.5 the progressive soft
enveloping method is adopted to update the position, as
shown in Eq. (20).

Y {Y, Sy < fX (@) 0
Z.f(2) < fX(z)

V= X ()~ E| e (0 -X (@ 21

Z =T +8xLF(2) (22)

where, the fitness function is denoted by () ; a random
vector in two dimensions is denoted by §; LI(9) is Levy's
flight mathematical expression.

4)When | £ < 0.5 and # < 0.5 the position of Eq. (20) is
updated using the asymptotic hard enveloping method, where
Y 1s shown in Eq. (23).

Y= mebzf (T) -k | Jmebzi (T) - Xm (T) ‘ (2’3)

D. Marine Predator Algorithm (MPA)

MPA is put forward by Faramarzi etc. [15] in 2020, Marine
predator algorithm was proposed by Faramarzi et al. [15] in
2020. MPA algorithm mainly simulates the process of
survival of the fittest in the ocean, modeling the predation
behavior of Marine predatorsIt will randomly generate
solutions as prey. A solution based on the performance of the
fitness function can be divided into two parts, respectively
elite prey and predator. Elite predators can supervise the
search and find prey based on the location information of
prey. The optimization process of MPA is mainly divided
into three stages.

(1) Phase one

For phase one, this happens early in the iteration of
optimization. Maintaining the current position is the best
strategy  for the predator at this stage. When
lter < Max _Iter /3.

stepsize, = R—B @ (Elite, —R—B®Pery1 yvi=1l...n (24)

IT% = % +PR® stepsize, (25)
where, stepsize represents the moving step at this stage; E
represents Brown walk random vector; P=05; @ is the
term by term multiplication operator to represent the
movement of prey; R is arandom value in [0 1]; ZJize isan
elite matrix of top predators; the current iteration number 1s
denoted by [Ifer ; the maximum number of iterations is
denoted by Max _ iter

(2) Phase two

This strategy occurs in the middle of the iteration, and the
population 1s divided into two parts. At this time, both the
prey and the predator are looking for the prey. The prey
carries out the Levy-motion, which is responsible for the
development of the algorithm in the search space, while the
predator carries out the Brow motion, which is responsible
for the exploration of the algorithm in the search space.

When %Max_]ter < Iter < %Max_lter :

Position change of the first half:

stepsize, = E@(Elitel 7}2?®Prey1 Li=1..,n/2 (26)

Prey, = Pery, + PR® stepsize, 27N

Position change of the latter half:
stepsize, = }TB ® (}TB @ Elite, —Prey),i=n/2,...n (28)

Prey, = Elite, + P.CF @ stepsize; 29

where, R—L represents the random vector of Levy motion and
CF 13 the adaptive function of the predator's moving step.

Jter @ Tter
Max _ Rer

CF=(01-——
Max  lier

(30)

(3) Stage three

This stage occurs at the late stage of iteration and should
focus on improving the local development of the algorithm.
Levy-motion is the best predator strategy.

When [lter > %Maxilter ;

stepsize, = Rj@(}?i @FElite. —Prey,),i=1,..n (31)

Prey, = Elite, + P.CF @ stepsize; (32)

where, the dot product of R, and the elite matrix simulates
the Levy motion of the predator. Again, the movement of the
predator was simulated as an update of the prey position.

I, Butterfly Optimization Algorithm (BOA)

BOA was proposed by Arora etal. in 2019. It is inspired by
the survival and reproduction behavior of butterflies in nature.
Butterflies rely on their senses to identify food sources. Inthe
BOA, if every butterfly can produce an odor, the odor will
spread out. The smell of each butterfly is related to its {itness.
That is, as the position of the butterfly changes, so does its
fitness. When a butterfly smells something else, it moves
toward it, in what's called a "global search.” The other is that
when a butterfly doesn't feel more fragrant than it does, it
flies at random, in what's called a "local search.” Fragrance is
indicated by stimulus intensity, which is shown in Eq. (33).

(33)

where, the sensory factor is denoted by ¢ ; stimulus ntensity
1s denoted by [ ; & isa power; I has to do with the fitness
of butterflies.

In the global search, the butterfly will move towards the
optimal solution £”, as shown in Eq. (34).

f=c”®
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= (P xg xS (34)
where, the solution vector of the 7 -th butterfly in the ?-th
iteration is denoted by x! ; the optimal solution so far is
denoted by g ; the fragrance of the i -th butterfly is
denoted by fi; 7 is between [0.1].
The local search stage can be expressed as Eq. (35).
X =x e ) n (35)
k -th and J -th butterflies are randomly selected from
the space of solutions are denoted by x% and X’ Both
kinds of searches occur during the butterfly's foraging,
which can be solved by £ . This method can be used for
the transformation of global search and local search. Each
iteration is based on the comparison of ¥ and 7 randomly
generated by Eq. (33) to consider whether global or local

search is needed, ¥ = rand(0,1).

F. Cuckoo Search Algorithm (CS)

In 2009, Yang et al. proposed a CS algorithm with
relatively few parameters, relatively simple operation,
easy implementation and strong optimization ability. To
simulate the living habits of cuckoos, the CS algorithm
assumes the following ideal conditions:

(1) Each cuckoo lays one egg at a time and randomly
selects a nest to store it in.

(2) During the searching for nests, the nest with the best
eggs 1s saved for the next generation.

(3) There are a certain number of nests available, and
let's say the probability of other eggs being found in the
nest is P, p[0.1] | If other exotic eggs are found, the
owner will build a new nest.

According to the above three state assumptions, the
location and route of rhododendron optimization search
are modified, and the calculation is shown in Eq. (36).
=y +a®L(D),i=12..,n

1

(36)

where, the nest position of the 7 -th bird's nest in f -th
generation is denoted by ' |, a point-to-point
multiplication is denoted by @ | the step size control
quantity is denoted by & | the random search path is
denoted by L(4) . and the random step size adopts the
Levy distribution.

Lis,A)s*,(1<A<3) (37)

where, the random step obtained by Le¥y flight is denoted
by 5.

The CS algorithm steps are as follows.

Step 1: Firstly, determine the initialization of the
objective function f(X) |, where X =(x_ x,)" . and
randomly generate the initial position X;(i=12,...n) of
n nests, set P, Max_lIter and the population size, etc.

Step 2: Select the fitness function and determine the
corresponding objective function wvalue of each nest
position, so as to get the best value.

Step 3: Eq. (36) updates the position and situation of
other nests and records the value of the best function of the
previous generation.

Step 4: Compare the existing position function value
with the previous generation of the best function value, if
it is better, adjust the current optimal value.

Step 5: After position update, compare ¥ €[0,1] and P
with random numbers. If ¥ > 7 change x'*! randomly; if
not, keep it unchanged. The best position of the bird's nest
was denoted as 3™

Step 6: If the maximum number of iterations or
minimum error requirement is not reached, return to Step
2; If not, proceed to the next step.

Step 7: Output the global optimal location.

G. Firefly dlgorithm (FA)

FA is a swarm intelligence optimization algorithm
proposed by Yang based on the phototaxis among fireflies
[16]. Fireflies that emit relatively strong light attract their
neighbors that emit less light, and at the same time, the
intensity decreases as the distance increases. Each firefly
has a sensing range. If it can't sense a brighter firefly
partner, it flies randomly. Firefly brightness is represented
by objective function wvalue, and firefly position is
represented by feasible solution. The process of firefly
approaching to the brightest firefly is to complete the
optimization process of the treatment function. The
disadvantage of FA is that the time is relatively long, and
the accuracy 1s not high. The four elements of FA are
luminescence intensity, the distance between two fireflies,
appeal and firefly location update.

(1) Luminous intensity

If the continuous optimization problem to be solved is a
minimization problem, the calculation of the luminous
intensity /; of the firefly at the spatial position ¥, is
shown in Eq. (38). If the maximum problem is solved, the
luminous intensity {; of the firefly is shown in Eq. (39),
where the value of the target function for ¥; is denoted by

g flx).

1
I = 38
LS G
I =f(x) (39)

{2) The distance between two fireflies

The distance 7; between the i -th firefly and the J -th
firefly is shown in Eq. (40), where ¥, ; is the & -th
component of the space coordinate ¥; of the i -th firefly,
and d represents the dimension of the problem.

d 2
TN SR TR TS

(3) Attractive

(40)

The attraction of a firefly is shown in Eq. (41), where ¥
represents the distance between the firefly and another
point, f4 is a constant to represent the maximum
attraction, and ¥ represents light absorption coefficient.

2
Ar)= e (4D
{4) Firefly location update
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As shown in Eq. (42), & represents the random term
coefficient, and rand is between [0,1],
2
X = x+ Boe T (x; — %)+ ct(rand — 0.5) (42)
With the progress of time, many scholars have
improved the firefly algorithm. For example, Fister et al.
used consternation to represent small fireflies to improve
performance and avoid any stagnation in the searching
process [17].

III. NATURAL HEURISTIC ALGORITHMS TO SOLVE
FEATURE SELECTION PROBLEM

A. S-tvpe Transfer Function

The transfer function is one of the most efficient ways to
convert a continuous algorithm to binary because it can
convert continuity to discrete without changing the original
structure of the algorithm. Most scholars use S-type transfer
functions to transform continuous optimization algorithm
into binary version. Therefore, this paper carries out research
based on S+ype transfer function. Table 1 gives the
mathematical expressions of the s-type transfer function
family. Fig.1 shows the schematic of the transfer functions.

B. K Nearest Neighbor Classifier (KNN)

K-ncarest neighbor is a common multivariate
classification algorithm. Its basic principles are described as
follows. When most of the K closest samples belong to a
certain type in a specific feature space, then the sample also
belongs to that type. In the experiment, KNN is used to
classify tasks, calculate the Fuclidean distance Dy between
the training data set and testing data set, and determine K
types of the nearest samples, as shown in Eq. (43).

X
Dy = Jzizl (Traing, — Testy )2 (43)

C. Fitness Function

Feature selection is a kind of binary optimization problem,
in which feature subset is composed of 1 and 0, represented
by binary vector, where 1 represents feature selected and 0
represents feature not selected. The goal of feature selection
is to select as few features as possible while maintaining high
clagsification accuracy. So feature selection is a relatively
complex multi-objective problem. In this paper, the fitness
function shown in Eq. (44).

| M |
1 = D s
fitness = Ryp(D)+ hy v

(44)
where, the classification error rate corresponding to the
feature subset selected by the classifier is denoted by ¥z (D),
the number of features selected is denoted by | A |, the total
number of features is denoted by | M|, &4 and 4 are the two
weight coefficients reflecting the classification rate and
length of the subset, satisfving 4 + /4, =1 . Due to the need
for an accurate classification model, the classification
accuracy is assigned with a high inertial weight. In this paper,
A and A, are set to 0.99 and 0.01 respectively.

D. FS Architecture Based on Natural Heuristic

Algorithm

Feature selection, as an important stage in classification
problems, is a challenging process in dealing with
high-dimensional searching spaces. The goal of FS is to
select the least representative feature set from the original
feature set on the premise of ensuring the classification
accuracy of the classifier. In other words, FS is a dimension
reduction process, in which the classification accuracy of the
classifier is used to verify the effectiveness of dimension
reduction. FS architecture based on natural heuristic
algorithm is shown in Fig. 2.

IV. SIMULATION EXPERIMENTS AND RESULT ANALYSIS

A. Selection of Experimental Datasets

Twenty-one data sets are selected from UCI for
classification research. These data sets have different
instances, feature numbers and categories. The advantages
and disadvantages of different natural heuristic algorithms in
various data sets can be seen from different perspectives.
Table 2 lists the details of these data sets. In this study, the
KNN algorithm was used to calculate the classification
accuracy in the fitness function, because KNN was proved to
be faster and simpler, where K=5. The experiments were
repeated 30 times with different random seeds. In addition, to
prevent excessive fitting, a 50% cross validation method is
adopted. The data set is divided into training sets and test
sets.

TABLE 1. THE S-TYPE TRANSFER FUNCTIONS

S-type transfer function Equation
S1 T(x)= !
l+e*"
s2 Tx)=—
l+e
83 Tea= 5
l+e ?
4 Tix) = 5
l+e 3

S-shaped transfer functions
1 T T T T |

//’ s ‘
52 ﬁ/ |
[/ \53

v
51 —-/1»

09r
08
0.7+
54
Xos- / 1

0.4 //

03 / 1

Fig. | S-type transfer function.
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Fig. 2 FS architecture based on natural heuristic algorithm.

TABLE 2. 21 DATA SETS USED IN THE SIMULATION EXPERIMENTS

Number Datasets Features Instances Classes
1 Algerian Forest Fires 12 244 2
2 Cleanl 167 476 2
3 Climate h({j(r);i;:liessimulation 18 540 5
4 Connectionist Bench 60 208 2
5 Diabetic Retinopathy 20 1151 5

Debrecen
P Electrice_ll Grid Stability 14 16060 ’

Simulated
7 Forest type mapping 27 326 4
8 Heart 13 303 2
9 Im 270 1000 20
10 Ionosphere 34 3351 2
11 Page Blocks Classification 10 5473 5
12 Parkinson Disease 754 756 2
13 Pima Indians Diabetes 8 768 2
14 Planning Relax 13 182 2
15 (QSAR biodegradation 41 1055 2
16 Seeds 7 210 3
17 Semeion 256 1593 2
18 Spambase 57 4601 2
19 Waveform 21 5000 3
20 Wine 13 178 3
21 Zoo 17 101 6

In the first iteration, 80% of the eigenvectors were used for
traiming and the remaining 20% for testing. Next, 20% feature
vectors are used for testing, and the remaining 80% feature

vectors are used for training set. Repeat the process until all
eigenvectors are tested. Finally, average statistical
measurements were collected over 30 separate runs and
displayed as final results. All experiments used MATLAB
R2018b, running on Intel Core 15-9300H machine, CPU 2.40
GHz, RAM 8GB, Windows 10 operating system. In this
study, the population of each algorithm was set as 10, the
maximum iteration number was set as 100, and the commeon
parameters of the seven algorithms remained consistent. The
dimension of the searching space is the same as the total
number of features. According to previous studies by
scholars [18], the classifier has the best classification
performance when the hyper parameter 7 is set to 0.99.

B. Feature Selection Performance Evaluation
When evaluating and interpreting the results of a feature
selection problem, there are metrics. These measures were
fitness value, classification accuracy, and average selection
size. Bq.(45)-(50) show the calculation methods of average
classification accuracy, mean value of selected feature
number, mean value of fitness and standard deviation in turn.
M, 2 5 45
eaniaccumcyf%zizl ccuracy, (45
where, Mean _ accuracy represents the average classification
accuracy obtained, where the algorithm is run independently
for 30 times. Aeccuracy, represents the classification
accuracy rate obtained by each run. The classification
accuracy is calculated as follows:
1 N
Accuracy = FZH match(Pl, AL) (46)
where, the number of test set points is denoted by N ; PI is

the class label of prediction class data point i ; Al is the
actual class in the labeled data, that 1s, the reference class
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label of 7, and match(Pl, AL) is a comparison discriminant
function. If PL =4[ match(PL,AL) =1 or
match(PL,AL)=0
M, ture =5 foat 47
ean _ feature = 521:1]%51 ure, (47
where, the average value of selected feature number obtained
by independent operation of the algorithm for A/ times is
denoted by Mean feature  and feature, is the value of
selected feature number obtained by each operation.
M, ness =3 fim 4
ean  fitness = %Zi:lﬁ ess, (48)
where, the average fitness of M times of independent
operation of the algorithm is denoted by Mean _ fitness _and

J; is the best fitness of each operation. The fitness value is
shown in Eq. (49).

fitness = 0.99%(1— dccuracy)
| Selected features Count |
| Total features Count |

+0.01 = (49)

where, Accuracy is the classification accuracy rate.

Std _ fitness = \/3102 (fitness, — Mean _ fitness)*  (50)

where, the standard deviation of fitness value is denoted by
Std _ fitness | fitness; is the fitness value obtained at the
i -th time,

C. Simulation of Feature Selection Based on Natural
Heuristic Algorithms

Table 3-5 compares the simulation results of 7 natural
heuristic algorithms for 21 different UCI data sets. Table 3
shows the 21 data mean fitness and standard deviation of
accuracy under 7 natural heuristic algorithms. Table 4 and
Table 5 respectively show the average number of selected
features and running time. In the above tables, the best results
are highlighted with deepen. In Table 3, MPA achieved the
highest average fitness value in most data sets (16 data sets),
followed by FA (6 data sets), and SMA achieved an optimal
performance. In Table 4, SMA wins by a wide margin,
finding the mmimum eigenvalues on all 20 datasets. In Table
5, SMA has an advantage in operation time. By drawing the
convergence curves and the accuracy box plots of the optimal
classification accuracy calculated by KNN classifier, the
difference between the seven different natural heuristic
algorithms can be shown more intuitively and vividly. The
convergence curves of the 7 natural heuristic algorithms on
21 data sets are shown in Fig. 3, where the abscissa represents
the iteration times of the algorithm, and the ordinate
represents the average accuracy value of each algorithm after
30 times of independent execution. MPA has the best
convergence effect in most cases, followed by FA and CS
respectively. The boxplot of the accuracy values 1s shown n
Fig. 4.

TABLE 3. 21 DATA MEAN FITNESS AND STANDARD DEVIATION OF ACCURACY

Datasets Measure SMA WOA HHO MPA BOA CS FA
) AVG 0.0037 0.0098 0.0159 0.0016 0.0171 0.0024 0.0024
Algerian
STD 0.0064 0.0114 0.0126 0.0152 0.0146 0.0186 0.0179
| AVG 0.0837 0.0807 0.0782 0.0398 0.0892 0.0583 0.0690
Cleanl
STD 0.0144 0.0142 0.0131 0.0203 0.0123 0.0168 0.0131
AVG 0.0549 0.0617 0.0641 0.0376 0.0660 0.0421 0.0369
Climate
STD 0.0118 0.0156 0.0145 0.0122 0.0107 0.0100 0.0110
AVG 0.1149 0.1238 0.1326 0.0464 0.1279 0.0835 0.1095
Connectionist
STD 0.0339 0.0342 0.0311 0.0409 0.0329 0.0277 0.0316
AVG 02928 0.2957 03032 02777 0.3021 0.2821 02801
Diabetic
STD 00084 0.0119 0.0134 0.0157 0.0102 0.0159 0.0154
AVG 0.0013 0.05%0 01212 0.0013 0.0643 0.0885 0.0172
Electrical
STD 00000 0.0911 0.1037 01015 0.0735 0.0316 0.0375
AVG 0.1014 0.1016 0.1063 0.0900 0.1118 0.0946 0.0915
Forest
STD 0.0086 0.0080 0.0074 0.0097 0.0086 0.0091 0.0092
AVG 0.2199 0.2246 0.2382 0.1875 0.2297 0.1909 0.1866
Heart
STD 00232 0.0252 0.0341 0.0240 0.0245 0.0378 0.0329
AVG 0.2140 0.1966 0.1925 0.1506 0.2092 0.1737 0.1850
Im
STD 0.0110 0.0130 0.0140 0.0196 0.0113 0.0123 0.0115
AVG 0.0314 0.0452 0.0570 0.0110 0.0690 0.0464 0.0492
Tonosphere
STD 0.0206 0.0201 0.0316 0.0231 0.0167 0.0193 0.0162
AVG 0.0458 0.0484 0.0497 0.0440 0.0497 0.0452 0.0436
Page
8 STD 00025 0.0030 0.0026 0.0031 0.0028 0.0037 0.0033
Parkinson AVG 0.1827 0.2010 0.1842 0.1504 0.2137 0.2235 02188
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STD 0.0206 0.0177 0.0243 0.0148 0.0183 0.0048 0.0066
) AVG 0.2045 0.2060 0.2132 0.1979 0.2141 0.1985 0.1979
Fima STD 0.0098 0.0107 0.0125 0.0188 0.0131 0.0200 0.0182
AVG 0.2127 0.2249 0.2322 0.1911 0.2219 0.1915 0.1832
Planning
STD 0.0211 0.0247 0.0221 0.0331 0.0247 0.0293 0.0321
AVG 0.1380 0.1409 0.1432 0.1086 0.1465 0.1134 0.1195
QSAR STD 0.0101 0.0104 0.0164 0.0120 00118 0.0127 0.0118
AVG 0.0084 0.0269 0.0373 0.0029 0.0283 0.0053 0.0037
Sceds STD 0.0120 0.0242 0.0317 0.02%6 0.0238 0.0348 0.0309
AVG 0.0166 0.0146 0.0141 0.0071 0.0168 0.0101 0.0115
Semeion
STD 0.0022 0.0032 0.0036 0.0028 0.0025 0.0029 0.0022
AVG 0.1093 0.0995 0.1079 0.0814 0.1234 0.0855 0.0950
Spambase
STD 0.0084 0.0067 0.0155 0.0042 0.0148 0.0213 0.01%4
AVG 0.1818 0.1704 0.1768 0.1599 0.1986 0.1646 0.1607
Waveform
STD 0.0081 0.0062 0.0054 0.0063 0.0070 0.0099 00131
) AVG 0.0525 0.0689 0.0852 0.0328 0.0730 0.0381 0.0320
Hine STD 0.0233 0.0370 0.0543 0.0173 0.0246 0.0477 0.0485
AVG 0.0246 0.0295 0.0454 0.0032 0.0388 0.0034 0.0033
zoo STD 0.0252 0.0254 0.0349 0.0284 0.0267 0.0401 0.0284
TABLE 4. Average NUMBER OF SELECTED FEATURES
Datasets SMA WOA HHO MPA BOA CSs FA
Algerian 2.1000 3.8000 2.8333 2.1333 3.4667 3.0667 3.1333
Cleanl 35.2000 72.0333 69.7000 37.8000 57.0000 74.5333 79.7000
Climate 4.1667 7.2333 7.2333 6.1333 7.2667 7.2000 7.8000
Connectionist 3.4667 13.5667 13.2333 8.1333 14.1333 22.7000 24.6333
Diabetic 3.5000 6.5333 7.4333 4.5667 6.3667 6.0333 6.3667
Electrical 1.0000 3.5333 5.7333 1.0000 2.4333 4.2000 1.7333
Forest 4.8000 9.6333 103667 6.5333 9.8000 9.5667 9.6667
Heart 3.0000 44000 3.8000 3.7667 3.8333 4.2333 4.2333
Im 108.0333 145.8333 141.6000 110.3667 1059.8333 128.6667 131.2000
Tonosphere 2.4333 3.0000 4.7667 3.7667 7.1333 8.5333 10.1000
Page 2.7667 38667 4.1667 3.2000 4.0000 33333 3.2333
Parkinson 3.0667 46.1333 15.6000 54.9000 131.0667 324.7000 366.1333
Pima 2.9667 3.6333 3.2000 3.0000 3.5333 3.1333 3.0333
Planning 2.2000 4.7667 4.7667 2.7333 3.4333 4.3000 4.2667
QSAR 11.2000 18.5667 17.5667 15.6000 15.2000 17.2667 19.1667
Seeds 2.0000 2.3000 2.4333 2.0000 2.7333 2.0333 2.0333
Semeion 111.1333 113.1667 105.1000 83.9333 110.6667 1164667 126.6667
Spambase 25.5333 394333 37.9000 33.9000 28.1333 29.9667 30.5667
Waveform 11.3667 17.0333 16.3333 151333 12.0667 14.2333 14.3000
Wine 3.3333 3.8000 4.1333 3.4000 4.1667 4.1667 3.6667
Zoo 4.9667 7.6333 6.6667 5.1333 6.6000 54000 5.2000
TABLE 5. Average CALCULATION TIME
Datasets SMA WOA HHO MPA BOA CS FA
Algerian 2.7937 4.3368 7.0689 9.6928 4.8129 9.7582 41529
Cleanl 4.5682 4.6438 7.6268 9.4702 4.7209 9.8446 22.8839
Climate 4.0210 6.3878 10.5751 14.5365 7.1445 14.8315 11.2090
Connectionist 5.1002 6.9053 10.6260 14.8330 7.1251 14.1597 31.5449
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Average Error for Algerian Dataset

Average Error for Climate Model Dataset

Diabetic 3.1220 4.7222 7.9507 103252 4.9786 10.1512 8.1394
Electrical 51373 17.9071 37.2978 238613 13.8781 38.5439 26.7692
Forest 3.3340 4.1264 6.7820 9.0311 44138 8.5376 10.1377
Heart 2.4706 38716 6.4230 8.4401 4.0582 8.4037 4.0536
Im 5.5634 10.4377 17.1450 17.5917 7.8739 19.9698 46.5381
Ionosphere 2.3821 3.7057 6.1142 8.5447 4.1482 8.0627 12,6725
Page 4.5381 8.4661 14.0972 17.6297 8.7565 18.4108 5.0826
Parlinson 5.6109 7.5516 11.2934 16.1952 14.9549 37.6721 92.1565
Pima 4.6303 7.9177 12.8742 16.6320 7.4865 16.5773 2.3753
Planning 3.4716 5.9837 9.7087 12.6162 6.2699 12.5517 5.1757
QSAR 6.3173 7.3760 12.0012 15.3495 7.8473 15.3607 31.8740
Seeds 2.5154 3.8918 6.4249 8.4547 3.9869 8.4461 0.9993
Semeion 6.7993 16.4154 25.8271 27.2894 15.4411 36.1279 88.1108
Spambase 12.4977 33.0733 53.6999 57.3135 19.7129 54.3682 116.1491
Waveform 8.8461 18.9628 31.3375 36.8335 13.7289 35.4683 28.9533
Wine 2.7895 3.9199 6.3622 8.5347 4.2136 8.4618 3.5489
Zoo 3.3819 3.8887 6.5454 8.4232 4.1947 8.3315 4.9387
0.11 1-

0.09

0.08 |

0.07

0.06

Average Error for Clean1 Dataset

, WOA
N / il
«—CS MPA  FA SMA
0.005 : / ¥
b, . w
i -
10 20 30 40 50 60 70 80 80 100

Number of iterations

(a) Algerian

0.075““
0.07
0.085
0.06
0.055
0.05
0.045

0.04

&

40
Number of iterations

50 60 70

(c) Climate

<

90 100

0.05

0.04

Average Error for Connectionist Dataset

10

20 30 40 50 60
Number of iterations

(b) Cleanl

100

40 50 60
Number of iterations

30

(d) Conmectionist

Volume 31, Issue 1: March 2023



Engineering Letters, 31:1, EL._ 31 1 01

Average Error for Forest Dataset Average Error for Diabetic Dataset

Average Error for Im Dataset

0.3254

0.32

0.315

0.31

0.305

03

0.295

0.29

0.285

0.28

50 60 70 80 90 100
Number of iterations

(e) Diabetic

0.12

0.115
4

0.11

0.105

0.1

0.095

0.09

- SMA
—k— WOA
- ~¢-- - HHO
—— MPA |
—*— BOA
—*—CS

FA

e L

| 1. s D ) e

10 20 30 40 50 60 70 80 90 100
Number of iterations

1

(g) Forest

0.23 3

0.22

021

o
=
[+2]

o
-
~

10 20 30 40 50 60 70 80 90 100
Number of iterations

(i) Im

Average Error for Electrical Dataset

Average Error for Heart Dataset

Average Error for lonosphere Dataset

e o ©
oooh .
N BEo®

=]
o ©
® =

0.06

0.04

0.02

Number of iterations

(f) Electrical

0.24

023

022

021

02

019

«- - SMA
—— WOA | |
- =¢-- -HHO
—— MPA
—&— BOA

a iy

40 50 60 70 80 90 100
Number of iterations

(h) Heart

0.08

0.06

0.04

0.02

Volume 31, Issue 1: March 2023

Number of iterations

(j) Ionosphere



Engineering Letters, 31:1, EL_31 1 01

Average Error for Page Blocks Dataset

Average Error for Pima Indians Dataset

Average Error for QSAR Dataset

SMA | -
—— WOA
= =¢-- - HHO
—o— MPA
—*—BOA
——cs |]

FA

+

Average Error for Parkinson Dataset

e
80 00 00 10 20 30 40 50 60 70 80 90 100
Number of iterations Number of iterations
(k) Page (1) Parkinson
0.23% T T T =
w‘g SMA
| —*— WOA
02253 | ==¢=-HHO |4+
—6— MPA @
—*— BOA w
= o
0.22 +~—CS |
FA 2
c
y
o
0.215 - * * * 4 e 4
e R S oy * ~— 1 &
x M kb SRR SR o B
<)
021 &
(0]
(=]
[
0.205 g
<
I FA - 4 —
T < S 0.19 Pl
L L L “Al L ‘ﬂ,\ Ie i} ‘4’ - ‘é\.--\_‘i‘v'_‘ Il Il L 1. . L L Al ,
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Number of iterations Number of iterations
(m) Pima (n) Planning
: 0.06 T . T T . T .SMA 1
&1 ! BOA Re=WOA
0.155¢ 0054

0.15

0.145

003 ff

0.02

Average Error for Seeds Dataset

0.01

o —

Ny, e

.

40
Number of iterations

50

(0) QSAR

60

Volume 31, Issue 1: March 2023

40 50
Number of iterations

(p) Seeds

70

80 90 100



Engineering Letters, 31:1, EL._ 31 1 01

Average Error for Semeion Dataset

10 20 30 40 50 60 70 80 90
Number of iterations

{q) Semeion

0~ ; . ; ; ;
[\ - e b b SMA e
1 \ —— WOA
_ 0195 -~ 0 -HHO | 1
@ ) BOA —6—MPA
o]
T o010 —4—BOA | |
—+—CS
E FA
§ 0185 o~ ]
©
= 018 ]
5 e e g,
- T S
= 0475 7 WOA ]
g Ve \
o —\i—\*_ o s 7z
€ 0417 e ——k *
- - b
I «— FA \*Mi_t
0.165 —
016 L L 1 I 1 H\ c L ‘l; il G
10 20 30 40 50 60 70 80 90 100

Number of iterations

(s) Waveform

Average Error for Spambase Dataset

Average Error for Wine Dataset

0.13"

o
-
N
(34

o
-
N

0.115

o
=
-

0.105

o
-

0.095

0.09

0.085

10 20 30 40 50 60 70 80 90
Number of iterations

100

{r) Spambase

0.14

50 60 70 80
Number of iterations

{t) Wine

Average Error for Zoo Dataset

o

50

(1) Zoo

Fig. 3 Convergence curves of seven natural heuristic algorithms on 21 data sets.

HHO

60
Number of iterations

<
<&

100

Volume 31, Issue 1: March 2023



EL 31 1 01

1,

Letters, 31:

mneering

Eng

0.98 -

0.9
0.88 -

Do cumn SRS
Do cumn SRS
I _ + 1

Aoeinooy

WOA HHO MPA BOA Cs FA
Algorithms

SMA

WOA HHO MPA BOA CS FA
Algorithms

SMA

(b) Clean1

(a) Algerian

0.95

0.8

WOA

0.98 |

0.97 |

. .
n <
o o
o o
Koeinooy

0.92 |

0.91

WOA HHO MPA BOA CsS FA
Algorithms

SMA

MPA BOA Cs FA

Algorithms

HHO

SMA

(d) Connectionist

(c) Climate

1.05

0.95

o
IS

Aoeinooy

0.85 -

0.75

0.73

0.69

Aoeinooy

0.68 [

0.67

0.66 |-

0.65 |

WOA HHO MPA BOA CS FA
Algorithms

SMA

WOA HHO MPA BOA CS FA
Algorithms

SMA

(f) Electrical

(e) Diabetic

March 2023

Volume 31, Issue 1



EL 31 1 01

1,

Letters, 31:

mneering

Eng

- - -4+ .
LoF- - ]
L . L L . L . . . L
N [ee] © [(e] < N N~ «© © <
© s NN N N g © 9 ©
o o o o o o o o
Aoeinooy
T T T T T T
L + |||I_ i
L S ]
L+ S + |
-3
oL
. L . . L .
N - o o «© ~
@ * o 9 @ 9
o o o o o

WOA HHO MPA BOA Cs FA
Algorithms

SMA

WOA HHO MPA BOA CS FA
Algorithms

SMA

(h) Heart

(g) Forest

SMA

. . . .
- «© © < N
[} [} [} [}
o o o o
Koeinooy

0.9
0.88 [

0.86 [
0.84

++ Tugll_ +

0.88 F

0.86

0.84 |

0.82
0

Aoeinooy

0.76

HHO MPA BOA CsS FA
Algorithms

WOA

WOA HHO MPA BOA CsS FA
Algorithms

SMA

(j) Ionosphere

(i) Im

-{ T H -

F--{ X4

+ o+ == X} -
R D
S -

+ + -—-4  + 4
I -
© o o ©
(&} 0 (&} <
IS 2] IS %
o o

Koeinooy

WOA HHO MPA BOA CS FA
Algorithms

SMA

WOA HHO MPA BOA CS FA
Algorithms

SMA

(1) Parkinson

(k) Page

March 2023

Volume 31, Issue 1



EL 31 1 01

1,

Letters, 31:

mneering

Eng

F +
F+ + _ + +
- [ ]
L E— "
. . . . . . . . .
© < N © © © < N ~
o @ «© o ™~ ~ ™~ ™~ o
o o o o o o o
Aoeinooy
T T T T T T T T T T
R D
b
. -
- HH_ - + o+ + + +
- -
L - + +
pa
. . . . . . . . . .
-~ © (2] © ~ [{e] wn < [ N
® 5 KON N R RN NN
o o o o o o o o o

Aoeinooy

WOA HHO MPA BOA Cs FA
Algorithms

SMA

WOA HHO MPA BOA CSs FA
Algorithms

SMA

(n) Planning

(m) Pima

e
= S
_HUM + ]
7 " + |

S a

0.91

|||_ +
)
k= -
{1
n @ ® n @ w3
= © © © © © ©
o o o o o o

Aoeinooy

0.83

0.82

WOA HHO MPA BOA CS FA
Algorithms

SMA

WOA HHO MPA BOA Cs FA
Algorithms

SMA

(p) Seeds

(0) QSAR

‘ - -4+
SEENSs @ R
. - — 4+ o+ ]
ollH + -
R -
-k -
N
- . g
- . |
b - -
- F-- -4
- L . -
. e e
ST B

WOA HHO MPA BOA Cs FA
Algorithms

SMA

WOA HHO MPA BOA CS FA
Algorithms

SMA

(r) Spambase

(q) Semeion

March 2023

Volume 31, Issue 1



Engineering Letters, 31:1, EL._31 1 01

086 T T T ! i i T T T T T T T T
&+ 0.98 | 1
0.85 - ' - - +
- 096 L I I J
+ + | |
0.84 - 0.94 + + i
+ $ _i_ [ [
I I
0s3f | I 3 0921 L - -~
1 - T 09 | | | |
9 I I I o
Tos2t + + I | ) i i
g e [ Sosst .
5 5 0. |
8ost 3 '
<= < 086 L .
|
0.8 I 0.84 oA
I | €
L [ 0821 | 1
0.79 F + 1 L |
08 5 + L + A
0.78 |
0.78 1
+ + + +
077 . . . . . . . : : ' . . X .
SMA WOA  HHO MPA BOA cs FA SMA WOA  HHO MPA BOA cs FA
Algorithms Algorithms
(s) Waveform (t) Wine
102 F— : : - : : —
1t - - + + A
0.98 | 1
0.96 | 1
+
) I |
8 0.94r | | 1
3 | I
L oozt : : E
I I
09l oL + L |
0.88 | 1
0.86 | 1
+
SMA WOA  HHO MPA BOA cs FA
Algorithms
(u) Zoo

Fig. 4 Boxplots of adaptive values of seven natural heuristic algorithms.

V. CONCLUSION

Based on the wrapper feature selection method, this paper
compares seven natural heuristic algorithms, including SMA,
WOA, HHO, MPA, BOA, CS and FA. The convergence
curves and the boxplots of accuracy of seven natural
heuristic algorithms on 21 data sets are given. The results
show that MPA has the highest average fitness value in most
data sets (16 data sets), followed by FA algorithm (6 data
sets), and SMA has the best performance. SMA can find the
minimum eigenvalues in all 20 data sets and has an
advantage in computing time. Combined with the proposed
natural heuristic algorithms, the results were evaluated
according to the mean and standard deviation of fitness, the
number of selected features and the running time, and the
optimal value was represented with deepen. In this paper, it
is found that MPA has the best average fitness value, while
SMA has the advantage in eigenvalue and operation time.
Both algorithms have their own advantages. The mean and
standard deviation data of fitness, the number of selected
features, the running time data, the convergence curve and
the boxplot of accuracy obtained by the 7 natural heuristic

algorithms through 21 data sets are of great reference value
for subsequent research.
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