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Abstract—Consider the problem of predicting the
amount/number of claims that have been incurred but
not reported (say IBNR) and reported but not settled (say
RBNS). To predict both the IBNR’s and the RBNS’ loss
reserves and their corresponding mean square error of
prediction, we used the delay probabilities, which are modeled
by the Zero-Inflated Gamma Mixture (ZIGM) distribution.
The practical application of our findings is applied against
a real data set. Moreover, the accuracy of this approach has
been compared with the traditional chain ladder method.

Index Terms—IBNR and RBNS loss reserves, Prediction,
Mean Square Error of Prediction, Zero-Inflated Gamma Mix-
ture distribution, Maximum likelihood estimator, EM algo-
rithm, Motor third party liability insurance.

I. INTRODUCTION

WHEN a claim occurs, it may be reported to the insurer
sometime later, say reporting (or Type 1) delay. Such

reported claims may be paid (or settled) after a significant
amount of time, say settlement (or Type 2) delay. Each type
of delay arrives from different reasons, but for both delays,
all insurance companies must predict and hold a sufficient
reserve in order to fulfill all possible payments regarding
their corresponding claims. According to actuarial science,
these two types of claim reserves are well known as: incurred
but not reported (IBNR) and reported but not settled (RBNS),
respectively.

Since there is not a prespecified prediction method, there-
fore, prediction of the claim reserves is an important and
challenging task for an actuary. On the other hand, any
appropriate prediction method will be varied by a line of
business, an insurer’s approach to risk, etc.

In recent papers, the double chain ladder approach is
used to estimate the claim reserve through a micro-level
approach of the claim development process, based on the
number of reported claims and the payments’ amount. For
example, Verrall et al. (2010) [30] proposed a run-off triangle
of paid claims and also the numbers of reported claims
to predict both RBNS and IBNR claims. Their approach
drove a middle way between the crude methods based on
a single triangle and the very detailed methods based on
data at the individual claim level. Martinez-Miranda et al.
(2012) [20] defined the claims reserving model at the micro-
level. They focused on how various claims delays impact
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severity and how to incorporate this information into the
reserve. Martinez-Miranda et al. (2013a) [21] considered
a double chain ladder focusing on two specific types of
prior knowledge on zero-claims for some underwriting years
and the relationship between a claim’s development and its
severity.

Martinez-Miranda et al. (2013b) [22] used a micro-level
approach to predict the number of IBNR claims. Their con-
tinuous chain-ladder setting can be applied to data recorded
in continuous time, although it is illustrated in the paper
on data aggregated at a monthly level. Antonio and Plat
(2014) [1] proposed a micro-level model along with some
information about: the claim’s occurrence, the delay between
occurrence and reporting time, payments’ time and their
sizes, and final settlement. Verrall and Wüthrich (2016)
[31] constructed an inhomogeneous marked Poisson process
with a monthly piecewise constant intensity and a weekday
seasonal occurrence pattern. Badescu et al. (2016) [3] and
Avanzi et al. (2016) [2] employed a marked Cox process to
model the claim arrival process along with its reporting de-
lays. Such a model allowed them to consider over-dispersion
and serial dependency. Hiabu et al. (2016a) [14] employed
expert opinion along with observed data to predict RBNS
and IBNR claims. A direct link between continuous granular
methods and classical aggregate methods has been studied by
Hiabu et al. (2016b) [15].

Denuit and Trufin (2017) [7] considered the frequency
and severity of claims along with the number and amount
of payments for each run-off triangle’s cell. They used
a 2-component mixture model to describe such payments.
Denuit and Trufin (2018) [8] categorized settled claims based
on their settlement’s time. Then, they employed a zero-
augmented Gamma regression model with a specific inflation
effect to study such settled claims. Reserving in general
insurance under an excess of loss reinsurance treaty has
been studied by Margraf et al. (2018) [19]. Verbelen et al.
(2018, 2021) [28, 29] modeled the events’ occurrence subject
to a reporting delay using a flexible regression framework.
Moreover, under such a framework, they employed the
EM algorithm to estimate the occurrence and reporting’s
parameters from granular data at a daily level.

Maciak et al. (2018) [18] focused on three synergetic
research branches: (1) inventing stochastic methods for loss
reserving based on claim-by-claim data, (2) using a dynamic
copula framework for modeling dependencies among types
of claims, and (3) deriving appropriate statistical inference
for these approaches. A marked Cox process has been em-
ployed by Badescu et al. (2019) [4] to show some desirable
properties of Badescu et al. (2016)’s [3] findings. Moreover,
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they showed that using an EM algorithm to estimate parame-
ters decreased the computational cost. Kuncoro and Purwono
(2019) [17] modeled the IBNR and the RBNS claim reserves
for an MSE-credit insurance product using a homogeneous
Poisson process. They indicated that the credit period and
the credit amount impact on the risk level of each credit
insurance policy.

Crevecoeur et al. (2018, 2019) [5,6] employed a granular
model to study the delay time between the occurrence and
observation of the event for the IBNR claim reserve. Duval
and Pigeon (2019) [10] combined a traditional approach and
gradient boosting algorithm to introduce a new method for
modeling loss reserving for a non-life insurance company.
They showed that the total paid amount of each claim can be
predicted, with reasonable accuracy, with their method. The
Archimedean copula has been used by Noviyanti et al. (2019)
[25] to predict the outstanding IBNR claim reserving. They
claimed their method provides a more suitable prediction for
fire insurance compared to prediction arrives from the chain
ladder method.

The main aim of this article is to obtain a computationally
reasonable expression for predictors of both the IBNR and
the RBNS loss reserve and their mean square errors of
predictions based on history up to today’s time t. To solve the
prediction problem, this article decomposes the outstanding
claims as IBNR and RBNS. Then, it considers a Zero-
Inflated Gamma Mixture distribution for random reporting
delay and a discrete random variable for the settlement delay.
Using updated observations at time t unknown parameters are
estimated under the maximum likelihood approach, then both
the IBNR and the RBNS outstanding claims are predicted.

The article is organized as follows: Section 2 presents the
theoretical foundation of the article. Section 3 shows how
the previous section’s findings can be applied in practice.
Suggestions and concluding remarks are given in Section 4.

II. THEORETICAL FOUNDATION

A large class of distributions, including several heavy
tail distributions such as Weibull and Pareto distributions,
can be approximated, arbitrarily closely, by Gamma mixture
distributions (Payandeh Najafabadi, 2018) [27]. On the other
hand, in many actuarial applications, there is a considerable
number of zeros in the collected data set. Therefore, it is
reasonable to consider a zero-inflated distribution for such
cases, see Jaya et al. (2021) [16], Nwozo and Nkeki (2011)
[26], Nkeki and Nwozo (2013) [24], and Fang (2014) [11],
among others for more detail.

We consider the Zero-Inflated Gamma Mixture distribu-
tion, say ZIGM, as an appropriate distribution for the random
reporting delay U which is given by the following definition.

Definition 1: A random variable U has the Zero-Inflated
Gamma Mixture, say ZIGM, distribution if its density func-
tion is

g(u, ψ) = πI{0}(u)+(1−π)
k∑

h=1

whGamma(αh, θh)I(0,∞)(u), (1)

where ψ = (w1, · · · , wk, α1, · · · , αk, θ1, · · · , θk) and π is the
probability of extra zeros and 0 ≤ π ≤ 1. The parameters
wh are called mixing coefficients where satisfy 0 ≤ wh ≤ 1
and

∑k
h=1 wh = 1 in order to valid probabilities and

Gamma(αh, θh) stands for the Gamma density function

with the scale parameter αh and the shape parameter θh .
I{A} denotes the indicator function of event A.
See He and Chen (2022) [13] and Gharib (1995) [12] for
some properties of the Gamma Mixture distribution.

This article considers reporting delay time at a monthly (30
days) level. Therefore, a considerable number of reporting
delay times will be zero, while some of them stand far
from others. These two facts justify the implementation of
a zero-inflated and heavy distribution. For some practical
reasons, we assume that the random reporting delay has been
distributed according to the ZIGM distribution.

The following represent assumptions that we consider
hereafter now.

Model Assumption 1: Assume that:
A1) The total number of claims related to the accident

time i, say Ni, follows from a homogeneous Pois-
son process with finite intensity λi;

A2) Random reporting delay U has been distributed
according to the ZIGM distribution, given by Def-
inition (1);

A3) Conditionally on the total number of claims for
the accident time i and reported with j unit
time delay, Ni,j , the number of paid claims have
been distributed according to a multinomial dis-
tribution. In other words, for each given (i, j),
the random vector (Npaid

i,j,0 , · · · , N
paid
i,j,I−1|Ni,j) ∼

multinomial(Ni,j ; q0, · · · , qI−1), where claim re-
porting delay probabilities q0, · · · , qI−1 satisfy∑I−1

l=0 ql = 1 and 0 ≤ ql ≤ 1,∀l = 0, · · · , I − 1.
A4) Discrete random settlement delay D has probability

mass function ql = P (D = l), for l = 0, · · · , d;
A5) The individual payments Y

(k)
i,j−l,l are iid random

variables with E
(
Y

(k)
i,j−l,l

)
= µ < ∞ and

V ar
(
Y

(k)
i,j−l,l

)
= σ2 <∞;

A6) Ft stands for updated filtration based upon past
information at observation time t;

A7) Claims are settled with a single payment;
A8) Settlement delay is independent of the reporting

delay and the payments are independent of the
reporting and the settlement delays.

As mentioned above, the outstanding claims represent claims
which occurred at accident time i and were reported to the
insurance company j unit time later. But for some practical
reasons, they paid (or settled) l unit time after j.

To model this issue, suppose Ni,j , for i = 1, · · · , Iand
j = 0, · · · , I − 1, stands for the total number of claims that
occurred at accident time i and fully paid before or at time
i+ j. Assume that Npaid

i,j−l,l denotes the number of the future
payment originating from the Ni,j claims that occurred at
accident time i, reported at i+ j − l time and paid at i+ j
time. The aggregate paid claim, denoted by Npaid

i,j , has the
following form

Npaid
i,j =

min(j,d)∑
l=0

Npaid
i,j−l,l

where d is the maximum delay period to pay the claim
(after being reported). Moreover, suppose that, for k =

1, · · · , Npaid
i,j−l,l, i.i.d random variable Y (k)

i,j−l,l stands for size
of the kth individual payments that occurred at accident time
i, reported at i+ j − l time and paid at i+ j time.
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Therefore, the total payment at time i+ j is

Xij =

min{j,d}∑
l=0

N
paid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l

,

where the maximum payment delay d can be chosen from
the evaluation process for each insurance company.

For the upper triangle i + j ≤ I, the total payments Xij
are known. But for the lower triangle i+j > t > I, the total
payments Xij are unknown and one has to predict. For such
a situation, there are two types of unknown claims, one has
not been reported yet, say XIBNR

ij , another one has been
reported but not fully paid, say XRBNS

ij . Taking this fact
into account, one may decompose the total payments at time
i+ j as

Xij =

i+j−I−1∑
l=0

N
paid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l

+

min{j,d}∑
l=i+j−I

N
paid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l

= XIBNR
ij +XRBNS

ij , ∀ i+ j > I. (2)

Remark 1: It is worthwhile mentioning that in a situation
where one would like to make an inference about the number
of outstanding claims rather than the size of outstanding
claims, he/she can consider Y (k)

i,j−l,l = 1.
Under Model Assumption (1) and using the Poisson process
properties, one may conclude that: (1) the total number of
claims that occurred at accident time i and paid at time
i + j, Npaid

i,j follows from a homogeneous Poisson process
with intensity λipj ; (2) the total number of payments at
time i+ j, related to accident time i, Npaid

i,j−l,l, follows from
a homogeneous Poisson process with intensity λipj−lql,
where, for l = 0, · · · , d, delay probability pj is

pj = P (j ≤ U ≤ j + 1) =

∫ j+1

j

dGZIGM (u, ψ), (3)

and GZIGM (., .) stands for the cumulative distribution func-
tion of the ZIGM distribution.

The following theorem provides the conditional expecta-
tion of the total payments Xij given updated filtration Ft,
where i+ j > t > I.

Theorem 1: Suppose filtration Ft provides all available in-
formation about the number of payments at observation time
t, i+ j > t > I. Moreover, besides assumptions A1 to A8,
given in Model Assumption (1), assume E(Npaid

i,j−l) < ∞,
E(Y k

i,j−l,l) < ∞, V ar(Npaid
i,j−l) < ∞ and V ar(Y k

i,j−l,l) <

∞. The best estimation for Xi,j , say X
(t)
ij , can be restated

as

X
(t)
ij =

∑i+j−I−1

l=0
λ
(t)
i p

(t)
j−l

q
(t)
l
µ(t) +

∑min{j,d}
l=i+j−I

npaid
i,j−l

q
(t)
l
µ(t).

Proof. It is well-known that the conditional expectation of
E(Xij |Ft) plays an essential role in predicting future loss
liabilities, see Wüthrich and Merz (2008) [32] and Taylor
(2012), among others for more details. By conditioning on
Ft, one may conclude that

X
(t)
ij = E(Xij |Ft)

= E(

i+j−I−1∑
l=0

Npaid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l|Ft)

+E(

min{j,d}∑
l=i+j−I

Npaid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l|Ft)

=

i+j−I−1∑
l=0

E(Npaid
i,j−l,l|Ft)E(Y

(k)
i,j−l,l|Ft)

+

min{j,d}∑
l=i+j−I

E(Npaid
i,j−l,l|Ft)E(Y

(k)
i,j−l,l|Ft)

=

i+j−I−1∑
l=0

λ
(t)
i p

(t)
j−lq

(t)
l µ(t) +

min{j,d}∑
l=i+j−I

npaidi,j−lq
(t)
l µ(t),

where E(Y
(k)
i,j−l,l) = µ(t) and in the first term,

E(Npaid
i,j−l,l|Ft) = λ

(t)
i p

(t)
j−lq

(t)
l . Because these claims come

from the future values of Ni,j and, in this article, these are
predicted. Note that, the Npaid

i,j−l,l claims in the second term
are known because these claims arise from the claims which
have already been reported.

Based upon Equation (2) the above conditional expectation
can be decomposed as

X
IBNR,(t)
ij =

i+j−I−1∑
l=0

λ
(t)
i p

(t)
j−l

q
(t)
l
µ(t)

X
RBNS,(t)
ij =

min{j,d}∑
l=i+j−I

npaid
i,j−l

q
(t)
l
µ(t).

The conditional MSEP can be decomposed as

MSEPFt (Xij , X̂ij) = V ar(Xij |Ft) + E[(X̂ij − E(Xij |Ft))
2|Ft],

where the first term is well-known as the process variance
and the second term is the estimation error.

It is worthwhile to recall that both X̂ij and E(Xij |Ft) are
Ft-measurable, therefore the expectation in the outer term of
the above equation is redundant, i.e.,

E[(X̂ij − E(Xij |Ft))
2|Ft] = (X̂ij − E(Xij |Ft))

2.

On the other hand, we know that X̂ij = E(Xij |Ft), there-
fore, the estimation error reduces to zero and consequently,
the conditional MSEP can be written as

MSEPFt (Xij , X̂ij) = V ar(Xij |Ft) (4)

Lemma 1: Suppose all Theorem (1)’s assumptions hold.
Then, the results of the conditional MSEP for XIBNR

i,j and
XRBNS

i,j given for updated filtration Ft, for t where i+ j >
t > I, are

MSEP (X
IBNR,(t)
ij |Ft) = µ(t)ϕ(t)λ

(t)
i

i+j−I−1∑
l=0

p
(t)
j−lq

(t)
l

MSEP (X
RBNS,(t)
ij |Ft) ≈ µ(t)ϕ(t)λ

(t)
i

min{j,d}∑
l=i+j−I

npaidi,j−lq
(t)
l

Proof. By using Equation (4), we calculate the prediction
error for XIBNR

i,j and XRBNS
i,j by

V1 = V ar(XIBNR
ij |Ft)

= V ar(

i+j−I−1∑
l=0

N
paid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l

|Ft)

=

i+j−I−1∑
l=0

E(V ar(

N
paid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l

|Npaid
i,j−l,l

)|Ft)

+

i+j−I−1∑
l=0

V ar(E(

N
paid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l

|Npaid
i,j−l,l

)|Ft)


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=

i+j−I−1∑
l=0

(
σ2,(t)E(Npaid

i,j−l,l
|Ft) + µ2,(t)V ar(Npaid

i,j−l,l
|Ft)

)
= µ(t)ϕ(t)λ

(t)
i

i+j−I−1∑
l=0

p
(t)
j−l

q
(t)
l

and
V2 = V ar(XRBNS

ij |Ft)

= V ar(

min{j,d}∑
l=i+j−I

N
paid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l

|Ft)

=

min{j,d}∑
l=i+j−I

E(V ar(

N
paid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l

|Npaid
i,j−l,l

)|Ft)

+

min{j,d}∑
l=i+j−I

V ar(E(

N
paid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l

|Npaid
i,j−l,l

)|Ft)


=

min{j,d}∑
l=i+j−I

(
σ2,(t)E(Npaid

i,j−l,l
|Ft) + µ2,(t)V ar(Npaid

i,j−l,l
|Ft)

)
=

min{j,d}∑
l=i+j−I

(
σ2,(t)npaid

i,j−l
ql + µ2,(t)npaid

i,j−l
q
(t)
l

(1− q
(t)
l

)

)
=

min{j,d}∑
l=i+j−I

npaid
i,j−l

q
(t)
l

(
σ2,(t) + µ2,(t)(1− q

(t)
l

)

)
≈ µ(t)ϕ(t)λ

(t)
i

min{j,d}∑
l=i+j−I

npaid
i,j−l

q
(t)
l
,

where ϕ(t) = (σ2,(t) + µ2,(t))/µ(t) is the over-dispersion
parameter.

Since X
IBNR,(t)
ij = E(XIBNR

ij |Ft) and
X

RBNS,(t)
ij = E(XRBNS

ij |Ft), the conditional mean
square error of prediction for these two predictions are
MSEP (X

IBNR,(t)
ij |Ft) = µ(t)ϕ(t)λ

(t)
i

∑i+j−I−1
l=0 p

(t)
j−lq

(t)
l

and MSEP (X
RBNS,(t)
ij |Ft) ≈

µ(t)ϕ(t)λ
(t)
i

∑min{j,d}
l=i+j−I n

paid
i,j−lq

(t)
l , respectively.

To use the above finding, all model parameters must be
given, or have to be estimated based on available information
in Ft. The next section considers this issue.

A. Parameter estimation
The log-likelihood function based upon the observed data

up to observation date t is

logL =
∑
i

∑
j

(ni,j log (λi) + ni,j log (pj)− λipj − log(ni,j !)). (5)

Therefore, the maximum likelihood estimator for λi is λ̂i =∑t
j=i nij/

∑t
j=i pj .

Substituting λ̂i in the above log-likelihood function leads
to

logL ∝
t∑

i=1

t∑
j=i

[nij(log(

t∑
j=i

nij)− log(

t∑
j=i

pj)−
t∑

j=i

nij ](6)

+

t∑
i=1

t∑
j=i

nij log(pj)

The above log-likelihood function can be understood as a
log-likelihood function for truncated reporting delay random

variable where truncation point (t − i) is the maximal
observed delay for a claim that was incurred at accident time
i.

The log-likelihood given by Equation (6) depends on the
parameters of both the Poisson model for claim occurrence
and the reporting delay distribution. It is not straightfor-
ward and reasonable to calculate the maximum likelihood
estimation with respect to pj . The complications of param-
eters estimation are simplified by applying the expectation-
maximization, say EM, algorithm for delay probability. An
overview of the EM algorithm is provided in Algorithm (1).

Algorithm 1: Estimate delay probabilities.
Input: Initial parameters ψ.
Output: Parameters estimation.

1 Set k = 0;
2 while the values will be converged do
3 Expectation step: Estimate the values of missing

or incomplete data by using the observed data. It is
used to update the variables. After the first iteration
of the EM, the new estimators ψ1 for ψ are
obtained. In this step, we estimate unobserved data;

4 Maximization step: Use the data arrived from the
expectation step, and compute an updated maximum
likelihood estimate of unknown parameters;

5 Set k ← k + 1.

Please see da Silva and Yongacoglu (2015) [9] or Mouret
et al. (2022) [23] for more details about the EM algorithm.

To estimate the pj , at first one has to estimate the unknown
parameters ψ, given by Definition (1).

Consider the random variable U has a mixture of k-
Gamma distribution. Now, we introduce the EM algorithm
in the context of Gamma mixture models. To find the max-
imum likelihood estimators with the EM algorithm, we can
introduce a sample v = (v1, · · · , vm) of the random variable
V which indicates which of the k component densities was
observed for each m; vm ∈ {1, · · · , k}. We shall call {U, V }
the complete data set, and we say U is incomplete. Now
suppose that fU,V stands for the joint density function of
U and V have joint density. Therefore, the log-likelihood is
given by

log[L(ψ|u, v)] = log[

n∏
m=1

fU,V (um, vm;ψ)].

And for given vm, we have

log[L(ψ|u, v)] =
n∑

m=1

log[wvmfvm (vm;ψvm )].

We guess the parameters ψg =
(wg

1 , · · · , wg
m, α

g
1, · · · , αg

m, θ
g
1 , · · · , θgm) of the mixing

density. Now, we use the EM algorithm to update the
parameters at each step, i.e.

Q(ψ,ψg) = EV {log[L(ψ|u, v)]|u, ψg}

=
∑
V

n∑
m=1

log[wvmfvm (um; θvm )]

×
n∏

m=1

fV |U=um
(vm;ψg)

Q(ψ,ψg) is the expectation of the complete-data log-
likelihood evaluated for parameter value ψ. From a series
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of simplifying steps, the objective function is

Q(ψ,ψg) =

k∑
h=1

n∑
m=1

log(wh)fV |U=um
(h, ψg)

+

k∑
h=1

n∑
m=1

log[fh(Um; θh)]fV |U=um
(h, ψg)

where fV |U=ui
(h, ψg) = Ah/

∑k
j=1Aj and Ah =

whθ
αh(g)

h(g) u
αh(g)−1e−uθh(g)/Γ(αh(g)).

Moreover, log[fh(um; θh)] = αhlog(θh) + (αh −
1)log(um)− θhum − log(Γ(αh)).

In this case, an analytical solution is possible. We dif-
ferentiate Q(h, ψg) with respect to each parameter, set the
expressions equal to zero, and solve for the parameter. For
each wh we have the restriction

∑k
h=1 wh = 1. Thus, we

employ a Lagrangian method with a Lagrange multiplier
parameter β and obtain

∂[Q(ψ,ψg) + β(
∑k

h=1
wh − 1)]

∂wh
= 0

⇐⇒
1

wh

n∑
m=1

fV |U=um
(h, ψg) + β = 0

⇐⇒ wh =
−
∑n

m=1
fV |U=um

(h, ψg)

β
.

Summing over h leads to
∑k

h=1

∑n
m=1 fV |U=um

(h, ψg) =

n. Using the fact that
∑k

h=1 wh = 1, we get β = −n,
therefore, in each iteration g of the algorithm, for each wh,
the MLE is

ŵh =

∑n

m=1
fV |U=um

(h, ψg)

n

and

θ̂h =

∑n

m=1
umfV |U=um

(h, ψg)

α̂MLE
h

∑n

m=1
umfV |U=um

(h, ψg)
.

The MLE for each αh does not have an explicit solution,
therefore it has to be found numerically.

Now, we estimate other parameters, ql and ϕ. Based on
Model Assumption (1), the mass function of Npaid

ijl given
Nij follows a multinomial distribution with probabilities ql.
The settlement delay probabilities, ql, can be found through
an MLE method. The likelihood of observed data is

P (Npaid
i,j,0 = ni,j,0, · · · , Npaid

i,j−l,l
= ni,j−l,l|Nij = nij)

=

I∏
i=1

I−1∏
j=0

aj,I∏
l=0

nij !

ni,j,0!ni,j−1,1! · · ·ni,j−l,l!
q
ni,j,0

0 · · · qni,j−l,l

l
,

where aj,I = min{j, I − 1}.
Given observed values, the log-likelihood function, de-

noted by L, is

L =

I∑
i=0

I−1∑
j=0

aj,I∑
l=0

log(nij !)−
I∑

i=0

I−1∑
j=0

aj,I∑
l=0

log(ni,j−l,l!)

+

I∑
i=0

I−1∑
j=0

aj,I∑
l=0

ni,j−l,llog(ql).

Using the fact that
∑I−1

l=0 ql = 1, the above log-likelihood
function can be restated in the context of the Lagrange
method with a Lagrange multiplier parameter β as the

following,

L∗ =

I∑
i=0

I−1∑
j=0

aj,I∑
l=0

log(nij !)

−
I∑

i=0

I−1∑
j=0

aj,I∑
l=0

log(ni,j−l,l!)

+

I∑
i=0

I−1∑
j=0

aj,I∑
l=0

ni,j−l,llog(ql)− β(1−
I−1∑
l=0

ql),

where aj,I = min{j, I − 1}.
Taking a partial derivative with respect to β and ql lead to

∂L∗

∂β
= 1−

I−1∑
l=0

ql

∂L∗

∂ql
=

∑I

i=1

∑I−1

j=0
ni,j−l,l

ql
− β.

A straightforward calculation along with the fact that∑I−1
l=0 ql = 1 lead to

β̂ =

I∑
i=1

I−1∑
j=l

min{j,I−1}∑
l=0

ni,j−l,l

q̂l =

∑I

i=1

∑I−1

j=l
ni,j−l,l∑I

i=1

∑I−1

j=0

∑min{j,I−1}
l=0

ni,j−l,l

.

III. A PRACTICAL APPLICATION

This section considers material damage motor third-party
liability insurance claim portfolio from a private insurance
company in Iran. We have 85649 claims in our data set.
In this study, the time period is from 20-March-2012 to
19-March-2019. After a primary investigation and removing
illogical events, such as transactions before the occurrence,
recovery of claims, and allocated loss adjuster expenses, we
just trusted information about 66346 claims.

Our data set is extracted from a heterogeneous population
consisting of the number of claims with no reporting delay
and the number of claims above 30 days. Figures (1.a and
1.b) illustrates such reporting delays in two cases, all claims,
and claims that were reported for more than 30 days. As
Figure (1.a) illustrates, there is a considerable number of
zeros for claims which were reported in the first 30 days. The
reporting delay is an important driver in the risk management
strategy of the insurer, whose core business is underwriting
risks. Figure 2 shows the claim reporting delay in the training
set. We can see that our reporting delay data sets are right-
skewed with two peaks and have a significant fraction of
zeros. This indicates that the distribution might be a mixture
distribution. One of the common elements of the finite
mixture model is in the count data with excess zeros.

Now, we employ two well-known tests, the Kolmogorov-
Smirnov and the Cramér-von Mises test to make a decision
about the following hypothesis test.

H0 : The random reporting delay has been distributed
according to a ZIGM distribution
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Fig. 1. Reporting delay relative frequency histogram for material
damage observed between 2012-03-20 and 2019-03-19: Panel (a)
represents all claims and Panel (b) represents claims that were re-
ported to the insurance company more than 30 days after occurrence
time.

Fig. 2. Fitted distribution to reporting delay in daily scale for
material damage observed between 2012-03-20 and 2019-03-19.

The p-value of these two tests are 0.1695 and 0.1458,
respectively. Therefore, we failed to reject the null hypothesis
at the confidence level of 0.95. Using gammamixEM function
in mixtools package of the R software, releases that a zero-
inflated two-Gamma mixture distribution is an appropriate
distribution for the random reporting delay.

Note that to determine which distribution is the best to
fit the data (the part of claims where the reporting delay is
above 30 days), we fit various distributions to the data set.
Based on the results, it appears that the two-Gamma mixture

TABLE I
ESTIMATION OF CLAIM REPORTING DELAY PROBABILITIES pk,

NON-HOMOGENEOUS POISSON INTENSITY λk AND SETTLEMENT DELAY

PROBABILITIES qk−1.

k pk λk qk−1 k pk λk qk−1

1 0.5608 3.9437 0.6736 33 0 1704.662 0.0015
2 0.0435 51.268 0.0602 34 0 1616.915 0.0014
3 0.0287 105.4938 0.0222 35 0 1680.014 0.0014
4 0.0212 222.8187 0.0142 36 0 1396.068 0.0009
5 0.0153 194.227 0.0111 37 0 1353.673 0.0009
6 0.011 275.0727 0.0114 38 0 1218.602 0.0007
7 0.0078 335.214 0.0116 39 0 1161.418 0.0007
8 0.0055 416.0598 0.0115 40 0 962.2615 0.0005
9 0.0038 403.2428 0.0124 41 0 1147.615 0.0007

10 0.0027 437.7501 0.0127 42 0 879.1205 0.0003
11 0.0019 503.807 0.0124 43 0 1006.628 0.0003
12 0.0013 627.0474 0.0117 44 0 905.0779 0.0004
13 0.0009 509.7225 0.0116 45 0 914.9372 0.0003
14 0.0006 601.4134 0.0108 46 0 887.3313 0.0002
15 0.0004 589.5824 0.0101 47 0 909.0216 0.0002
16 0.0003 681.2733 0.0106 48 0 926.7682 0.0003
17 0.0002 656.6252 0.0087 49 0 799.5841 0.0004
18 0.0001 766.0627 0.0082 50 0 738.4568 0.0001
19 0.0001 770.9923 0.0075 51 0 866.6269 0.0001
20 0.0001 855.7817 0.0068 52 0 820.2885 0.0002
21 0 904.092 0.0064 53 0 871.5565 0.0001
22 0 979.0222 0.0058 54 0 862.6832 0.0001
23 0 1059.868 0.0051 55 0 915.9231 0
24 0 1335.927 0.0052 56 0 845.9226 0.0001
25 0 1221.559 0.0047 57 0 926.7683 0.0001
26 0 1369.448 0.0037 58 0 935.6417 0.0001
27 0 1548.886 0.0034 59 0 929.7262 0
28 0 1727.338 0.003 60 0 863.6694 0.0001
29 0 1730.296 0.003 61 0 944.5153 0
30 0 1879.171 0.0025 62 0 814.3734 0
31 0 1948.185 0.0025 63 0 933.6705 0
32 0 1708.606 0.0023 64 0 943.5302 0
65 0 712.8507 0 81 0 815.0098 0
66 0 1051.983 0 82 0 700.7997 0
67 0 1097.336 0 83 0 656.7171 0
68 0 936.6313 0 84 0 636.4467 0
69 0 961.2813 0.0002 85 0 620.3047 0
70 0 946.4949 0 86 0 669.8068 0
71 0 918.8925 0 87 0 636.5304 0
72 0 967.209 0 88 0 716.256 0
73 0 935.6667 0 89 0 736.5403 0
74 0 826.2512 0 90 0 799.5841 0
75 0 738.5181 0 91 0 738.4568 0
76 0 842.0805 0 92 0 866.6269 0
77 0 840.1545 0 93 0 820.2885 0
78 0 869.8067 0 94 0 871.5565 0
79 0 766.3469 0 95 0 862.6832 0
80 0 781.2723 0 96 0 915.9231 0

distribution fits the data pretty well.
More precisely, the density function for the random re-

porting delay U is

fU (u) = 0.561 ∗ I{0}(u) + 0.093 ∗Gamma(1.241, 0.385)I(0,∞)(u)

+0.346 ∗Gamma(1.412, 5.535))I(0,∞)(u).

Table (1) represents an estimation of the claim reporting
delay probabilities pk, homogeneous Poisson intensity λk
and settlement delay probabilities qk−1.

The policyholder’s behavior in reporting claims after their
occurrence has a significant effect on the costs of the
insurance company. As mentioned before, in our data set,
most policyholders tend to report the claim to the insurance
company in less than 30 days. As a result, based on the
above estimators, the number of IBNR claims for the next
12 months will be N̂ IBNR =

∑
i,j λ̂ip̂ij = 192. We know

the actual count for IBNR claims in the calendar year 20-
March-2012 till 19-March-2020 is 248.
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The estimates of the mean and variance of an individual
payment are µ̂ = 13 million IRR and σ̂2 = 181. Our
estimation is distribution-free, i.e., it does not assume the
distribution of the payments’ data set. By using µ̂ and σ̂2,
the over-dispersion parameter is ϕ = 27.

In the third column in Table (1), we have the maximum
likelihood estimator for the settlement delay probability, ql
(the numbers round to four decimals). It shows that 67% of
automobile material damage claims are settled in the one
month after they are reported to the insurance company.
These are the cheapest claims based on their average cost
calculations.

Using these parameter estimates, the IBNR reserve for
the next 12 months is 2270 million IRR and the actual
amount is 6150 million IRR. This difference is because
of large economic inflation in claim amount severity. The
RBNS reserve for the next 12 months, is 21507 million IRR
and the actual amount is 18165 million IRR. As a result,
the total reserve is 23777 million IRR, close to the actual
amount, 24315 million IRR. We compared our findings with
the usual chain ladder (CL) method under Mack’s conditions,
see Wüthrich and Merz (2008, chapter 3) [32] for more
details. We use this method on the monthly run-off triangle.
The number of run-off triangle’s rows/columns is 96. We
employed the ChainLadder package (in the statistical
software R) against claim counts/payments of the run-off
triangle to predict the corresponding loss reserves under the
CL framework. We start by doing a regularity check of the
data. The standardized residual values versus fitted values
and calendar period, given in Figure 3, don’t show any trends,
therefore, one cannot reject the CL’s assumptions.

Fig. 3. The standardized residual values versus fitted values (Panel, a for claim
counts and Panel b for claim payments) and the standardized residual values versus
the calendar period (Panel, c for claim counts, and Panel d for claim payments), under
the CL framework.

In Figure 4, we plot the estimated chain ladder parameters

and the development factors in a monthly period.

Fig. 4. The estimate of chain ladder parameters and the development
factors in the monthly period.

In the CL method under Mack’s conditions, the prediction
of the number of IBNR claims is equal to 131. Thus, to com-
pare with the real data, we conclude it has underestimated
the number of claims. The results for the prediction of future
payments are equal to 19814 million IRR. Thus, to compare
with the real data, we conclude it has been underestimated
in future payments. Moreover, in the CL method, it is not
possible to split the IBNR and RBNS reserve and the reserve
includes both of them.

Moreover, to study the accuracy of prediction methods,
we approximate a 95% prediction interval by the monthly
predictions ±1.96 times the square of the conditional MSEP,
i.e. (LCB,UCB), where

LCB = X̂DCL
ij − 1.96

√
MSEPFt (X̂

DCL
ij )

UCB = X̂DCL
ij + 1.96

√
MSEPFt (X̂

DCL
ij )).

Figure 5 represents such point prediction along with its
corresponding 95% predictions interval for the period of 20-
March-2019 to 19-March-2020.

The length of the 95% predictions interval which is evalu-
ated based on our model, for both the claim counts/payments,
has been increased. However, we may observe a dramatic
jump in the prediction’s interval which is evaluated based on
the CL model. These two observation may convince us to
suggest our method rather than the CL one.

In Figure 6, we run 10000 bootstrap simulations, and the
results are presented in the IBNR and RBNS.
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Fig. 5. A 95% prediction interval for the claim counts reserves (Panel, a evaluated
under our model and Panel b evaluated under the CL model) and the claim payments
reserves(Panel, c evaluated under our model and Panel d evaluated under the CL
model).

IV. CONCLUSION AND SUGGESTION

One of the most important questions in non-life insurance
research is: “what is appropriate, in some sense, the method
to predict claim counts/payments reserves for a given insur-
ance contract”

This article employs a Zero-Inflated Gamma Mixture
(ZIGM) framework to model the reporting delay probabil-
ities. Moreover, it considers settlement delay probabilities in
its model. We believe that employing the reporting/settlement
delay probabilities allows one to provide more accurate
predictions for claim counts/payments reserves. Given past
observations, we study the prediction of future payments (in
number and amount) and their prediction errors and derived
reasonable expressions for them. The model advantage in the
IBNR reserve is insurance companies can predict the number
of future claims for each future date. This enables them to
change the claim reporting process.

Our results for predicting the number of IBNR claims and
the amount of IBNR and RBNS claims compared with real
data were reasonable. Moreover, we compare our results with
Mack’s CL method. The results show that our method was
better than the CL method. Also, in the CL method, it is not
possible to split the IBNR and RBNS reserve and the reserve
includes both of them.

The approach proposed in this article can be improved
with additional information about claims, such as the seasons
that claims occur, the zone of accident, online reporting
claims, etc. These characteristics can be considered in the
loss reserving model and make the prediction of amount
more accurate.

Certainly, the same approach can be adopted with general-
ized classical cumulative shock models for claims arrival and

Fig. 6. Simulation results in splits of the IBNR and RBNS reserves.

reporting delay to insurance companies. For example, when
we have a claim it causes a stream of payments from the
insurer to the insured. We believe that this approach has the
potential to create more accuracy in the practical approach
to reserving.
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