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Abstract—This study provides a hierarchical control ap-
proach for large-scale systems composed of interconnected
subsystems. A local controller or agent that can communicate
via a network manages each subsystem. The upper layer is
responsible of network topology selection to determine the
optimal trade-off between the communication load and the
control performance. The selected network topology splits the
set of agents into cooperating groups of agents referred to as
coalitions. At the bottom layer, each coalition computes the
value of its control input variable by employing a decentralized
model predictive control (MPC) scheme. Recursive feasibility
and closed-loop stability analysis are carried out by considering
fixed and varied network topologies. As a final point, a
numerical simulation is carried out to verify the performance
of the control scheme that is proposed.

Index Terms—coalitional control, model predictive control,
hierarchical control, switched systems

I. INTRODUCTION

OVER the last years, MPC-based non-centralized con-
trol schemes such as decentralized and distributed

schemes are becoming more and more popular than MPC-
based centralized schemes for controlling large-scale systems
like traffic, irrigation, and power systems [1], [2], [3], [4],
[5]. This is because the non-centralized scheme offers less
computational demands, better fault tolerance, and more
flexibility to apply to the system compared to the centralized
one [6]. The idea of the non-centralized scheme is to assign
a different local controller or agent for each subsystem to
compute the local control input for its subsystem.

In the decentralized scheme, there is no communication
among the agents in deciding their corresponding control ac-
tions. Therefore, this scheme may degrade the system’s con-
trol performance and stability when the interactions between
different subsystems are strong [7]. On the contrary,some
information is shared among the agents to calculate their
control inputs in the distributed scheme. This information
plays an essential role in achieving performance close to
those provided by the centralized approach. Furthermore, the
basic assumption employed in the distributed control strategy
is that the topology of the communication network is fixed,
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regardless of the alteration in the interaction among different
subsystems.

Recently, a control strategy that adjusts the network
topology to the coupling conditions between the agents has
emerged, referred to as a coalitional control scheme [8]. This
scheme aims to ensure that communication is carried out
among only strongly coupled agents so that a control per-
formance close to the centralized strategy is obtained while
simultaneously reducing computational and communicational
burdens. Furthermore, due to network topology adjustment,
the agents can dynamically establish coalitions, i.e., groups
of agents who cooperate in deciding their control inputs or
work in a decentralized manner.

The coalitional control scheme initially appeared to control
a set of unconstrained dynamically coupled linear systems
[9]. In particular, a supervisor decides the network topology
among the agents by solving a network topology optimiza-
tion problem. Then, based on the selected network topology,
linear matrix inequalities (LMIs) are solved subject to com-
munication constraints to obtain the coalition’s feedback
matrix. Furthermore, the Shapley value, which is one of the
tools to solve a cooperative game, is employed to investigate
the relation of the distinct links and agents. This coalitional
scheme is then developed by employing other tools from
cooperative game theory, such as Harsanyi solutions [10]
and the Banzhaf value [11]. In addition, a coalitional MPC
scheme is proposed to deal with constrained systems in [12],
where the network topology is determined through a pair-
wise bargaining procedure between MPC controllers/agents.
Finally, input-to-state stability (ISS) is established under the
assumption that the coupling between agents is weak and the
system is recursively feasible.

Recursive feasibility and closed-loop stability issues in
coalitional MPC are challenging to address, because the
time-varying network topology leads the controlled system
to the switched system. It is commonly understood that
switching between multiple feasible and stable systems
might result in an infeasible and unstable system. Since
the coalitional MPC scheme in [12] doesn’t address the
feasibility issue, we propose a coalitional MPC scheme for
constrained linear systems built by a number of dynamically
interconnected subsystems that tackles the feasibility and
stability issues. The recursive feasibility issue is addressed by
modifying the decentralized MPC scheme for non-switched
systems proposed in [13] to switched systems. Specifically,
the disturbance-and-switch-robust control invariant (DS-RCI)
sets proposed in [14] will be adapted to state the coalitional
MPC optimization problem. Then, the result in [15] will
be employed to address the stability of the closed-loop
system. Furthermore, to validate the performance of the pro-
posed control scheme, a numerical simulation is performed
and compared to the performance of the centralized MPC
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method.
The remaining of this work are structured as follows. First,

in Section II, the problem to be solved is stated. Then, the
control algorithm that includes the formulation of coalitional
MPC optimization problems and the recursive feasibility and
stability analysis is provided in Section III. Next, Section IV
presents a simulation to assess the proposed control scheme’s
performance. Finally, conclusions are provided in Section V.

Notation 1. AT indicates the transpose of matrix A. R+

represents the set of all real numbers t such that t ≥ 0, and
Z+ represents the set of all integers k such that k ≥ 0. Z≥s

stands for the set of all k ∈ Z+ such that k ≥ s for some s ∈
Z+. A square matrix A is called Schur if its spectral radius
is less than one. For two sets X,Y ⊂ Rn, their Minkowski
sum and Pontryagin difference are respectively defined as
X⊕Y ≜ {x+y|x ∈ X, y ∈ Y} and X⊖Y ≜ {x|x⊕Y ⊆ X}.
A strictly increasing function α : R+ → R+ is said to be
a K-function if it is continuous and taking values zero at
zero. Bρ(y) ⊂ Rn denotes the ball with center y and radius
ρ > 0, i.e. the set of all x ∈ Rn such that ||x−y|| ≤ ρ, where
||.|| denotes the Euclidian norm in Rn. A set X is said to be
robust positively invariant (RPI) for the system x(k + 1) =
f(x(k), w(k)) if the state trajectory {x(k)}∞k=0 starting at
X always stays at X for any w(k) ∈ W, k = 0, 1, 2, ....

II. PROBLEM FORMULATION

A. System Description

We consider a system that can be split into a set N =
{1, 2, . . . ,M} of coupled subsystems. The dynamic and the
constraints of each subsystem i ∈ N are given by

xi(k + 1) = Aiixi(k) +Biiui(k) + di(k), (1a)

di(k) =
∑

j∈Mi

(Aijxj(k) +Bijuj(k)) , (1b)

xi ∈ Xi ⊂ Rni , ui ∈ Ui ⊂ Rqi , (1c)

where k ∈ Z+ denotes the discrete-time index, and xi ∈ Rni

and ui ∈ Rqi are the state and input vectors of subsystem i.
Matrices Aii ∈ Rni×ni and Bii ∈ Rni×qi are transition and
input to state matrices of subsystem i, respectively. Vector
di ∈ Rni gathers the effect of the state and input of all
subsystems in the set Mi on the dynamic of subsystem i,
where Mi is defined as Mi = {j ∈ N|Aij ̸= 0∨Bij ̸= 0}.

Assumption 1. Xi and Ui are compact polyhedral sets
having the origin within their interior for all i ∈ N .

B. Information Exchange

A different controller or agent manage each subsystem
i ∈ N with access only to its state xi. Therefore, the number
of agents is equal to the number of subsystems. The symbol
N is also used to denote the set of agents from now on. Each
agent i ∈ N has a task to compute the value of its input
variable ui at every time step. For this purpose, agents can
communicate through a communication network represented
by the undirected graph (N ,L), where N is the set of agents,
and L is the set of links connecting them. Specifically, the
set L is defined as

L ⊆ LN = {{i, j}|{i, j} ⊆ N , i, j ∈ N , i ̸= j}. (2)

Each link {i, j} ∈ L may be enabled or disabled, with each
enabled link having a specific stage cost c > 0. When the
link {i, j} is enabled, agents i and j can communicate so
that the states xi and xj are respectively available for agents
j and i. In addition, any two indirectly connected agents can
communicate as long as there is a path of activated links
between them. Hereafter, the symbol g is used to denote the
set of all enabled links, referred to as topology, and the set
of all possible topologies is represented by G = {g|g ⊆
L}. Consider that if the cardinality of L is |L|, then the
cardinality of G is 2|L|.

Any topology g ∈ G splits the set of agents N into
disjoint sets of cooperation groups of agents, referred to
as coalitions. In addition, two agents are inside the same
coalition if and only if they are either directly connected
through an enabled link or indirectly through a path of
enabled links. Furthermore, the set of all coalitions induced
by the topology g is denoted by Π(g) = {C|C ⊆ N}, where
C ̸= ∅ for all C ∈ Π(g), C ∩C′ = ∅ for any pair C, C′ ∈ Π(g)
and

⋃
C∈Π(g) C = N . Hence, the set Π(g) is a partition of the

set N . The cardinality of the set Π(g), denoted by |Π(g)|,
ranges from 1 to M .

All agents in the same coalition C ∈ Π(g) determine their
control input cooperatively and act as a single system. Let
xC = (xi)i∈C ∈ RnC and uC = (ui)i∈C ∈ RqC be the state
and control input of coalition C obtained by stacking the state
and input vectors of all subsystems in C, the dynamic of the
coalition C is specified by

xC(k + 1) = ACxC(k) +BCuC(k) + dC(k), (3)

where AC = [Aij ]i,j∈C ∈ RnC×nC and BC = [Bij ]i,j∈C ∈
RnC×qC with nC =

∑
i∈C ni and qC =

∑
i∈C qi. Fur-

thermore, the vector dC = (dCi )i∈C ∈ RnC represents the
influence of state and input of subsystems outside C on the
dynamic of coalition C. For each i ∈ C, dCi is given by

dCi (k) =
∑

j∈Mi\C

Aijxj(k) +Bijuj(k). (4)

From (1c), we have

xC ∈ Xg
C =

∏
i∈C

Xi, uC ∈ Ug
C =

∏
i∈C

Ui. (5)

Note that Xg
C and Ug

C are compact polyhedral sets including
the origin inside their interior based on Assumption 1.
Moreover, from (4), we have

dCi ∈ DC
i =

⊕
j∈Mi\C

AijXj ⊕BijUj . (6)

Therefore, the constraint of dC is as follows.

dC ∈ Dg
C =

∏
i∈C

DC
i . (7)

Since Xj and Uj are bounded and include the origin inside
their interior for all j ∈ Mi\C based on Assumption 1, then
DC

i is also bounded and includes the origin within its interior.
Consequently, Dg

C is bounded that contains the origin within
its interior.

Denoting the aggregate of state and input vectors of all
coalitions C ∈ Π(g) as xN = (xC)C∈Π(g) and uN =
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(uC)C∈Π(g), the dynamic of the overall system corresponding
to the topology g can be modeled as

xN (k + 1) = ANxN (k) +BNuN (k), (8)

where AN = [AC ]C∈Π(g) and BN = [BC ]C∈Π(g). In addition,
the constraints of the overall system are

xN ∈ Xg
N =

∏
C∈Π(g)

Xg
C , uN ∈ Ug

N =
∏

C∈Π(g)

Ug
C . (9)

Since Xg
C and Ug

C are compact polyhedral sets containing the
origin in their interior for all g ∈ Π(g), then Xg

N and Ug
N are

also compact polyhedral sets containing the origin in their
interior.

Regarding systems (3) and (8), the following decentralized
stabilization assumption is introduced.

Assumption 2. For each topology g ∈ G, a block-diagonal
matrix Kg

N = diag(Kg
C)C∈Π(g) exists, with Kg

C ∈ RqC×nC ,
such that (i) F g

N ≜ AN +BNKg
N is Schur, (ii) F g

C ≜ AC +
BCK

g
C is Schur for all C ∈ Π(g).

The algorithm to compute the matrix Kg
N satisfying

Assumption 2 is provided in [9].

C. Coalitional Control Problem

Coalitional control schemes aim to seek the best trade-off
between the control performance and the communicational
cost by periodically altering the network topology. To this
end, the objective function below is minimized at every time
step k.

∞∑
t=0

∑
C∈Π(g(k))

ℓ
g(k)
C (xC(t|k), uC(t|k)) + c|g(k)| (10a)

subject to

xC(t+ 1|k) = ACxC(t|k) +BCuC + dC(t|k), ∀C ∈ Π(g(k))
(10b)

xC(t|k) ∈ Xg(k)
C , uC(t|k) ∈ Ug(k)

C , ∀C ∈ Π(g(k)) (10c)

g(k) ∈ G, (10d)

where g(k) denotes the network topology at time step k.
xC(t|k) and uC(t|k) respectively denote the prediction of xC
and uC at time step k+ t based on the measurement at time
step k, with xC(0|k) = xC(k) for all C ∈ Π(g(k)). The first
and second terms of (10a) respectively represent the cost-to-
go and the communicational cost. In order to regulate the
state of the overall system towards the origin, the stage cost
ℓ
g(k)
C in (10a) is defined as

ℓ
g(k)
C (xC(k), uC(k)) = xT

C (k)Q
g(k)
C xC(k)+uT

C (k)R
g(k)
C uC(k),

(11)
where Q

g(k)
C = diag(Qi)i∈C and R

g(k)
C = diag(Ri)i∈C ∈

RqC×qC .

Assumption 3. Matrices Qi ∈ Rni×ni and Ri ∈ Rqi×qi are
positive definite for all i ∈ N .

The decision variables of the optimization problem (10)
consist of continuous and integer variables. More specifically,
the input control variables are continuous, and the network
topology selection leads to integer variables. Hence, the
problem (10) is a mixed-integer optimization problem, which

is generally impractical to solve. In addition, the cardinality
of the set of all network topologies generally increases
exponentially as the number of links increases. Therefore, a
hierarchical multi-agent control algorithm will be proposed
to address these issues to get a sub-optimal solution for the
problem. (10).

III. CONTROL ALGORITHM

The hierarchical multi-agent control algorithm which
yields an approximate solution to the problem (10) is
presented in this section. The top layer is in charge of
selecting the network topology, and the bottom layer is
responsible for computing the control input. For this purpose,
we provide the following assumption.

Assumption 4. For each g ∈ G, there exists a positive
definite matrix P g

N = diag(P g
C )C∈Π(g) that, ∀xN (k), satisfies

xN (k)TP g
NxN (k) =

∑
C∈Π(g)

xT
C (k)P

g
CxC(k)

≥
∞∑
t=0

∑
C∈Π(g)

ℓgC(xC(t|k), uC(t|k))

when the control feedback law uN (k) = Kg
NxN (k) is

applied to the system (8).

The matrices Kg
N and P g

N that meet Assumption 2 and
Assumption 4, respectively, could be computed by using a
method in [9]. Note that the matrix P g

N provides an upper
bound on the cost-to-go. Therefore, the upper bound on the
cost function (10a) is given by

r(g(k), xN (k)) = xN (k)TP
g(k)
N xN (k) + c|g(k)|. (12)

Given the value of the state xN (k), the following opti-
mization should be solved at the top layer to determine the
network topology.

min
g(k)

r(g(k), xN (k)) (13a)

subject to
g(k) ∈ G. (13b)

Note the cardinality of G grows exponentially to the cardi-
nality of L. Therefore, the problem (13) will be solved at
some given time step to reduce the computational burden.

At the bottom layer, each coalition C ∈ Π(g(k)) com-
putes the value of its corresponding input variable in a
decentralized manner. The term decentralized here refers to
the absence of communication among coalitions when they
calculate their control input. Furthermore, the decentralized
MPC scheme in [13] will be employed to compute the input
of the overall system to address constraint satisfaction and
stability of closed-loop system issues. In addition, since the
coalitional control scheme leads the system under considera-
tion to the switched system, the decentralized MPC scheme
will be modified for the switched system.

Remark 1. The dynamic of each subsystem considered
in this research differs from [13], since the control in-
put coupling Bijuj(k) in (1b) is neglected in [13], i.e.
Bijuj(k) = 0 for all j ∈ Mi.
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A. MPC for Coalitions

The decentralized MPC scheme in [13] is developed
based on the tube-based robust MPC technique in [16].
The tube-based robust MPC approach works on the nominal
system corresponding to the actual system and the tightened
constraints to obtain the trajectory of the nominal state and
control input over a finite horizon. The trajectory of the
nominal state is then used as a reference for the state of the
actual system. To ensure the actual state near to the nominal
state,a feedback control is applied to the actual system.

Treating the coupling term dC as a disturbance, the nomi-
nal system that corresponds to (3) is given by

x̂C(k + 1) = ACx̂C(k) +BCûC(k), (14)

in which x̂C and ûC are the nominal state and input of
coalition C. Following [16], the control input for (3) at time
step k is given by

uC(k) = ûC(k) +Kg
C(xC(k)− x̂C(k)). (15)

Letting zC = xC − x̂C , from (3), (14), and (15), we obtain

zC(k + 1) = F g
C zC(k) + dC(k), (16)

where dC ∈ Dg
C . Furthermore, since F g

C is Schur and Dg
C

is bounded, an RPI set Zg
C exists for each C ∈ Π(g). To

reduce conservativeness, the RPI set Zg
C should be as small

as possible. Since F g
C is Schur, the minimal RPI set is⊕∞

j=0(F
g
C )

jDg
C , according to [17]. However, to reduce the

complexity of computation, the RPI set Zg
C in this research

is computed by the following algorithm. This algorithm is
the modification of Algorithm 1 in [18].

Algorithm 1: The computation of the RPI Zg
C

1) Initialize Zg
C = box(Dg

C) for all C ∈ Π(g).
2) Compute Zg+

C = box(F g
CZ

g
C) ⊕ box(Dg

C) for all C ∈
Π(g).

3) If Zg+

C ⊆ Zg
C for all C ∈ Π(g), then stop. The desired

RPI set is Zg
C . Otherwise, set Zg

C = Zg+

C and repeat
step 2.

The notation box(X) indicates the smallest hyperrectangle
that contains X with faces perpendicular to the cartesian
axis. In particular, the outerApprox method from [19] can be
used to compute the operator box. Algorithm 1 generates a
compact set Zg

C since the operator box yields a compact set,
and the Minkowski sum operation preserves the compactness
property. In addition, the set Zg

C contains the origin in its
interior since Dg

C contains the origin in its interior.
The following assumption is needed to guarantee the

feasibility and stability of switched systems.

Assumption 5. (Dwell time): Let T ≜
{k0, k1, . . . , kl, . . .} ⊆ Z+, with k0 = 0, denote the
set of switching instants. Then, for each topology g ∈ G,
there exist a dwell time τg such that τg ≥ kl − kl−1 when
g(k) = g for all k ∈ [kl−1, kl), l ∈ Z≥1 .

Let te denote the amount of time that has passed from
the most current switching instant, with te(0) = 0. Let the
network topology at time step k is g(k) = g with dwell time
τg . Then, the following optimization problem is solved by

each coalition C ∈ Π(g) to compute its corresponding input
uC(k) when its state is xC(k).

J
g,N∗

p

C (xC(k)) =

min
(x̂C(0|k),
{ûC(t|k)}

Np−1
t=0 )

J
g,Np

C (x̂C(0|k), {ûC(t|k)}
Np−1
t=0 ), (17a)

subject to

xC(k)− x̂C(0|k) ∈ Zg
C , (17b)

x̂C(t+ 1|k) = ACx̂C(t|k) +BCûC(t|k), (17c)

x̂C(t|k) ∈

{
X̂g

C , t < r(k)

T̂g
C , t ≥ r(k)

(17d)

ûC(t|k) ∈ Ûg
C , (17e)

x̂C(Np|k) ∈ T̂g
C , (17f)

where X̂g
C = Xg

C ⊖ Zg
C , Ûg

C = Ug
C ⊖ Kg

CZ
g
C , Np ≥ τg is

the length of horizon prediction, and r(k) = τg − te(k).
The set T̂g

C is the terminal constraint of the nominal system
(14) whose properties will be specified later. The objective
function J

g,Np

C is defined by

J
g,Np

C (x̂C(0|k), {ûC(t|k)}
Np−1
t=0 ) =

Np−1∑
t=0

ℓgC(x̂C(t|k), ûC(t|k)) + V g
C (x̂C(Np|k)),

(18)

where the stage cost ℓgC is given by (11), and the terminal
cost V g

C is defined as

V g
C (x̂C(Np|k)) = x̂T

C (Np|k)P g
C x̂C(Np|k). (19)

Let (x̂∗
C(0|k), {û∗

C(t|k)}
Np−1
t=0 ) denote the optimal solution to

the problem (17). Then the control input of coalitions C at
time step k is given by

u∗
C(k) = û∗

C(0|k) +Kg
C(xC(k)− x̂∗

C(0|k)). (20)

To guarantee the existence of the sets X̂g
C and Ûg

C , the
following assumption is assumed to hold.

Assumption 6. Given a topology g ∈ G. For any coalition
C ∈ Π(g), there exist ρC,1 > 0 and ρC,2 > 0 such that
Zg

C ⊕ BρC,1
(0) ⊆ Xg

C and Kg
CZ

g
C ⊕ BρC,2

(0) ⊆ Ug
C where

BρC,1
(0) ⊂ RnC and BρC,2

(0) ⊂ RqC .

The following algorithm summarizes the hierarchical con-
trol scheme proposed in this research.
Algorithm 2: The hierarchical control scheme

1) a) If k ∈ T , all agents announce their state vector
so that the problem (13) can be solved. The
optimal solution of (13) is then selected as the
next topology.

b) If k /∈ T , each agent only shares their state vector
with all agents inside the same coalition.

2) Each coalition C ∈ Π(g(k)) solves the problem (17)
to obtain the coalitional control input (20).
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B. Feasibility and Stability Analysis

To analyze the feasibility and the stability of the system,
we initiate by formulating the collective MPC optimiza-
tion problem for all coalitions C ∈ Π(g). Letting ÃN =
diag(AC)C∈Π(g), B̃N = diag(BC)C∈Π(g), A′

N = AN − ÃN ,
and B′

N = BN −B̃N , the overall system (8) can be rewritten
as follows

xN (k + 1) = ÃNxN (k) + B̃NuN (k) + dN (k), (21)

where dN (k) = (dC)C∈Π(g) = A′
NxN (k) +B′

NuN (k). Fur-
thermore, viewing dN as a disturbance vector, the nominal
system corresponding to (21) and its constraints are given by

x̂N (k + 1) = ÃN x̂N (k) + B̃N ûN (k), (22a)

x̂N ∈ X̂g
N =

∏
C∈Π(g)

X̂g
C , ûN ∈ Ûg

N =
∏

C∈Π(g)

Ûg
C , (22b)

where x̂N = (x̂C)C∈Π(g) and ûN = (ûC)C∈Π(g). In view of
(15), the control input of the system (21) is

uN (k) = ûN (k) +Kg
N (xN (k)− x̂N (k)). (23)

Moreover, from (16), we have the error system between (21)
and (22) as follows

zN (k + 1) = F g
N zN (k) + dN (k), (24)

in which zN = (zC)C∈Π(g).
Solving (17) for all C ∈ Π(g) is equivalent to solve the

following problem.

J
g,N∗

p

N (xN (k)) =

min
(x̂N (0|k),
{ûN (t|k)}Np−1

t=0 )

J
g,Np

N (x̂N (0|k), {ûN (t|k)}Np−1
t=0 ), (25a)

subject to
xN (k)− x̂N (0|k) ∈ Zg

N , (25b)

x̂N (t+ 1|k) = ÃN x̂N (t|k) + B̃N ûN (t|k), (25c)

x̂N (t|k) ∈

{
X̂g

N , t < r(k)

T̂g
N , t ≥ r(k)

(25d)

ûN (t|k) ∈ Ûg
N , (25e)

x̂N (Np|k) ∈ T̂g
N , (25f)

where Zg
N =

∏
C∈Π(g) Z

g
C , X̂g

N =
∏

C∈Π(g) X̂
g
C , Ûg

N =∏
C∈Π(g) Û

g
C , T̂g

N =
∏

C∈Π(g) T̂
g
C , and

J
g,Np

N (x̂N (0|k), {ûN (t|k)}Np−1
t=0 ) =

Np−1∑
t=0

ℓgN (x̂N (t|k), ûN (t|k)) + V g
N (x̂N (Np|k)),

(26)

with

ℓgN (x̂N (k), ûN (k)) =
∑

C∈Π(g)

ℓgC(x̂C(k), ûC(k)),

and

V g
N (x̂N (k), ûN (k)) =

∑
C∈Π(g)

V g
C (x̂C(k), ûC(k)).

Expanding the right-hand side of the last two equations, we
have

ℓgN (x̂N (k), ûN (k)) = x̂T
N (k)Qg

N x̂N (k) + ûT
N (k)Rg

N ûN (k)
(27)

and
V g
N (x̂N (k)) = x̂T

N (k)P g
N x̂N (k), (28)

where Qg
N = diag(Qg

C)C∈Π(g) and Rg
N = diag(Rg

C)C∈Π(g)

are positive definite. In view of (20), the control input to (8)
at time step k is given by

u∗
N (k) = û∗

N (0|k) +Kg
N (xN (k)− x̂∗

N (0|k)), (29)

where û∗
N (0|k) = (û∗

C(0|k))C∈Π(g) and x̂∗
N (0|k) =

(x̂∗
C(0|k))C∈Π(g).

Remark 2. For the case fixed network topology, i.e. g(k) = g
for all k ≥ 0, for any g ∈ G, the constraint (25d) becomes
x̂N (t|k) ∈ X̂g

N since τg → ∞, so that r(k) → ∞.

The definition below provides the feasibility region of the
problem (25).

Definition 7. The feasibility region of the problem (25) is
defined as

Xg,Np

N ={xN ∈ Xg
N | if xN (k) = xN , then there exists

(x̂N (0|k), {ûN (t|k)}Np−1
t=0 ) such that

(25b)− (25f) are satisfied}.

Note that the set Xg,Np

N is the domain of J
g,N∗

p

N (.).
To ensure the feasibility and stability of the proposed

control scheme, the terminal cost V g
N (.) and the terminal set

T̂g
N should satisfy the following assumption. This assumption

is commonly used in the MPC design to stabilize the origin
of the closed-loop system.

Assumption 8. For each topology g ∈ G, it holds that
1) T̂g

N ⊆ X̂g
N is an invariant set for x̂N (k+1) = (ÃN +

B̃NKg
N )x̂N (k);

2) ûN (k) = Kg
N x̂N ∈ Ûg

N for any x(k) ∈ T̂g
N ;

3) V g
N (x̂N (k+1))−V g

N (x̂N (k)) ≤ −ℓgN (x̂N (k), ûN (k)),
∀x̂N (k) ∈ T̂g

N .

To maintain the feasibility of the overall system when the
switching of the network topology appears, we introduce the
following definition and assumption.

Definition 9. Let Γg denote the global nominal system (22).
Then the set of all x̂N ∈ X̂g

N that can be feasibly driven into
T̂g
N in h steps relative to Γg is defined as

PrehΓg
(T̂g

N ) ={x̂N ∈ X̂g
N | if x̂N (0) = x̂N ,∃{ûN (k)}h−1

k=0 ,

ûN (k) ∈ Ûg
N ,∀k = 0, . . . , h− 1, such that

x̂N (k) ∈ X̂g
N ,∀k = 0, . . . , h− 1,

x̂N (h) ∈ T̂g
N },

with Pre0Γg
(T̂g

N ) = T̂g
N .

The reachableSet method provided by [19] can be used
to compute the set PrehΓg

(T̂g
N ) by inserting the appropriate

arguments.

Assumption 10. For any g ∈ G, it holds
1) T̂g

N ⊆ Pre
τg′

Γg′

(
T̂g′

N
)
, ∀g′ ∈ G;
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2) T̂g
N ⊕Zg

N ⊆ Pre
τg′

Γg′
(T̂g′

N )⊕Zg′

N , ∀g′ ∈ G.

The collection of sets T̂g
N for all g ∈ G that satisfies

Assumption 8.1 and 8.2 and Assumption 10.1 is called
a switch-robust control invariant (switch-RCI) set [20].
In addition, the switch-RCI set {T̂g

N }g ∈ G that meets
Assumption 10.2 is called a disturbance-and-switch robust
control-invariant (DS-RCI) set [14]. In this research, the set
T̂g
N is computed using the following algorithm, which is

adapted from Algorithm 1 in [20]. This algorithm provides
the computation of maximal switch-RCI sets.

Algorithm 3: The computation of the set T̂g
N

1) Initialize Ωg
N (0) = X̂g

N for all g ∈ G.
2) For all g ∈ G, compute

Ωg
N (k + 1) =

Ωg
N (k) ∩ Pre

τg
Γg
(Ωg

N (k)) ∩
(
∩g′∈GPre

τg′

Γg′
(Ωg′

N (k))
)
.

3) If Ωg
N (k + 1) = Ωg

N (k) for all g ∈ G, then stop and
set T̂g

N = Ωg
N (k). Otherwise, set Ωg

N (k) = Ωg
N (k+1)

for all g ∈ G and repeat step 2.
Since the system Γg is linear and the constraints X̂g

N and
Ûg

N are compact for all g ∈ G, then the sets T̂g
N produced

by Algorithm 3 are compact based on Lemma 3 in [20].
Having computed the set T̂g

N , we can calculate the set T̂g
C

for all C ∈ Π(g) by projecting T̂g
N to the state space of

coalition C.
In order to compute the feasibility region Xg,Np

N , we
provide the following algorithm.
Algorithm 4: The computation of the set Xg,Np

N
input: the global nominal system Γg given by (22), the set
Zg

N , the set T̂g
N , and the length of prediction horizon Np.

output: the set Xg,Np

N .
Initialize Ψg

N (0) = T̂g
N .

for j = 1 to Np do
1. compute Υg

N (j) = Pre1Γg
(Ψg

N (j − 1)) ∩ X̂g
N ,

2. update Ψg
N (j − 1) = Υg

N (j),
end for
Compute Xg,Np

N = Υg
N (Np)⊕Zg

N .

The proposition below provides the feasibility property of
the proposed coalitional control scheme.

Proposition 11. Let Assumptions 1, 2, 4, 5, 8 and 10 hold.
Then, if the problem (25) is feasible at time step k, it is also
feasible at time step k + 1.

Proof: Let g and the pair (x̂∗
N (0|k), {û∗

N (t|k)}Np−1
t=0 )

be the topology and the optimal solution of (25) at time
step k. Then, denote the trajectory of the nominal state
corresponding to the optimal solution as {x̂∗

N (t|k)}Np

t=0. The
proof will consider two cases, i.e, (i) g(k + 1) = g(k) and
(ii) g(k + 1) ̸= g(k).
Case 1. (g(k + 1) = g(k) = g). Define the pair (x̂0

N (0|k +

1), {û0
N (t|k+1)}Np−1

t=0 ) as a solution to the problem (25) at
time step k+1, with x̂0

N (0|k+1) = x̂∗
N (1|k), û0

N (t|k+1) =
û∗
N (t+1|k) for t = 0, . . . , Np−2, and û0

N (Np−1|k+1) =
Kg

N x̂∗
N (Np|k). Then, the trajectory of the nominal state

corresponding to this solution is {x̂0
N (t|k + 1)}Np

t=0 with
x̂0
N (t|k + 1) = x̂∗

N (t + 1|k) for t = 0, . . . , Np − 1, and
x̂0
N (Np|k + 1) = (ÃN + B̃NKg

N )x̂∗(Np|k). Furthermore,

based on the feasibility at time step k, we have û0
N (t|k+1) ∈

Ûg
N for all t = 0, . . . , Np − 2, and x̂0

N (t|k) ∈ X̂g
N if

t < r(k + 1) = r(k) − 1, x̂0
N (t|k) ∈ T̂g

N if t ≥ r(k + 1),
for t = 0, . . . , Np − 1. In addition, since x̂∗

N (Np|k) ∈ T̂g
N ,

then û0
N (Np − 1|k + 1) ∈ Ûg

N and x̂0
N (Np|k + 1) ∈

T̂g
N according to Assumptions 8.1 and 8.2. Finally, since

xN (k)− x̂∗
N (0|k) ∈ Zg

N , and uN (k) is given by (29), then,
based on Proposition 1 in [16], xN (k + 1) − x̂∗(1|k) =
xN (k+1)− x̂0(0|k+1) ∈ Zg

N . Thus, we conclude that the
solution (x̂0

N (0|k + 1), {û0
N (t|k + 1)}Np−1

t=0 ) is feasible.
Case 2.( g(k + 1) ̸= g(k)). In this case, r(k) = 0
and r(k + 1) = τg(k+1), so x̂0

N (0|k + 1) = x̂∗
N (1|k) ∈

T̂g(k)
N ⊆ Pre

τg(k+1)

Γg(k+1)
(T̂g(k+1)

N ). From case 1, we have xN (k+

1) − x̂0
N (0|k + 1) ∈ Zg(k)

N . Therefore, xN (k + 1) ∈
T̂g(k)
N ⊕ Zg(k)

N ⊆ Pre
τg(k+1)

Γg(k+1)
(T̂g(k+1)

N ) ⊕ Zg(k+1)
N , based on

Assumption 10. Hence, constraint (25b) holds at time step
k+1. Since x̂0

N (0|k+1) ∈ Pre
τg(k+1)

Γg(k+1)
(T̂g(k+1)

N ), then there

exists a sequence {û0
N (t|k + 1) ∈ Ûg(k+1)

N }τg(k+1)−1
t=0 such

that x̂
g(k+1)
N ∈ X̂g(k+1)

N for t = 0, . . . , τg(k+1) − 1, and
x̂0
N (τg(k+1)|k+1) ∈ T̂g(k+1)

N . Based on Assumptions 8.1 and
8.2, we have û0

N (t|k+1) = K
g(k+1)
N x̂0

N (t|k+1) ∈ Ûg(k+1)
N

and x̂0
N (t+1|k+1) ∈ T̂g(k+1)

N for t = τg(k+1), . . . , Np − 1.
Hence, we conclude that the pair (x̂0

N (0|k + 1), {û0
N (t|k +

1)}Np−1
t=0 ) is the feasible solution of (25) at time step k+ 1.

The following proposition provides the result on the
stability of the closed-loop system (8) when the network
topology is fixed. This proposition will be employed later
to state the result on the stability of the closed-loop system
(8) for switched topology cases.

Proposition 12. If g(k) = g for all k ≥ 0, then the origin of
the closed-loop system xN (k+1) = ANxN (k)+BNu∗

N (k)
where u∗

N (k) is given by (29) is asymptotically stable with
the region of attraction Xg,Np

N .

Proof: The proof follows the proof of theorem 1 in [13].

The following result is provided by [15] and also will be
employed to state the result on the stability of the closed-loop
system (8).

Lemma 13. Consider the switched system x(k + 1) =
fσ(k)(x(k)), where fσ(.) is globally Lipschitz continuous
having values 0 at 0, and the switching signal σ is a function
from Z+ to a finite set I. The origin of the system is locally
stable if there exist a scalar γ > 0 and a set of continuous
positive-definite functions Vm : Rn → R+, σ(k) = m ∈ I
satisfying

β1(∥x(k)∥) ≤ Vm(x(k)) ≤ β2(∥x(k)∥), (30a)

Vm(x(k)) ≤ γVσ(0)(x(0)), (30b)

where β1, β2 ∈ K.

In this research, the switching signal is defined by g :
Z+ → G, and the family of continuous positive-definite
functions is given by J

g,N∗
p

N : Xg,Np

N → R+ for all g ∈ G.
Thus, to establish the stability of the closed-loop system (8)
and (29), we have to show that the functions J

g,N∗
p

N (.) satisfy
(30a) and (30b). To this end, we provide the following results.
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Proposition 14. Letting Xg,0
N ≜ T̂g

N ⊕ Zg
N for all g ∈ G.

Then, the set Xg,0
N is compact and control invariant for (8)

and (9).

Proof: The compactness of Xg,0
N is immediately im-

plied by the compactness of T̂g
N and Zg

N . Next, for any
xN (k) ∈ Xg,0

N , we have xN (k) − x̂N (k) ∈ Zg
N , where

x̂N (k) ∈ T̂g
N . Therefore, ûN (k) = Kg

N x̂N (k) ∈ Ûg
N and

x̂N (k + 1) ∈ T̂g
N , based on Assumptions 8.1 and 8.2.

Consequently, uN (k) = ûN (k) + Kg
N (xN (k) − x̂N (k)) ∈

Ûg
N⊕Kg

NZg
N = Ug

N . Moreover, since xN (k)−x̂N (k) ∈ Zg
N

and uN (k) = ûN (k) + Kg
N (xN (k) − x̂N (k)), then, based

on Proposition 1 in [16] , xN (k + 1) − x̂N (k + 1) ∈ Zg
N .

In addition, since x̂N (k + 1) ∈ T̂g
N , then xN (k + 1) ∈

T̂g
N ⊕Zg

N = Xg,0
N . Thus the set Xg,0

N is control invariant for
(8) and (9).

Since the dynamic of the overall system (8) is linear where
its constraints (9) are compact polyhedral sets containing the
origin in their interior, and the set Xg,0

N is compact and con-
trol invariant for (8) and (9), then, according to Proposition
2.10 in [21], the sets Xg,j

N , for all j ∈ {1, . . . , Np}, are
compact and control invariant for (8) and (9), and satisfy
Xg,Np

N ⊇ Xg,Np−1
N ⊇ . . . ⊇ Xg,0

N . Furthermore, if Xg,0
N

contains the origin, Xg,j
N also contains the origin for all

j ∈ {0, 1, . . . , Np}.
The result below provides the lower and upper bound on

the value function J
g,N∗

p

N (.) and will be employed to state
that J

g,N∗
p

N (.) satisfies (30a).

Proposition 15. Let (x̂∗
N (0|k), {û∗

N (t|k)}Np−1
t=0 ) be the opti-

mal solution for (25) when the state of the overall system and
the network topology and at time step k are xN (k) = xN
and g(k) = g, respectively. Then there exist positive scalars
bg > ag > 0 such that

J
g,Np

∗

N (xN ) ≥ ag∥x̂∗
N (0|k)∥2, ∀xN ∈ Xg,Np

N , (31)

and

J
g,Np

∗

N (xN ) ≤ bg∥x̂∗
N (0|k)∥2, ∀xN ∈ Xg,0

N . (32)

Proof:

1) Since (x̂∗
N (0|k), {û∗

N (t|k)}Np−1
t=0 ) is the optimal solu-

tion for (25) corresponding to g(k) = g and xN (k) =

xN , then J
g,N∗

p

N (xN ) ≥ ℓgN (x̂∗
N (0|k), û∗

N (0|k)), where
ℓgN (x̂N , ûN ) = x̂T

NQg
N x̂N + ûT

NRg
N ûN . Furthermore,

based on Assumption 3, matrices Qg
N and Rg

N are
positive definite. Therefore, there exists a scalar ag > 0
such that ℓgN (x̂∗

N (0|k), û∗
N (0|k)) ≥ ag||x̂∗

N (0|k)||2.
Hence,

J
g,N∗

p

N (xN ) ≥ ag||x̂∗
N (0|k)||2, ∀xN ∈ Xg,Np

N .

2) Since xN ∈ Xg,0
N , then there exists x̂N ∈ T̂g

N that
satisfies xN − x̂N ∈ Zg

N . Letting x̂∗
N (0|k) ≜ x̂N , we

have û∗
N (0|k) ≜ Kg

N x̂∗
N (0|k) ∈ Ûg

N and x̂∗
N (1|k) =

(Ãg
N+B̃g

NKg
N )x̂∗

N (0|k) ∈ T̂g
N , based on Assumptions

8.1 and 8.2. Repeating this, we can form trajectories
of nominal input {û∗

N (t|k)}Np−1
t=0 and nominal state

{x̂∗
N (t|k)}Np

t=0, where û∗
N (t|k) = Kg

N x̂∗
N (t|k) ∈ Ûg

N
and x̂∗

N (t+1|k) = (Ãg
N + B̃g

NKg
N )x̂∗

N (t|k) ∈ T̂g
N for

all t = 0, . . . , Np−1. Consequently, from Assumption
8.3, we have

V g
N (x̂∗

N (0|k)) ≥ V g
N (x̂∗

N (1|k)) +
ℓgN (x̂∗

N (0|k), û∗
N (0|k))

≥ V g
N (x̂∗

N (2|k)) +
1∑

t=0

ℓgN (x̂∗
N (t|k), û∗

N (t|k))

...
≥ V g

N (x̂∗
N (Np|k)) +

Np−1∑
t=0

ℓgN (x̂∗
N (t|k), û∗

N (t|k))

= J
g,N∗

p

N (xN (k)),

where V g
N (x̂N ) = x̂T

NP g
N x̂N . Since P g

N is positive
definite, there exists a scalar bg > ag > 0 such that
V g
N (x̂∗

N (0|k)) ≤ bg||x̂∗
N (0|k)||2. Consequently,

J
g,N∗

p

N (xN ) ≤ bg||x̂∗
N (0|k)||2,∀xN ∈ Xg,0

N .

Note that, if Xg,0
N contains the origin in its interior, we can

extend the upper bound on J
g,Np

N (.) to Xg,Np

N according to
Proposition 2.16 in [21]. That is,

J
g,N∗

p

N (xN ) ≤ bg||x̂∗
N (0|k)||2, ∀xN ∈ Xg,Np

N . (33)

The result below provides the closed-loop stability of the
overall system.

Theorem 16. Let Assumptions 1, 2, 4, 5, 8, 10 hold and
Xg,0

N contains the origin in its interior. Then
1) the origin of the closed-loop system xN (k + 1) =

fg(k)(x(k)) = ANxN (k)+BNu∗
N (k) is locally stable;

2) If there exists a finite time kf > 0 such that g(k) =
g ∈ G for all k ≥ kf , then the closed-loop system
xN (k + 1) = fg(k)(x(k)) = ANxN (k) + BNu∗

N (k)
is asymptotically stable with the region of attraction
Xg(0),Np

N .

Proof:
1) Since the overall system fg(xN (k), uN (k)) =

ANxN (k) + BNuN (k) is linear and the constraints
Xg

N and Ug
N are polyhedral for each g ∈ G, the value

function J
g,N∗

p

N : Xg,Np

N → R≥0 is continuous for each
g ∈ G according to Theorem 2.7(b) in [21]. Therefore,
the set

{θg ≜ sup
xN∈Xg,Np

N

J
g,Np

∗

N (xN )}g∈G

is bounded and finite by the continuity of J
g,N∗

p

N (.) and
the compactness of Xg,N∗

p

N . Since J
g(0),N∗

p

N (xN (0)) is
finite, set for all g ∈ G

γg ≜ (J
g(0),N∗

p

N (xN (0)))−1(θg + εg), ∀εg ≥ 0.

Then for any xN ∈ Xg,Np

N , ∀g ∈ G, we have

J
g,N∗

p

N (xN ) ≤ θg ≤ θg + εg ≤ γJ
g(0),N∗

p

N (xN (0)),
(34)
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where γ ≜ maxg∈G{γg}. Hence, (30b) is satisfied
within topology g ∈ G. Let ks be the switching instant
with g(ks − 1) = g and g(ks) = h. Then, if xN (ks −
1) ∈ Xg,Np

N , xN (ks) ∈ Xh,Np

N , ∀h ∈ G, according
to Proposition 11. As a result, J

h,Np
∗

N (xN (ks)) ≤
γJ

Np
∗

σ(0)(x(0)) according to (34). Thus, (30b) is also
satisfied when the switching of topology occurs. Set-
ting a ≜ min{ag}g∈G and b ≜ max{bg}g∈G, by (31)
and (33), we have, for all xN (k) ∈ Xg,Np

N ,

β1(∥xN (k)∥) ≤ J
g,Np

∗

N (xN (k)) ≤ β1(∥xN (k)∥),

where β1(∥xN (k)∥) = a∥x̂∗
N (0|k)∥2 and

β2(∥xN (k)∥) = b∥x̂∗
N (0|k)∥2. Thus, (30a) is satisfied.

Therefore, by Lemma 13, the closed-loop system
xN (k + 1) = fg(k)(x(k)) = ANxN (k) + BNu∗

N (k)
is locally stable.

2) The asymptotically stability of the closed-loop system
xN (k + 1) = fg(k)(x(k)) = ANxN (k) + BNu∗

N (k)
is immediately implied by Proposition 12.

Based on the proof in part 1, we can guarantee the stability
of the closed-loop system as long as the recursive feasibility
of the overall system is assured.

IV. SIMULATION

To assess the performance of the proposed control scheme,
we use a system that consists of three interconnected sub-
systems as an academic example. The dynamic and the
constraints of subsystem i ∈ N = {1, 2, 3} are respectively
given by

xi(k + 1) =Aiixi(k) +Biiui(k)+∑
j ̸=i

(Aijxj(k) +Bijuj(k)), (35)

and
Xi = {xi ∈ R2 : (−2,−2) ≤ xi ≤ (2, 2)}, (36)

Ui = {ui ∈ R : −0.5 ≤ ui ≤ 0.5}. (37)

For i = 1, the matrices that describe (35) are provided by

A11 =

(
0.5 0.2
0 0.4

)
, A12 = A13 =

(
0.05 0
0 0.05

)
,

B11 =

(
0.5
1

)
, B12 = B13 =

(
0

0.15

)
.

Then, for i = 2, the matrices describing (35) are

A22 =

(
0.6 0.3
0 −0.5

)
, A21 = A23 =

(
0.04 0
0 0.04

)
,

B22 =

(
0
1

)
, B21 = B23 =

(
0

0.15

)
.

Finally, the matrices that describe (35) for i = 3 are

A33 =

(
0.6 −0.2
0 0.3

)
, A31 = A32 =

(
0.05 0
0 0.05

)
,

B33 =

(
0.5
0.5

)
, B31 = B32 =

(
0

0.15

)
.

Fig. 1. Communication network of agents

A set {A1, A2, A3} of agents connected via a commu-
nication network consisting of two links {I, II} rules the
subsystems independently, as depicted in Fig.1. Furthermore,
both links can be enabled and disabled at every time step.
Therefore, there are four possible topologies that might
be formed. All possible topologies and their corresponding
partition of agents are displayed in Table I.

TABLE I
THE LIST OF ALL TOPOLOGIES

No Network Topology Partition of Agents

1. g1 = ∅ Π(g1) = {{A1}, {A2}, {A3}}
2. g2 = {I} Π(g2) = {{A1, A2}, {A3}}
3. g3 = {II} Π(g3) = {{A1}, {A2, A3}}
4. g4 = {I, II} Π(g4) = {A1, A2, A3}

In the topology g1, all links are disabled. As a result, each
agent forms a coalition of itself. The link I is enabled in the
topology g2, accordingly agents A1 and A2 form a coalitions,
and agent A3 forms its own coalition. On the other hand, the
link II is enabled in the topology g3. Consequently, agents
A2 and A3 form a coalition in the topology g3. Finally, all
links are enabled in the topology g4, so all agents form a
grand coalition.

Given the system and the network topology, we then set
and compute some parameters. First, the weighting matrices
Qi and Ri are set to

Qi =

(
10 0
0 10

)
, Ri = 10, ∀i ∈ N .

Then, we set the dwell time of all topology g ∈ G as τg =
3 and the length of horizon prediction as Np = τg . After
that, for all g ∈ G = {g1, g2, g3, g4}, we compute matrices
Kg

N and P g
N using the method in [9], and the set Zg

C using
Algorithm 1. Based on Kg

C and Zg
C , we then calculate the

sets X̂g
C and Ûg

C as X̂g
C = Xg

C ⊖ Zg
C and Ûg

C = Ug
C ⊖Kg

CZ
g
C

for all C ∈ Π(g). Then,we compute the set T̂g
N for each g

using Algorithm 3. Finally, the sets T̂g
C for all C ∈ Π(g) are

obtained by projecting T̂g
N to the state space of coalition C.

For example, for topology g = g1, which corresponds to
the case no agents are communicating, we have

Kg
N = diag(Kg

C1
,Kg

C2
,Kg

C3
), P g

N = diag(P g
C1
, P g

C2
, P g

C3
),

where
C1 = {A1}, C2 = {A2}, C3 = {A3},

Kg
C1

=
(
−0.1332 −0.2651

)
,Kg

C2
=

(
−0.0141 0.2131

)
,

Kg
C3

=
(
−0.2773 −0.0158

)
, P g

C1
=

(
14.8443 0.6639
0.6639 11.5167

)
,

P g
C2

=

(
18.3644 3.0565
3.0565 13.6719

)
, P g

C3
=

(
16.8463 −3.1652
−3.1652 13.0495

)
.

Then, the sets Ûg
C1

, Ûg
C2

, and Ûg
C3

are given by

Ûg
C1

= {û1 ∈ R : −0.3206 ≤ û1 ≤ 0.3206},
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Ûg
C2

= {û2 ∈ R : −0.3906 ≤ û1 ≤ 0.3906},

and

Ûg
C2

= {û2 ∈ R : −0.3209 ≤ û1 ≤ 0.3209}.

Furthermore, the sets Zg1
C , X̂g1

C , and T̂g1
C for all C ∈ Π(g1)

are depicted in Fig. 2, Fig. 3, and Fig. 4.

Fig. 2. The sets X̂g1
C1

, T̂g1
C1

, and Zg1
C1

.

Fig. 3. The sets X̂g1
C2

, T̂g1
C2

, and Zg1
C2

.

We establish a simulation by considering two scenarios
for the network topology. In the first scenario, the network
topology is fixed for all of the time as g4. Hence, scenario 1
corresponds to the centralized MPC scheme since all agents
form a grand coalition. Then, in scenario 2, the network
topology is periodically modified using Algorithm 2 at every
multiple of τg with initial topology g(0) = g4. Therefore, the
set of switching instants T is T = {τgk : k ∈ Z+}.

To set the initial state of each subsystem, we firstly deter-
mine the feasibility region Xg4,Np

N by employing Algorithm
4, and then project it to the state space of each subsystem.

Fig. 4. The sets X̂g1
C3

, T̂g1
C3

, and Zg1
C3

.

Fig. 5 below depicts the feasibility region of subsystem 1.
Since the feasibility regions of subsystems 2 and 3 are same
as the feasibility region of subsystem 1, we don’t provide
the figure of those regions. By setting the initial state of
each subsystem as x1(0) = (1.5,−1.5), x2(0) = (1.5,−1.5)
and x3(0) = (−1.5, 1.5), and the cost of an enabled link as
c = 0.1, the simulation results for 10 time steps are depicted
in Fig.6, Fig. 7, and Fig. 8.

Fig. 5. The feasibility region of subsystem 1

Fig. 6 and Fig. 7 show the state and input trajectories
of all subsystems for both scenarios. We can observe that
both scenarios result in an asymptotically stable closed-
loop system and a feasible system. In addition, the state
trajectories of both scenarios are very close. Particularly, the
trajectories {ui(k)}2k=0 and {xi(k)}3k=0, for all i ∈ {1, 2, 3},
are equal for both scenarios since the network topology for
both scenarios are equal to g4 for k = 0, 1, 2. Fig. 8 depicts
the topologies for scenario two that are active during the
simulation. Based on the set T above, the topology is revised
at time steps 3, 6, and 9. We can see from Fig. 8 that
g(3) = g3 and g(6) = g(9) = g1. This shows that when
the state of all subsystems is around the origin, the topology
g1 is activated. We can observe from Fig. 6 that the state of
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Fig. 6. The state trajectories of subsystems
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Fig. 8. The dynamic of network topology of Scenario 2

all subsystems is around the origin is at time step 5. Table
II presents the total cost for both scenarios that are defined
as

10∑
k=0

(J
g(k),N∗

p

N (xN (k)) + c|g(k)|).

It can be observed that the total cost for scenario 2 is

lower than the total cost for scenario 1. This means that our
proposed control scheme has a control performance similar
to the centralized MPC scheme with a lower cost.

TABLE II
TOTAL COST FOR BOTH SCENARIOS

Scenario 1 Scenario 2
(Centralized MPC) (Coalitional MPC)

Total Cost 196.7172 193.6126

V. CONCLUSION

In this paper, we investigate a coalitional MPC approach
for a system consisting of interconnected subsystems. The
approach seeks the optimal trade-off between the control
performance and the communicational cost by periodically
altering the network topology, which induces a collection
of coalitions. Each coalition computes the value of its
corresponding input variable by employing a decentralized
MPC scheme. The recursive feasibility of the system is
guaranteed under the assumption that DS-RCI sets exist. It
is shown that the recursive feasibility implies the stability of
the closed-loop system. Moreover, the closed-loop system
is guaranteed to be asymptotically stable if the network
topology is finally fixed. Simulation results show that the
proposed control approach provides a control performance
similar to the centralized MPC approach with a lower cost.
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