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Abstract—It is well known that the effects of the protection
zone on the dynamical behavior are significantly different from
the non-protection zone. In this paper, we presents a semi-linear
ellipic system, which describes the predator-prey relationship
with Dinosaur functional response under homogeneous Neu-
mann boundary conditions. This paper concerns the existence of
non-constant positive steady-state solutions, in the case (1): Non-
degeneracy of β(x) with β(x) > 0 on Ω or case (2): Degeneracy
of β(x) with β(x) = 0 in Ω0, β(x) > 0 in Ω \Ω0. These results
provide theoretical evidence for the complex spatiotemporal
dynamics.

Index Terms—reaction-diffusion system, predator-prey rela-
tionship, heterogeneous environment, existence.

I. INTRODUCTION

IN [1], Wollkind et al. first considered the following
predator-prey system:{

u̇ = ru(1− u
K )− p(u)v,

v̇ = v[s(1− h vu )],
(1)

where u is the biomass of prey and v is the biomass of preda-
tor. To model various different processes of energy transfer
in ecology, many kinds of p(u) modes have been developed
[2], [3]. They are put forward by different backgrounds and
have important dynamic significance in mathematical theory.
Incorporated the Dinosaur functional response [5] into (1),
we obtain {

u̇ = ru(1− u
K )− uve−ku,

v̇ = v[s(1− h vu )].
(2)

The Dinosaur reaction term is ue−ku, which is an improve-
ment of the Ivlev-type reaction term h(1− e−ku). Given the
spatial inhomogeneity in population density, we establish the
following diffusive predator-prey model:

∂u
∂t = ∆u+ ru(1− u

K )− uve−ku x ∈ Ω, t > 0,

∂v
∂t = ∆v + v[s(1− h vu )] x ∈ Ω, t > 0,

∂u
∂n = ∂v

∂n = 0 x ∈ ∂Ω, t > 0,
(3)

where Ω is a bounded domain in the Euclidean space RN
(N ∈ {1, 2, 3, · · · }) with smooth boundary, denoted as ∂Ω,
n is the unit outer normal vector on ∂Ω. Now we introduce
the following non-dimensional quantities:
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u = ru, v = rhv, and a = r, b = 1/K,α = 1
rh , β = k/r.

By substituting these new variables into (3) and dropping
the bars for notational convenience, we obtain
∂u
∂t = ∆u+ au− bu2 − αuve−βu x ∈ Ω, t > 0,

∂v
∂t = ∆v + sv(1− v

u ) x ∈ Ω, t > 0,

∂u
∂n = ∂v

∂n = 0 x ∈ ∂Ω, t > 0.
(4)

The corresponding steady-state system to (4) is
−∆u = au− bu2 − αuve−βu, x ∈ Ω,
−∆v = sv(1− v

u ), x ∈ Ω,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω.
(5)

In order to discuss the effect of heterogeneous environment
on parameters, we obtain −∆u = au− b(x)u2 − αuve−β(x)u, x ∈ Ω,

−∆v = sv(1− v
u ), x ∈ Ω,

∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω.
(6)

where the parameters a, α and s are assumed to be positive
constants, and the functions b(x), β(x) ∈ C1(Ω) may vanish
in a non-trivial open subdomain Ω0 of Ω, which imply the
degeneracy (if vanish). The dependence of b(x) and β(x) on
the space variable x represents that the two species interact
in a spatially heterogeneous environment. Let z = z(x) be a
function in C1(Ω), satisfying

z(x) = 0, x ∈ Ω0, z(x) > 0, x ∈ Ω \ Ω0. (H)

When β ≡ 0, Du and Hsu [6] considered
−∆u = au− bu2 − αuv, x ∈ Ω,
−∆v = sv(1− v

u ), x ∈ Ω,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω.
(7)

They showed that (7) always had a positive solution. When
α = 0, (6) becomes

−∆u = au− b(x)u2, x ∈ Ω,
−∆v = sv(1− v

u ), x ∈ Ω,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω,
(8)

where the first equation is decoupling from the second
equation. So, the existence of positive solution of (8) depends
directly on the existence of positive solution of the first scalar
equation in (8).

In this paper, we always assume that the condition (H)
holds for b = b(x) in (6), and consider the existence of
non-constant positive steady state solutions, in the case (1):
Non-degeneracy of β(x) with β(x) > 0 on Ω or case (2):
Degeneracy of β(x) with β(x) = 0 in Ω0 and β(x) > 0 in
Ω \ Ω0.
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II. EXISTENCE OF POSITIVE STEADY-STATE SOLUTION

First, we want to obtain the existence for the positive
solutions to (6) by the techniques in [7] in the non-degenerate
case: β(x) > 0 on Ω.

Assume that q(x) ∈ C(Ω). Let λΩ
1 (q) or λΩ,N

1 (q) be
the first eigenvalue of −∆ + q(x) in Ω subject to the
homogeneous Dirichlet or Neumann boundary condition. By
some of the notations in [7], we have λΩ,N

1 (q) or λΩ
1 (q) is

increasing in q.
Let λΩ

1
.
= λΩ

1 (0). Obviously,

−∆u = au− b(x)u2, x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω (9)

has a positive solution if and only if 0 < a < λΩ0
1 . In

this case (9) has a unique positive solution ua, a → ua
is continuous as a map from (0, λΩ0

1 ) to C2+µ(Ω), and
‖ua‖∞ →∞ as a→ λΩ0

1 − 0.

Lemma 1. (Maximum principle, [8, Proposition 2.2]) As-
sume that g ∈ C(O × R).

(i) If w ∈ C2(O) ∩ C1(O) satisfies

∆w(x) + g(x,w(x)) ≥ 0 in O, ∂νw ≤ 0 on ∂O,

and w(x0) = maxO w, then g(x0, w(x0)) ≥ 0.
(ii) If w ∈ C2(O) ∩ C1(O) satisfies

∆w(x) + g(x,w(x)) ≤ 0 in O, ∂νw ≥ 0 on ∂O,

and w(x0) = minO w, then g(x0, w(x0)) ≤ 0.

Lemma 2. (Harnack inequality, [9, Lemma 4.3]) Let
w ∈ C2(Ω) ∩ C1(Ω) be a positive solution to ∆w(x) +
c(x)w(x) = 0, where c ∈ C(Ω), satisfying the homogeneous
Neumann boundary condition. Then, there exists a positive
constant C which depends only on B where ‖c‖∞ ≤ B such
that

max
Ω

w ≤ C min
Ω
w.

Theorem 3. Let β(x) > 0 on Ω. Given any small ε > 0
and large M > 0, there exists a positive constant C, which
depends only on ε and Ω, such that any positive solution
(u, v) to (6) satisfies ‖u‖∞ + ‖v‖∞ ≤ C if either (i) 0 <
a < λΩ0

1 − ε or (ii) λΩ0
1 + ε < a < M .

Proof: Let (u, v) be a positive solution to (6).
(i) From the first equation in (6), we have −∆u ≤ au −

α(x)u2. By the upper and lower solution method for elliptic
equation, existence and uniqueness of positive solution to
(6), u ≤ ua on Ω. Let v(x0) = maxΩ v for some x0 ∈ Ω.
By Lemma 1, it follows from the second equation in (6) that
v(x0) ≤ u(x0), and so v ≤ ua. Hence, Lemma 1 holds for
case (i).

(ii) By an indirect argument, supposing the conclusion is
not true, we can find some ε,M > 0 and one sequence ai ∈
(λΩ0

1 + ε,M) such that the corresponding positive solution
(ui, vi) to (6) with a = ai, i.e.,

−∆ui = aiui − b(x)u2
i − αuivie−βui , x ∈ Ω,

−∆vi = svi(1− vi
ui

), x ∈ Ω,
∂ui

∂n = ∂vi
∂n = 0, x ∈ ∂Ω

(10)
satisfies ‖ui‖∞ + ‖vi‖∞ → ∞ as i → ∞. Without loss
of generality, we assume that ai → a ∈ [λΩ0

1 + ε,M ]. By
Lemma 1 again, it follows from the second equation in (10)

that vi ≤ ui. Thus, for the sequence {ui}, it is necessary
that ‖ui‖∞ →∞ as i→∞.

Let ũi = ui

‖ui‖∞ . From the first equation in (10), −∆ui ≤
aiui. Then we obtain∫

Ω

|∇ũi|2 + |ũi|2 dx ≤ (ai + 1)

∫
Ω

|ũi|2 ≤ (M + 1)|Ω|dx.

By the similar proof statements of Proposition 2.1 in [11],
we obtain that ũi → ũ weakly in H1(Ω) and strongly in
L2(Ω), and ũ 6≡ 0 in Lp(Ω).

Let ci = vie
−βui . By virtue of vi ≤ ui, we have

ci ≤ uie
−βui . Since β(x) > 0 on Ω, there must exist a

β0 > 0 such that β ≥ β0 > 0 in Ω, and then ‖ci‖∞ < C0

dependent of β for some C0 > 0. By choosing a subsequence
if necessary, we assume that ci → c weakly in L2(Ω) and
c ∈ L∞(Ω). From the first equation of (10), we obtain{

−∆ui = aiui − b(x)u2
i − αuici, x ∈ Ω,

∂ui

∂n = 0, x ∈ ∂Ω,
(11)

Let ϕ ∈ C1
0 (Ω0) and ϕ ≡ 0 ∈ C(Ω \Ω0). Since b(x) = 0

on Ω0, integrating over Ω by parts, it follows from (11) that∫
Ω0

∇ũi · ∇ϕ = ai

∫
Ω0

ũiϕ dx− α
∫

Ω0

ũicidx.

Let i→∞. Then ũ satisfies∫
Ω0

∇ũ · ∇ϕ = ai

∫
Ω0

ũϕ dx− α
∫

Ω0

ũcdx.

Hence, ũ is a weak solution of the problem:

−∆ũ = aũ− αũc, x ∈ Ω,
∂ũ

∂n
= 0, x ∈ ∂Ω. (12)

By the similar proof statements of Proposition 2.1 in [11],
the smoothness of the boundary ∂Ω0 yields ũ ∈ H1

0 (Ω0).
Recall that ũ 6≡ 0 in Lp(Ω). Then, ũ ≥, 6≡ 0 is a solution

of (12). Since a − αc ∈ L∞(Ω), it follows from Lemma 2
that ũ > 0 in Ω0. Moreover, the standard theory guarantees
ũ ∈ C1(Ω0). Note that ũi = ui

‖ui‖∞ and vi ≤ ui. Since
‖ui‖∞ →∞ as i→∞,

ci = vie
−βui ≤ uie−βui =

ũi‖ui‖∞
eβũi‖ui‖∞

→ 0

a.e. in Ω0 as i → ∞. This shows that c = 0 a.e in Ω0.
Hence, a = λΩ0

1 from (12), which contradicts a > λΩ0 + ε.
The proof is complete.

Remark 4. Theorem 3 (i) still holds for the degenerate case
of β(x), which could be seen in the proof process of Theorem
6.

Remark 5. Considering s as the bifurcation parameter,
we want to consider the bifurcation solutions in the semi-
trivial (non-degenerate) solution curve Γu = {(s;ua, 0) :
d ∈ (0,∞)}. By employing the Crandall and Rabinowitz
bifurcation theorem [10], we find that there will be no
bifurcations around (ua, 0), except the bifurcation parameter
s = 0, which is invalid since the parameter s is a positive
constant. That is completely different from Theorems 2.2 and
2.3 in [7], so we will consider the degenerate case in the next
moment.

Now, we will give the result for the existence of positive
solutions to (6) in the degenerate case: β(x) = 0 in Ω0 and
β(x) > 0 in Ω \ Ω0.
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Theorem 6. If a ∈ (0, λΩ0
1 ), then (6) has at least one positive

solution.

Proof: Let (u, v) be a positive solution to −∆u = au− b(x)u2 − tαuve−β(x)u, x ∈ Ω,
−∆v = sv(1− v

u ), x ∈ Ω,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω,
(13)

with t ∈ [0, 1] and

f(t, u, v)
.
= au− b(x)u2 − tαuve−β(x)u,

g(u, v)
.
= sv(1− v

u ).

Using the same proof process as Theorem 3(i), we obtain
that

0 ≤ v ≤ u ≤ ua ≤ ‖ua‖∞, min
Ω
v ≥ min

Ω
u (14)

by Lemma 1, where ua is the unique positive solution to (9).
Note that b, β ∈ C1(Ω). Then, the solution (u, v) to (6) be-

longs to [C2(Ω)]2 by elliptic regularity. Let u(x0) = minΩ u
for some x0 ∈ Ω. By Lemma 1 again, we have

a− b(x0)u(x0)− tαv(x0)e−β(x0)u(x0) ≤ 0,

which yields that a ≤ ‖b‖∞minΩ u+α‖v‖∞, and then a ≤
‖b‖∞minΩ u+ α‖u‖∞.

Let c(x) = a− b(x)u− tαve−β(x)u. Then the equation of
u becomes

−∆u = c(x)u, x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω.

Since ‖c‖∞ ≤ a + ‖b‖∞‖u‖∞ + α‖v‖∞ ≤ a + (‖b‖∞ +
α)‖ua‖∞, by Lemma 2, there exists a positive constant C
dependent of a such that maxΩ u ≤ C minΩ u. Then

a ≤ ‖b‖∞min
Ω
u+ α‖u‖∞ ≤ ‖b‖∞min

Ω
u+ α‖u‖∞

≤ (‖b‖∞ + αC) min
Ω
u,

which implies that minΩ u ≥ a(‖b‖∞ + αC)−1.
Define a space E by

E = {(u, v) ∈ C(Ω)× C(Ω) : m < u, v < M}

with m = a
2 (‖b‖∞ + αC)−1 and M = 2‖ua‖∞. By the

above discussion, for all t ∈ [0, 1], (13) has no solution on
∂E.

Let L(t;u, v) = ((−∆ + I)−1f(t, u, v), (−∆ +
I)−1)g(u, v). Then, L : [0, 1]×E → C(Ω)×C(Ω) is com-
pact. For (u, v) ∈ E, (u, v) is a solution of (13) if and only
if (u, v) is a fixed point of L(t : ·), i.e. (u, v) = L(t;u, v).
It is obvious that (u, v) 6= L(t;u, v) for all t ∈ [0, 1] and
(u, v) ∈ ∂E. Hence, the degree deg(I−L(t; ·), E, 0) is well
defined and independent of t ∈ [0, 1].

Setting t = 0, (13) becomes
−∆u = au− b(x)u2, x ∈ Ω,
−∆v = sv(1− v

u ), x ∈ Ω,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω.
(15)

One can see that (15) has a unique positive solution (u, v) =
(ua, va), where u = ua is the unique positive solution of (9)
and v = va is the unique positive solution of

−∆v = sv(1− v

ua
), x ∈ Ω,

∂v

∂n
= 0, x ∈ ∂Ω.

And therefore, deg(I − L(0; ·), E, 0) = index(I −
L(0; ·), (ua, va)). Now we prove that (ua, va) as a solution
of (15) is non-degenerate and linearized stable. In fact, the
linearized eigenvalue problem of (15) at (ua, va) is

−∆φ = aφ− 2b(x)uaφ+ µφ, x ∈ Ω,

−∆ψ = s(1− 2va
ua

)ψ + s
v2a
u2
a
φ+ µψ, x ∈ Ω,

∂φ
∂n = ∂ψ

∂n = 0, x ∈ ∂Ω,

(16)

where µ denotes the eigenvalue and (φ, ψ) denotes the cor-
responding eigenfunction. It follows from the first equation
of (15) that λΩ,N

1 (b(x)ua − a) = 0. If φ 6≡ 0, by the first
equation of (16), we obtain that

µ ≥ λΩ,N
1 (2b(x)ua − a) > λΩ,N

1 (b(x)ua − a) = 0.

If φ ≡ 0, then ψ 6≡ 0. It follows from the second equation
of (15) that λΩ,N

1 (s( vaua
− 1)) = 0. By the second equation

of (16), we obtain that

µ ≥ λΩ,N
1 (s(

2va
ua
− 1)) > λΩ,N

1 (s(
va
ua
− 1)) = 0.

In conclusion, we always have µ > 0 and therefore
index(I − L(0; ·), (ua, va)) = 1. So we have that deg(I −
L(1; ·), E, 0) = 1, and then L(1; ·) has at least one fixed
point in E. In other words, (6) has at least one positive
solution.

Remark 7. (Numerical example) We consider the effect of
degenerate on the positive solution to (6): fixed b(x), but

variable β(x). Let Ω = (0, 5π), b(x) =

{
1 π ≤ x ≤ 4π
0 otherwise

and β(x) presents the following three cases:

case 1. β(x) =

{
1 0.5π ≤ x ≤ 4.5π
0 otherwise

(Figure 1),

case 2. β(x) =

{
1 π ≤ x ≤ 4π
0 otherwise

(Figure 2),

case 3. β(x) =

{
1 2π ≤ x ≤ 3π
0 otherwise

(Figure 4).

For better comparison, we also give the parameter homoge-
neous case: b(x) ≡ 1 and β(x) ≡ 1 (Figure 5). In fact, if
a = 0.7, α = 1, s = 1.5, b = 1 and β = 1, the kinetic system
corresponding to (4) has a unique positive equilibrium point
(Figure 3), which is linearly stable (Locally asymptotically
stable).
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Fig. 2. Numerical simulation of the spatio-temporal positive solution to
(4) with a = 0.7, α = 1 and s = 1.5: case 2.
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Fig. 4. Numerical simulation of the spatio-temporal positive solution to
(4) with a = 0.7, α = 1 and s = 1.5: case 3.

(a)

(b)

Fig. 5. Numerical simulation of the spatio-temporal positive solutions to
(4) with a = 0.7, α = 1 and s = 1.5: b(x) ≡ 1 and β(x) ≡ 1.
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