
 

 

Abstract— Estimation of the arriving signal directions at the 

receiver side is of utmost important in the field areas of array 

signal processing. The proposed technique in this paper 

involves two major steps, in that the first step is a C-step 

where, we deduce the covariance model for Direction of 

Arrival (DOA) estimation and through which, the noise 

variance of the model will be estimated. In the second step, i.e. 

L-step, the covariance model deduced in the C-step will be used 

along with the noise statistics to estimate the variance of sparse 

DOA spectrum, which is unknown. In this step, Sparse 

Bayesian Learning with Expectation maximization framework 

is extended to exploit the property of intra-block correlations 

in the unknown DOA spectrum. The variance of sparse DOA 

spectrum, which is estimated in L-step indicates the locations 

of non-zero values in the spectrum, hence resulting in 

directions of the signal sources. In the results section, it can be 

seen that the increase in accuracy and performance of the 

proposed algorithm is one of the result of exploiting intra-block 

correlations. The covariance modelling in C-step results in high 

probability of true DOA estimation in the case where number 

of signal sources is less than the antenna elements in the 

Uniform Linear Array (ULA) with lesser number of snapshots 

required. It is also shown in the simulation results that an 

acceptable estimation accuracy is achieved in the case where 

number of signal sources is greater than or equal to the 

antenna elements, but with larger snapshots required. 

 
Index Terms—Direction of Arrival Estimation, Sparse 

Bayesian Learning, Intra-block correlations, Covariance 

model. 

 

I. INTRODUCTION 

In the fields of RADAR, SONAR, seismology, wireless 

communication, navigation etc, it is very important to 

estimate the direction of signal arriving from the space 

around the receiver [27]-[28]. Several algorithms are 

developed and are being developed until present day for 

DOA estimation. All of these algorithms mainly focus on 

achieving good performance like high resolution, accuracy, 

less complex, fast estimation, highest probability of true 

DOA estimation and so on. 
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Over a decade, such DOA estimation algorithms are 

broadly classified into two main categories such as sub-

space based and sparse compressive sensing based 

algorithms. The subspace based algorithms include 

Schmidt‟s MUSIC [1] where, the DOAs can be retrieved 

from the second order statistics data, ESPRIT [2], in which 

retrieving can be done through rotational invariant 

techniques. Before these subspace based methods, there 

exist a conventional (Bartlett) beam former, which uses 

simple Fourier spectral analysis of received data. Capon‟s 

beam former [3] was also later proposed to improve the 

accuracy of estimation in the case of closely spaced signal 

sources.  

All of these subspace based methods require a prior 

knowledge on the number of signal sources and also 

requires a sufficient number of data snapshots to obtain an 

acceptable accuracy value. The performance analysis of all 

these subspace based algorithms can be found in one of our 

previous paper [4]. In recent years, the sparse based DOA 

estimation algorithms are proposed by various researchers 

and are proved to be more accurate, efficient with minimum 

mean square error. These algorithms are famous for their 

simple data model, high resolution in the estimated results 

and the fact that they do not require the prior knowledge of 

source number and can even be applied in cases where there 

is only a single snapshot available. 

In      optimization [5], joint sparsity property of the data 

model is exploited, but it is NP-hard to solve. The tightest 

convex relaxation on      optimization led to a bunch of 

sparse based DOA estimation algorithms. An      

optimization [6] approach solves a BPDN problem using the 

LASSO model, which led to increase in complexity. 

Malioutov, first proposes a dimensionality reduction 

technique for      optimization based on the conventional 

subspace techniques, which gave rise to     -SVD [7]. This 

paper is one of the major turning point in the field of DOA 

estimation research, which exhibits better accuracy, 

resolution even in the case of correlated signal sources. The 

only disadvantage in this paper is that it requires source 

number knowledge though it is not very much sensitive to 

this parameter. Tuning the parameters is another major 

difficulty in     -SVD [7]. 

In [8], D Wipf proposed an iterative re-weighted    and 

   methods for sparse signal recovery that presents a good 

sparse solution accuracy compared to     -SVD. In one of 

our previously published paper [9], an algorithm which is 

based on adaptive compressive sensing is presented for 

underdetermined DOA estimation, which achieves good 

resolution but suffers from high complexity. 
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To overcome the difficulties of     -SVD, Baye‟s theorem 

based learning algorithms were proposed in most recent 

years. M Tipping was the first to propose Sparse Bayesian 

Learning (SBL) technique for linear regression and 

classification problems [10], [25]. In [11], David Wipf 

extended the Bayesian learning algorithm for multiple 

measurement vector (MMV) along with Expectation 

Maximization (EM) framework for updating hyper-

parameters. 

The extension of basic SBL-EM method to incorporate 

temporal correlations of sparse vector for finding sparse 

solution was first proposed in [12] by Z Zhang and B D Rao 

to improve the recovery performance in MMV case. The 

same framework was extended for SMV case to recover 

block sparse signals [13]. All of these proposed algorithms 

are presented for sparse signal recovery problem and the 

same can be extended and applied for the problem of DOA 

estimation due to the similarity between both the mentioned 

problems [29]. 

This Bayesian learning scheme along with maximum-a-

posteriori of hyper-parameters for on-grid DOA estimation 

was proposed in [14], which results in increased accuracy 

and resolution. In this paper, we extend and apply the block 

sparse Bayesian learning technique along with expectation 

maximization framework by exploiting the block correlation 

property of DOA spectrum. To eliminate the effect of 

number of snapshots on the complexity of the algorithm, 

unlike the existing sparse based algorithms, a covariance 

model is proposed in this paper, where the DOA estimation 

problem is reframed as the problem of covariance estimation 

of the unknown DOA spectrum. 

In this paper, bold letters are used to represent vectors and 

matrices, with uppercase letters for matrices and lowercase 

letters for vectors. 

 

II. THE C-STEP: COVARIANCE MODEL FOR DOA 

ESTIMATION PROBLEM 

Consider a uniform linear array (ULA) with M number of 

array sensor elements. Let us assume K number of signal 

sources impinging on the ULA with actual DOAs of 
*         + with respect to normal axis. This ULA model 

is similar to the model described in [4] and [9]. Considering 

an MMV case with L number of snapshots, the DOA 

estimation problem can be modelled as in (1). 

                                                                                      ( ) 
Where,   ,         - is the received signal matrix at 

the ULA, with each yi, i ϵ [1, 2…L] representing a particular 

snapshot measurement vector i.e.    ,          -
 
 
 .  A 

ϵ      (M<N) is the array steering/vandermonde matrix, 

which is a function of DOAs. By defining a N-point grid 

which consists of all possible DOAs from -90
o
 to 90

o
, 

steering matrix A can be constructed and is a known 

parameter. From these known parameters of Y and A, the 

DOA estimation problem is to estimate the spatial DOA 

spectrum X ϵ     , which is a K-sparse matrix. The model 

is considered along with the addition of array sensor 

measurement noise matrix W ϵ     . The model in (1) can 

be re-written for each single i
th

 snapshot as given in (2). 

                                            ,      -               ( )  
As explained in [14], applying Baye‟s theorem inference 

to (2) and assuming Gaussian probability distribution to 

obtain likelihood function of     (      
  ) as given in 

(3). 
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   , 
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Where,    is the noise variance and     is the mean of 

the likelihood function. It can be shown that using ML 

estimate the mean of  (    ⁄    ) is (   )       and the 

covariance matrix is   (   )   [16]. Therefore, we get (4). 

 (    ⁄    )     
 ⁄
((   )         

 (   )  )          ( )  

Let us assume the prior of xi as Gaussian distribution with 

zero mean and a covariance matrix of   as given in (5).  

           (      )     (    )               ,      -             ( ) 

Where,       *         +. From Baye‟s theorem 

inference, the posterior of xi and the prior of yi can be 

obtained using Gaussian product lemma [17] as given in (6). 

             (    ⁄ ) (  )     
 ⁄
(        )  (      )           ( )  

Where,     and     are the posterior mean and covariance 

given by (7) and (8) respectively. 

                                                  
                                   ( ) 

                                 ,          -                              ( ) 

    is the covariance matrix of the array measured/ 

received vector given by (9). This     can be averaged for 

all the available L number of snapshots to get a single 

covariance matrix     for the array received signal matrix Y 

given by (9). 

                                                                     ( )  

This covariance matrix of the measured vector Y depends 

on the  , i.e., the variance of unknown parameter X [24]. 

This variance of X gives the support of X i.e. if the variance 

   is zero, then it indicates that it‟s corresponding j
th

 row of 

X is also zero and if the variance    is non-zero, then it‟s 

corresponding j
th

 row of X is also non-zero. This sparse 

support information of X given by    is sufficient for 

estimating the direction of arriving signal. Hence, the 

problem of DOA estimation has now been formulated into 

covariance estimation. To estimate   in (9), one should 

know    and   . The noise variance    can be estimated 

through   - norm optimization as given in (10) and (11). 

   
 ̂ 
‖ ̂ ‖                 ‖     ̂ ‖ 

            ,      - (  ) 

                    ̂  
 

  
∑‖     ̂ ‖ 

 

 

   

                                     (  ) 

Where,   is a very small acceptable value of error. 

Equation (10) is a simple   -optimization method of 

estimating    [18]. The estimated   ‟s in this step also 

represents the DOA spectrum, but suffers with less accuracy 

and low resolution [21]. The covariance matrix of Y in (9) 

i.e.    , whose true values are not available (for L  case), 

can be estimated by sample covariance matrix for finite L 

case as given in (12). 

                                         ̂  
 

 
∑    

 

 

   

                             (  )  

This sample covariance matrix is a sufficient statistic for 

estimating    but not “exact” hence, considering the 

covariance estimation noise E arising because of finite 

sample approximation, we get equation (13). 

                                               ̂                                       (  ) 
Now, first let us estimate the covariance noise statistics 

from (13), which in turn will be used for the   estimation in 
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(9). By combining (9) and (13) and vectorising, we get 

equation (14). 

   ( ̂ )     (    )     (   )     ( ) 

   ( ̂ )     (   )  (   )    

  (   )    

                                                                                      (  ) 

Where      ( ̂ )     (   ) is a known vector related 

to variance of the array received signal,   denotes Khatri-

Rao product [19],   ,         -
 ,   (   ) and 

     ( ) is the vectorized form of covariance noise 

matrix. 

A. Covariance Noise Statistics 

It can be easily shown that mean of the covariance noise e 

is zero i.e,  * +     To estimate the covariance of the noise 

e, let us state the following Lemma 1 [15]. 

Lemma 1: Let  ̂  denote the sample covariance matrix and 

     ( ̂    ). Consider a normal random process 

   (   ) in      space such that      (   (   )) 
and let C be a matrix such that y=Cz and       . If 

       
  then, 

   ( )     
 

 
[(   )(    

     ) (         ) (   ) ] 

where   denotes the Kronecker product and ( )  denotes 

the pseudo-inverse of a matrix. 

Proof: From equation (13), we can write, 

   ( )     {
 

 
∑    

 

 

   

   } 

By considering the fact that (∑     
  

      ) are 

independent of i,    ( )  
 

 
   (   ) and hence 

vectorising, we get, 
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If        
  , then from matrix algebra it can be 

shown that        . Therefore, equation (16) becomes: 
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Where        
   can also be re-written as 

                                                     0         1            (  )  

It can be seen from (17) and (18) that, to estimate 

covariance of noise, we require   information, which is 

unknown again. This requires an iterative algorithm to 

sequentially estimate    from the previous estimate of   and 

for the first step,   can be initialized to a suitable value [22]-

[23]. The parameters in model (14) are all vectorized 

versions of MxM symmetric matrices in       space. Out 

of these    equations, only 
 (   )

 
 equations are linearly 

independent. By pre-multiplying the equation (14) by a 

selection matrix S ϵ  
 (   )

 
   

, we can concentrate only on 

these linearly independent equations. Where, this S matrix is 

formed by a subset of rows of     that will select 
 (   )

 
 

independent row entries of equation (14) to result in 

equation (19). 

                                                                                  (  )  

Where      ,      ,       and      (      ) 
with         

 . 

The model in equation (19) is similar to that in equation 

(2), which indicates that it can be solved for unknown 

parameter   using any of the sparse signal recovery 

algorithm. In this paper, we apply sparse Bayesian learning 

with expectation maximization framework [13], [14], [20]. 

Due to correlative nature of  , it can be processed and 

estimated block-wise. This intra-block correlations in   is 

exploited in this paper to increase the accuracy of the 

estimated DOA‟s [20]. But, unlike in paper [13], this paper 

eliminates the update of the hyper-parameter noise variance 

in the maximization step. 

III. THE L-STEP: BLOCK SPARSE BAYESIAN LEARNING 

Consider the model in equation (19), where           is 

the sparse vector to be recovered. Let us partition the   into 

„g‟ number of blocks, each with length di ,     *        + 
and not necessarily be same for all i‟s. 

  [          ⏟      
  
 

                 ⏟          
  
 

]

 

 

Each block of   i.e,          *      + is assumed to be 

gaussian random vector with zero mean and covariance of 

    . 

 (           )  (      )              *      + 
The covariance matrix of each    is modelled as product 

of a non-negative parameter that control the block sparsity 

i.e,    and a positive definite matrix   , capturing the 

correlation structure of i
th

 block of  . By assuming the 

mutual un-correlation between the    blocks, the covariance 

matrix of    is written as        *                +. 

By applying Bayesian learning scheme [14], we get the 

posterior of   as in equation (20). 

                (   ⁄       *      +   
 

)  (     )               (  )  

Where,           are the posterior mean and covariance 

given by equation (21) and (22) respectively. 

                                                  
       

                            (  ) 

                                 ,   
    

      
  -                        (  ) 

The    itself is the MAP estimate of  , which can be 

plotted as the DOA spatial spectrum. The non-zero locations 

in   correspond to the DOA‟s, when mapped to the on-grid 

points. 

A. Updation of Hyper-parameters 

The hyper-parameters in equation (21) and (22) are 

                *      +. These parameters can be updated 

in every iterative step using Expectation Maximization 

technique. The E-step in EM algorithm involves defining of 

expectation of the joint probability of    and   as a function 

of the hyper-parameters           . 
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In the M-step of EM algorithm, the function  (         ) 
in equation (23) is maximized with respect to the required 

hyper-parameters              . Maximizing the first term 

in (23) is not essential as,    has already been updated in 

(17) and         
 . To estimate    , maximizing the 

second term in (23) with respect to    , we get: 
  (     )
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Assuming different    for each „i‟ may result in 

overfitting. If each block size is same, then constraining 

     (   )  will be the best effective strategy. With this, 

       *                + can be re-written as 

      , where,       *          +. Therefore, 

equation (24) becomes: 
  (     )
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Simplifying and equating to zero, we get, 

                              
  0   .  

    
   

  /1

 
                     (  ) 

  
  and   

  represents posterior mean and covariance of i
th

 

block . 

In order to estimate B, maximizing the second term in 

equation (23) with respect to B, we get, 

                          
 

 
∑

.  
    

   
  /

  

 

   

                               (  ) 

The proposed COV-BSBL-EM algorithm steps are 

summarized in the Table 1. 

IV. RESULTS AND DISCUSSIONS 

This section exhibits the experimental results of the 

proposed algorithm. MATLAB R2013a platform is utilized 

for the experiments. Considering an ULA with number of 

array elements M=10, number of snapshots L=5 and number 

of on-grid points N=361, with -20
o
 and 31

o
 as the true 

DOAs of two uncorrelated sources, Figure 1 shows the 

DOA spectrum for this case. The proposed COV-BSBL-EM 

algorithm is compared with standard and popular DOA 

estimation algorithms such as MUSIC [1],     -SVD [7] and 

one of our previous work SBL-MAP-H [14]. Figure 1 

indicates the sharp peak at true DOAs which is the result of 

proposed algorithm when compared to MUSIC results, 

which shows a non-sharp spectrum. Figure 2, shows the 

results for the same above mentioned parametric case but 

with increased number of snapshots L=100.  As there is an 

increase in number of snapshots, all the algorithms performs 

satisfactorily well with proposed algorithm being the best 

among all. A case with single snapshot (L=1) is shown in 

Figure 3, indicating the better performance of proposed 

Table 1. The Proposed COV-BSBL-EM DOA 

Estimation Algorithm 

Input Parameters: Y (MxL), A (MxN) 

Output Parameters: 𝛄(Nx1) 

1. Initialize ε     5 (or to any suitable minimum 

value), set the value for number of blocks „g‟ such 

that N/g is an integer. Initialize a normal random 

process 𝐳 𝒩(𝟎 𝐈) in  N   space,  𝐈    , DOA 

search grid, 𝐙  𝐈g g and 𝐁      .
 

g
 
 

g
/. 

2. Form a selection matrix S ϵ  
 (   )

 
   

 by a 

subset of rows of 𝐈  . 

3. 𝐅     (   (𝐳𝐳 )) 

4. Obtain   -norm estimation of �̂�  by: 

    �̂� ‖�̂� ‖                  𝐲  𝐀�̂�   
 
 ε         

,      - 

5. Estimate the noise variance: σ̂
 
 

 

  
∑  𝐲

 
  

   

𝐀�̂�   
 
 

6. �̂�𝐲  
 

 
∑ 𝐲

 
𝐲
 
T 

    

7. 𝐫     (�̂�𝐲)     (σ 𝐈) 

8. 𝚽  (𝐀 𝐀) 

9. 𝐃  0𝚪  σ 𝐀 𝐀  1 

10. 𝚺𝐞  
 

 
 (𝐀 𝐀) .𝐃

 

  𝐃
 

 / 𝐅 .𝐃
 

  

𝐃
 

 /
T

(𝐀 𝐀)T   

11. 𝐫  𝐒𝐫, 𝚽  𝐒𝚽 and 𝚺   𝐒𝚺 𝐒
T 

12. 𝚺𝟎  𝐙 𝐁 

13. 𝚺𝛄  ,𝚺  
  𝚽𝐬

T𝚽  𝚺 
  - 𝟏 

14. 𝛍
𝛄
 𝚺  

   𝚺𝛄𝚽𝐬
T 𝐫  

15. Update   ξ  
 r 𝐁  (𝚺𝛄

  𝛍𝛄
 𝛍𝛄

 T) 

g
   & 𝐁  

 

g
∑

(𝚺𝛄
  𝛍𝛄

 𝛍𝛄
 T)

ξ 

g
    

16. 𝛄
a   gn
     𝛍𝛄 

17. 𝐙      *ξ  ξ    ξg+ and 

𝚪      *γ  γ   γ + 

18.  If any row of 𝛄 is less than a threshold, then 

equate the row of 𝛄 to zero and delete the 

particular corresponding column in A matrix for 

the next iteration. 

19. Repeat from step 8 to step 18 until a stopping 

criteria is achieved. 

20. Plot 𝛄 v/s the DOA search grid points and locate 

the peaks to estimate the direction of arrival. 
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Fig. 1. DOA spectrum for L=5 

 

Fig. 2. DOA spectrum for L=100 

*Note: All the three algorithms: SBL-MAP-H, COV-BSBL-EM and l2,1-SVD exhibits the same peak which are 

overlapping, hence all the three are shown using a single pointer  
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Fig. 3. DOA spectrum for L=1 

 

Fig. 4. DOA spectrum indicating resolution 

*Note: The two algorithms: SBL-MAP-H and MUSIC exhibits the same peak which are overlapping, hence both are 

shown using a single pointer  
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Fig. 5. DOA spectrum for underdetermined case 

 

Fig. 6. DOA spectrum for a case of correlated sources 
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Fig. 7. Effect of SNR on the proposed algorithm 

 

Fig. 8. Performance comparison: MSE v/s SNR 
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Fig. 9. Performance comparison: success rate v/s SNR 

 

 

Fig. 10. Performance comparison: computation time v/s L 

-10 -5 0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Signal to Noise Ratio (SNR) (dB)

P
ro

b
a
b
il
it
y
 o

f 
e
s
ti
m

a
ti
n
g
 t

ru
e
 D

O
A

s

Probability of estimating true DOAs vs SNR for various DOA estimation algorithms

 

 

COV-BSBL-EM

SBL-MAP-H

l1-SVD

MUSIC

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

Number of snapshots (L)

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
e
c
s
)

Performance comparison of Execution time for various DOA estimation algorithms

 

 

COV-BSBL-EM

SBL-MAP-H

l1-SVD

MUSIC

Engineering Letters, 31:1, EL_31_1_08

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

COV-BSBL-EM algorithm, even in the applications where 

only one snapshot is available. 

Considering a case where the true DOAs are located very 

close to each other, say at 11
o
 and 14

o
, Figure 4 exhibits the 

resolution accuracy of proposed algorithm, whereas, 

MUSIC and     -SVD fail to successfully identify two very 

closely spaced signal sources. The COV-BSBL-EM clearly 

differentiates two separate peaks; one at 11
o
 and the other 

one at 14
o
. 

Figure 5 shows the result of the case where, the number 

of signal sources are more than the antenna array elements 

with true DOAs of 10
o
, 15

o
, 17

o
, 20

o
, 30

o
 and 40

o
 and M=4 

for a greater number of snapshot (L=100). The proposed 

algorithm gives satisfactory results even in underdetermined 

DOA estimation but with greater number of snapshots 

required. The other algorithms [26] suffer in exhibiting 

peaks at true DOAs for this case of undetermined DOA 

estimation. Figure 6 exhibits the case of correlated signal 

sources impinging the ULA. The true DOAs of -20
o
 and 31

o
 

with a SNR of 10dB, array element size of M = 10 with N = 

50 number of snapshots are considered for the 

experimentation purpose. It can be seen clearly from the 

Figure 6 that the proposed algorithm shows sharp peaks at 

the true DOAs. The other conventional algorithms exhibits 

less sharper peaks at true DOA‟s which affects the accuracy 

of the estimation. The effect of SNR on the proposed 

algorithm is depicted in Figure 7. Even in the low SNR 

range of -20dB also, the COV-BSBL-EM algorithm 

produces a considerable DOA peak in its spectrum.  The 

input parameters considered for the result shown in Figure 7 

are M=10, N=50 and a single true DOA at 0
o 
is considered. 

The performance comparison of the proposed algorithm 

with other standard algorithms is represented in Figure 8, 

Figure 9 and Figure 10. Figure 8 gives the performance 

evaluation in-terms of mean square error (MSE) of the DOA 

estimation with respect to signal to noise ratio (SNR). As 

seen from Figure 8, the proposed algorithm achieves lesser 

MSE as compared to all other algorithms. As and when the 

SNR increases, the proposed COV-BSBL-EM algorithm 

performs similar MSE as that of SBL-MAP-H. In low SNR 

case, COV-BSBL-EM shows better results with a 

requirement of larger number of snapshots. For the 

performance comparison analysis, a fixed value for number 

of snapshots of L=100 is considered for all the algorithms in 

common. 

The probability of estimating true DOAs with respect to 

SNR is plotted in Figure 9. It highlights the good success 

rate of the proposed algorithm almost similar to the     -

SVD algorithm even in low SNR ranges. In Figure 10, the 

complexity and time of execution of the algorithms with 

respect to the number of snapshots is presented. The 

proposed algorithm is quite complex with higher execution 

time, when compared to all other algorithms, but 

outperforms the other algorithms in-terms of resolution and 

accuracy.  

V. CONCLUSION 

In this paper, a covariance-based DOA estimation 

algorithm is proposed by exploiting the intra-block 

correlation property of the DOA spatial spectrum. The 

covariance noise model developed in C-step helps in 

estimation of the noise statistics, which is a hyper-parameter 

required for the iterative procedure in L-step. This increases 

the performance in-terms of accuracy of the DOA 

estimation algorithm. The simulation results in the previous 

section indicates the better performance of the proposed 

algorithm when compared with the recent and standard 

DOA estimation algorithms. Exploitation of intra-block 

correlations of the DOA spectrum in sparse Bayesian 

learning technique results in good resolution of the proposed 

algorithm. The increased complexity of the proposed 

algorithm enlarges the execution time when compared to the 

other standard algorithms. In applications where, the 

complexity is not of a major concern, but the estimation 

accuracy is of utmost important, this proposed algorithm is 

the best suitable for DOA estimation. With further 

improvement in reducing the complexity and execution time 

of the proposed algorithm in future research, will lead into a 

remarkable work in the field of sparse DOA estimation.  
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