
An Energy-Efficient Embedded System Platform
for Energy-Critical Real-Time Tasks

Jun Wu Member, IAENG, and Jia-Lin Wang

Abstract—This paper presents an energy-efficient embedded
system platform, called meCreate, to execute energy-critical
real-time tasks. In meCreate, we consider a task has multiple
versions for different energy criticality levels. At run time,
the system will operate at one of the energy criticality levels
dynamically according to the remaining capacity of battery. In
particular, meCreate will operate at a lower energy criticality
level and the corresponding version of each task will be executed
when the battery capacity is plentiful. A version for a lower
energy criticality level performs relatively complex operations
to generate results more accurately, and/or it can shorten the
period to obtain results more frequently. When the remaining
capacity of battery become insufficient, the system will switch to
a higher energy criticality level and the corresponding version
of each task will be executed. A version for a higher energy
criticality level performs simplified operations and/or a longer
period in order to save more energy. We also present an
example application, called ecoScout, to demonstrate how to
build application upon meCreate. The energy efficiency and
the performance were evaluated by a set of experiments based
on the example application and randomly generated task sets,
for which we have some encouraging results.

Index Terms—Energy criticality, multi-version tasks, embed-
ded system platform, and real-time systems.

I. INTRODUCTION

NOWADAYS, energy efficiency has become one of the
most important issues for embedded real-time systems

(ERTS) since many of them are powered by batteries. Note
that it is also critical for an ERTS powered by mains
because energy-efficient design can help to cut down bills
as well as to lower down the carbon emissions. In the liter-
ature, there are many excellent approaches have been done
(comprehensive surveys can be found in [1], [2]) by using
voltage scaling techniques. Different from the past work,
this paper proposes an innovative task model, called energy-
critical multi-version real-time task model, which is moti-
vated by Vestal’s task model for mixed criticality systems
(MCS)[3]. This model considers a set of energy criticality
levels ECL = {ECL1, ECL2, · · · , ECLM}, where ECL1

and ECLM are the levels for the system with plentiful and
insufficient energy, respectively. It assumes that every task τi
in the system has multiple versions τ1i , τ

2
i , · · · , τMi for every

energy criticality level in ECL.
At run time, the system will operate at one of the energy

criticality levels ECLx ∈ ECL according to the remaining

Manuscript received March 18, 2022; revised November 6, 2022. This
work was supported in part by the National Science and Technology
Council of Taiwan under grants 109-2221-E-153-002 and 110-2221-E-153-
001-MY3.

Jun Wu is a professor of Department of Computer Science and Infor-
mation Engineering, National Pingtung University, 900 Pingtung, Taiwan,
ROC. (email: junwu@mail.nptu.edu.tw).

Jia-Lin Wang is a graduate student of Department of Computer Science
and Information Engineering, National Pingtung University, 900 Pingtung,
Taiwan, ROC. (email: garlic8668@gmail.com).

capacity of battery. When the system is operating at level
ECLx, the corresponding version τxi of a task τi will be
selected and be executed. Note that the different versions of
a task can be designed for obtaining the different degrees
of accuracy. In particular, a version for a lower energy
criticality level performs relatively complex operations to
generate more accurate results. On the contrary, a higher
level’s version is designed to perform simplified operations to
generate less accurate results with less energy consumption.

Based on our proposed task model, an ERTS platform,
called mixed energy-criticality real-time embedded platform
(meCreate), is implemented for energy-constrained embed-
ded real-time systems. Developers can build an application
upon meCreate by configuring the system and providing a set
of tasks (and their versions for multiple energy criticality lev-
els). In this paper, we also provided an example application,
called ecoScout, upon meCreate to show the convenience of
the development. A set of experiments has been conducted
such that the energy efficiency and the performance can be
better understood. Note that a previous version of this paper
was presented at the 7th IEEE ICASI[4]. This results have
been extended in providing more details about the system
model and the implementation. Furthermore, more figures
and experimental results are also included in this extension.

The paper is structured as follows: Section II summarizes
the related work of design tools and platforms for ERTS.
Section III defines the system model for energy-constrained
embedded real-time systems and our proposed task model.
Section IV provides meCreate’s architecture and describes
how it works. Section V presents an example application,
i.e., ecoScout. Section VI presents the experimental results.
Section VII provides the conclusion.

II. RELATED WORK

In recent decades, many design tools and platforms have
been proposed for ERTS (e.g., [5], [6], [7], [8], [9], [10], [11],
[12]). Some of them can be considered as tools for simplify-
ing the design of embedded systems. For instance, Hsu [6]
has proposed a visual development tool, called Builder for
Embedded SofTware (BEST), such that developers can build
embedded applications in a WYSIWYG manner.

Since the popularity of Linux is continuously growing in
the field of embedded systems, other approaches (such as
[8], [9], [10]) provide a configurable way to build custom
Linux operating systems for different hardware architectures
so that the time to market can be reduced greatly. Based on
those approaches, many applications (e.g., [13], [14], [15])
are capable to be executed on the target system with a custom
Linux operating system.

Although many existing approaches are proposed for
Linux-based embedded systems, relatively little work is done

Engineering Letters, 31:1, EL_31_1_10

Volume 31, Issue 1: March 2023

__

for ERTS[16]. Different from traditional embedded systems,
tasks in an ERTS have strict timing constraints. Specifically,
the completion time of an ERTS’s task must no later than its
deadline. Nowadays, there are more and more ERTS have
been built to provide the worst-case performance guaran-
tees and to meet tasks’ deadlines (e.g., [17], [18], [19]).
However, most of them were built without the help from
development tools or system platforms. Furthermore, to the
best of our knowledge, there is no approach has been done
for developing energy-constrained ERTS with the support of
our proposed task model.

III. MODELS

In this section, the system model and energy-critical multi-
version real-time task model are presented.

A. System Model

We consider an energy-constrained ERTS has M en-
ergy criticality levels ECL= {ECL1, ECL2, · · · , ECLM}.
At the run time, the system will operate at one of the
energy criticality levels ECLj ∈ ECL according to the
remaining capacity of battery. In particular, we assume
the system has a set of switching threshold SWT =
{SWT1, SWT2, · · · , SWTM , SWTM+1 = 0}, where 0 ≤
SWTi ≤ 1 and SWTi > SWTi+1 for 1 ≤ i ≤ M .
The value of SWTi is the switching threshold for energy
criticality level ECLi. Let IC and RC be the initial and
the remaining capacity of battery. The system will set to be
operating at level ECLi if SWTi ≥ RC

IC > SWTi+1, for
1 ≤ i < M . The processor speed is assumed to be varied by
the supply voltage, i.e., it can operating at K different speeds
S = {smin = s1, s2, · · · , sK = smax}, where smin and
smax are the minimum and the maximum processor speed,
respectively.

B. Task Model

In this paper, a new task model, called energy-critical
multi-version real-time task model, is proposed based on the
well-known periodic real-time task model[20] and Vestal’s
task model[3]. Specifically, we consider an application is
consists of n periodic real-time tasks T = {τ1, τ2, · · · , τn}.
A task τi is defined by its arrival time Ai, periodic ~Ti, worst-
case computation time ~Ci, and relative deadline ~Di, where
~Ti, ~Ci and ~Di are vectors of values for each energy criticality
level.

In order to obtain better energy efficiency, each task τi is
assumed to have multiple versions τ1i , τ

2
i , · · · , τMi for each

energy criticality level. The period, worst-case computation
time, and relative deadline of τi for an energy criticality
level ECLx are defined by Ti(ECLx), Ci(ECLx), and
Di(ECLx), respectively. Note that the different versions of a
task reflect the tradeoff between the accuracy of the execution
results and the energy consumption for obtaining the results.
In order words, the execution results of τxi is more accurate
to that of τyi and the energy consumption of τxi is higher
than that of τyi if x < y. These vectors are given with the
following constraints:

x > y ⇒ Ti(ECLx) ≥ Ti(ECLy)
Ci(ECLx) ≤ Ci(ECLy)
Di(ECLx) ≥ Di(ECLy)

Let ECL∗ be the current energy criticality level in the
system. Each periodic real-time task τi will create the first
task instance τi,1 at its arrival time Ai, and then it create
an instance τi,j (for j > 1) regularly for every period of
time Ti(ECL

∗). Whenever an instance τi,j arrived to the
system, it must be executed on the processor for no more
than Ci(ECL

∗)
sx

, where sx is the processor speed. Note that
the values of ~Ci are determined by assuming the processor
is operating at smax. Moreover, the following conditions are
satisfied:

0 ≤ Ci(ECLx) ≤ Di(ECLx) ≤ Ti(ECLx),

∀τi ∈ T and ∀ECLx ∈ ECL.

The current energy criticality level ECL∗ is determined
according to the current remaining capacity of battery RC
and the switching threshold. In particular, the system will
be operating at level ECL∗ = ECLx if SWTx ≥ RC

IC >
SWTx+1. Note that the corresponding version τxi will be
selected to be executed when the system is operating at
level ECLx. Consider a temperature sensing task τts which
is required to be executed in an environmental monitoring
system. The system has two energy criticality levels ECL1

and ECL2 with the switching threshold SWT1 = 1 and
SWT2 = 0.5. Initially, the system starts with plentiful energy
(i.e., RC=IC), therefore, the current energy criticality level
ECL∗ is set to ECL1 (since SWT1 = 1 ≥ RC

IC > SWT2 =
0.5) and the corresponding version τ1ts of τts is selected to be
executed. Note that τ1ts is designed for generating results with
higher accuracy. It will gather environmental temperature and
return the average of the last 10 gathered temperatures to a
backend server. After some time of operation, ECL∗ is set
to ECL2 when the remaining capacity of battery becomes
insufficient, i.e., SWT2 = 0.5 ≥ RC

IC > 0. Therefore,
the corresponding version for a higher energy criticality
level, i.e., τ2ts, will be selected. Compared to that of τ1ts,
τ2ts performs relatively simplified operations (e.g., it returns
the last gathered temperature only) such that the energy
consumption is reduced.

The major goal of the scheduling problem is to satisfy
tasks’ timing constraints (i.e., all task instances have to
meet their deadlines). However, our proposed energy-critical
multi-version real-time task model is designed to reduce
energy consumption while the necessarily accuracy is ob-
tained. Therefore, the following three issues also have to be
considered at the run time:

1) switch the energy criticality level ECL∗ according to
the remaining capacity of battery;

2) select and execute the corresponding task version τ∗i
for ECL∗ for every task τi;

3) calculate and assign a proper speed for task execution.

Engineering Letters, 31:1, EL_31_1_10

Volume 31, Issue 1: March 2023

__

Scheduling
Algorithms

Configurator

Period Task
Manager

…

Schedulability
Analyzer

DVFS
Controller

Processor

EDF RM

Priority
Assignment

ready queue

Aperiodic/
Sporadic Task

Manager

Event
Handler

ECL
Manager

Execution
Speed

Assignment

Configuration
File

Monitor
Measurement
and Statistic

Log

Scheduler

meCreate

Task
Description

File

include<stdio.h>

#include<stdlib.h>

#include <pthread.h>

#include “mecreate.h”

int main(int arc, char

*argv[])

{

 int data1, data2;

 int i,j,k;

 while(1)

include<stdio.h>

#include<stdlib.h>

#include <pthread.h>

#include “mecreate.h”

int main(int arc, char

*argv[])

{

 int data1, data2;

 int i,j,k;

 while(1)

#include<stdio.h>

#include<stdlib.h>

#include <pthread.h>

#include “mecreate.h”

int main(int arc, char

*argv[])

{

 int data1, data2;

 int i,j,k;

 while(1)

Tasks’ Source
Code

 !

"

$

%

&

'

(

)

*

+ , -

Fig. 1. The architecture of meCreate.

IV. OUR PROPOSED ENERGY-CONSTRAINED ERTS
PLATFORM

In this section, an ERTS platform, called mixed energy-
criticality real-time embedded (meCreate), is proposed to
support our proposed energy-critical multi-version real-time
task model. meCreate is built based on Linux (kernel 5.10.17)
and supports Raspberry Pi 4B presently (the support of
more embedded boards is working in progress). By using
meCreate, applications for energy-constrained ERTS can be
built and deployed conveniently and easily. In order to
develop an application upon meCreate, only the following
files are needed:

• Configuration file: It is an XML file used to define
the options and settings of the target system. Such
as the target board (it only supports Raspberry Pi 4
family currently), network settings, energy criticality
levels and the switching threshold, task preemptibility,
and the scheduling algorithm. Note that meCreate sup-
ports two well-known scheduling algorithms: earliest
deadline first (EDF)[20] and rate-monotonic (RM)[20]
scheduling algorithm.

• Task description file: It is also an XML file for the
definition of the task set. Currently, periodic, aperiodic,
and sporadic tasks are supported. For a periodic task, we
have to define its relative parameters in the description
file. The relative parameters including task’s arrival
time, deadline, period, and computation time. Since
each task has multiple versions, the relative parameters
of the versions are defined by vectors. For aperiodic
and sporadic tasks, the parameters are the same as that
of the periodic tasks excepts the period is replaced by
the trigger event and the minimum separation time,
respectively.

• Tasks’ source code: The source code of each task and
their multiple versions (corresponding to the energy-
critical levels) have to be provided by developers. Note
that meCreate supports C and Python programming

languages currently.

Fig. 1 shows the architecture and the data/control flows of
meCreate. As shown in the figure, it has several modules and
tools to help developers to build applications upon meCreate.
After developers provided the above files, the Configurator
module (labelled by 1) is responsible for setting the target
system such that the system can be operated properly ac-
cording to the content of the configuration file. The Periodic
Task Manager module (labelled by 2) will generate the task
instances according according to the arrival times and periods
defined in the task description file. The Aperiodic/Sporadic
Task Manager module (labelled by 3) is cooperative with
the Event Handler module (labelled by 4) such that the task
instances of aperiodic and sporadic tasks can be generated
according to their trigger events and the minimum separation
times, respectively.

All generated task instances are scheduled by the Sched-
uler module (labelled by 5) according to the specific task
scheduling algorithm. Since both of the supported algorithms
(i.e., RM and EDF) are priority-driven scheduling algorithms,
the Scheduler module is cooperative with the Priority Assign-
ment module (labelled by 6). Note that our implementation
of the Priority Assignment module supports both fixed-
priority and dynamic-priority scheduling algorithms.

The ECL Manager module (labelled by 7) sets ECL∗

dynamically by the given switching thresholds. Whenever
ECL∗ has been switched to a lower energy criticality level,
the Execution Speed Assignment module (labelled by 8)
will cooperative with the Schedulability Analyzer (labelled
by 9) to calculate tasks’ execution speed s

′
. The DVFS Con-

troller module (labelled by 10) will set the corresponding
execution frequency of the processor after s

′
is calculated.

The calculation of s
′

for RM and EDF scheduling algorithms
are as follows:

• RM:

s
′
= min
sj∈S
{
∑
τi∈T

Ci(ECL
∗)/sj

Ti(ECL∗)
≤ n(21/n − 1)} (1)

Engineering Letters, 31:1, EL_31_1_10

Volume 31, Issue 1: March 2023

__

Fig. 2. ecoScout

• EDF:

s
′
= min
sj∈S
{
∑
τi∈T

Ci(ECL
∗)/sj

Ti(ECL∗)
≤ 1} (2)

Recall that the current energy criticality level ECL∗ is
ECLx if SWTx ≥ RC

IC > SWTx+1. As the system contin-
ues its operation, the remaining capacity of battery is also
going down. The current energy criticality level ECL∗ will
be switched to a higher level ECLx+1 when RC

IC becomes
no larger than SWTx+1. Once ECL∗ has been changed,
the corresponding task version has to be changed. Note that
the processor’s operating speed also has to be recalculated
unless ECL∗ is higher than the predefined level. When such
a situation occurs, the speed is set to smax.

Moreover, Monitor (labelled by 11 , Measurement and
Statistic (labelled by 12), and Log (labelled by 13) are
tools designed to monitor the on-line usages, to perform
measurements and to save statistical data, and to generate
log data, respectively.

V. AN EXAMPLE APPLICATION: ECOSCOUT

In this section, we present an environmental data collector,
called ecoScout, to show how to build an application upon
meCreate. As shown in Fig. 2, ecoScout is an energy-
constrained embedded system since it is powered by battery
(a 13200mAh battery pack consists of 6 18600 Li-Ion batter-
ies). However, ecoScout can be also considered an energy-
harvesting embedded system because it employed an external
photovoltaic module for harvesting energy. The major objec-
tive of ecoScout is to collect outdoor environmental eco data.
It contains several sensors (e.g., barometer sensor, moisture
sensor, air quality sensor (MQ135), gas sensors (MQ9),
and sunlight sensors) to collect eco data (e.g., humidity,

temperature, air quality, brightness, and soil). Furthermore,
ecoScout also has a camera to get environmental photos.

As mentioned in Section IV, developers have to provide
(1) configuration file, (2) task description file, and (3) a
set of tasks (include multiple versions for different energy
criticality levels) in order to build an application upon
meCreate. Fig. 3 is the configuration file of ecoScout. It
defines that there are two energy criticality levels ECL1

and ECL2 in the system (i.e., ECL number=2), and the
switching threshold for the levels (SWT1 = 1, SWT2 = 0.3
and SWT3 = 0). In other words, ECL1 is set when the
remaining capacity of battery is 100% to 30% of the initial
capacity of battery, and ECL2 is set when the remaining
capacity of battery is less than 30%. Fig. 4 is the task
description file. As we can observed from the figure, there
are several tasks (and their corresponding versions for each
energy criticality level) are defined in the file. Based on the
configuration file, the task description file, and the tasks,
meCreate can generate the application ecoScout. It can be
deployed to Raspberry Pi 4B to collect eco data from
outdoors. Fig. 5 is the on-line workload monitored by the
Monitor module at run time.

VI. PERFORMANCE EVALUATION

In order to evaluate the performance of meCreate, we
have conducted a series of experiments with ecoScout and
randomly generated task sets. In the experiments, the energy
criticality level ECL∗ is set as ECL1 initially since the
battery capacity is plentiful. The ECL∗ and the execution
speed of tasks will be changed according to the following
three strategies:
• FIX: This strategy fixes the energy criticality level as

the lowest level (i.e., ECL∗ = ECL1) so that higher

Engineering Letters, 31:1, EL_31_1_10

Volume 31, Issue 1: March 2023

__

Fig. 3. ecoScout: the configuration file.

Fig. 4. ecoScout: the task description file.

Fig. 5. ecoScout: On-line monitoring

accurate results can be obtained. Since ECL∗ is fixed to
ECL1, the version τ1i will be executed on the processor.
Note that all tasks will be executed at speed smax.

• DYN: This strategy switches the energy criticality level
dynamically according to the switching thresholds (i.e.,
switching the value of ECL∗ from ECL1 to ECL2

when the remaining capacity of battery is less than
30%). Note that the version τ2i will be executed after
ECL∗ has been changed to ECL2. Note that all tasks
are executed at speed smax.

• DYN+DVFS: This is the default strategy of meCreate.
Similar to DYN strategy, this strategy sets ECL∗ to

ECL1 initially, and it will be changed to ECL2 when
the remaining capacity of battery is less than 30%.
However, this strategy also calculates the execution
speed s

′ ≤ smax for task execution according to
Equation (2) and (1). After ECL∗ has been changed,
the corresponding version τ2i of each task τi will be
executed at the execution speed s

′
.

A. ecoScout

In the first part of the experimental results, ecoScout have
been modified so that it is capable to work with FIX, DYN,
and DYN+DVFS strategies. For each strategy, 10 experi-

Engineering Letters, 31:1, EL_31_1_10

Volume 31, Issue 1: March 2023

__

 750

 800

 850

 900

 950

 1000

 1050

 1100

sw-2 sw-1 sw sw+1 sw+2 sw+3 sw+4 sw+5 sw+6 sw+7 sw+8 sw+9 sw+10

C
u
m

u
la

ti
v
e
 E

n
g
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
W

h
)

Time (minute)

FIX DYN DYN+DVFS

Fig. 6. Cumulative energy consumption of ecoScout.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

sw-2 sw-1 sw sw+1 sw+2 sw+3 sw+4 sw+5 sw+6 sw+7 sw+8 sw+9 sw+10

N
o
rm

a
liz

e
d
 E

n
g
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Time (minute)

FIX DYN DYN+DVFS

Fig. 7. Normalized energy consumption of ecoScout.

ments have been conducted and the results were averaged.
All experiments start with a fully charged battery (with
2200 mAh capacity) until the battery is drained completely.
Figures 6 and 7 show the cumulative and the normalized
energy consumption (with respect to that of FIX). Note that
the behaviors of FIX, DYN, and DYN+DVFS strategies are
all the same when the remaining capacity of battery is no less
than 30% (i.e., the switching threshold in the experiments).
Figures 6 and 7 only show the results in the interval [sw−2,
sw + 10], where sw is the average time that the remaining
capacity of battery is less than 30% (we have observed that
sw is 37 minutes).

As shown in Fig. 6 and Fig. 7, DYN+DVFS (which
is the default strategy of meCreate) outperforms FIX and
DYN greatly. It is obvious that FIX strategy performs worst
because it always selects the corresponding version τ1i of
each task τi and all tasks are executed at speed smax. DYN
outperforms FIX because the energy criticality level will be
changed from ECL1 to ECL2 at the time (i.e., sw) that
the remaining capacity of battery is less than 30%. Since the
ECL∗ has been changed, the comparably lightweight version
τ2i of each task τi will be selected and to be executed. As a
result, DYN outperforms FIX after time sw. DYN+DVFS is
the default strategy of meCreate. After ECL∗ has changed to
ECL2, DYN+DVFS calculates a proper speed s

′
to execute

 0.6

 0.7

 0.8

 0.9

 1

 1.1

sw-2 sw-1 sw sw+1 sw+2 sw+3 sw+4 sw+5 sw+6 sw+7 sw+8 sw+9 sw+10

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e

Time (minute)

FIX DYN DYN+DVFS

Fig. 8. Normalized average response time of ecoScout.

 0

 20

 40

 60

 80

 100

FIX DYN DYN+DVFS

53

71

82

C
o
n
ti
n
u
e
 O

p
e
ra

ti
n
g
 T

im
e
 (

m
in

u
te

s
)

Fig. 9. Continue operating time of ecoScout.

tasks such that more energy can be saved.
In addition to the energy efficiency, we also conducted

experiments for evaluation of the average response time of
tasks so that the performance of meCreate can be better un-
derstand. Fig. 8 shows the normalized average response time
of tasks (with respect to that of FIX). As we can observed, the
performance rank is DYN > FIX > DYN+DVFS. Recall that
both DYN and FIX execute tasks at the maximum processor
speed smax. After ECL∗ has been changed (i.e., from ECL1

to ECL2), DYN and FIX execute τ2i and τ1i of every task
τi, respectively. Since C(τ2i) ≤ C(τ1i), the response time of
τ2i is no longer than that of τ1i .

We also notice that DYN outperforms DYN+DVFS al-
though both of them execute the same version of task τi,
i.e., τ2i . It is because of DYN and DYN+DVFS execute
tasks at smax and s′ , respectively, after ECL∗ has been
changed. Since s

′ ≤ smax, DYN+DVFS will postpone the
completion time of tasks. Another interesting fact is FIX
outperforms DYN+DVFS. Compare with FIX, DYN+DVFS
postpones the completion time of tasks as late as possible so
that the energy consumption is reduced. Although the late
completion causes a performance impact, it is allowed if the
completion of a real-time task no later than its deadline.
Therefore, the performance impact of DYN+DVFS can be
consider an acceptable price to pay for saving more energy.

Engineering Letters, 31:1, EL_31_1_10

Volume 31, Issue 1: March 2023

__

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.2 0.4 0.6 0.8

N
o
rm

a
liz

e
d
 E

n
g
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Untilization

FIX DYN DYN+DVFS

Fig. 10. Normalized average energy consumption of randomly generated
task sets.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0.2 0.4 0.6 0.8

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e

Utilization

FIX DYN DYN+DVFS

Fig. 11. Normalized average response time of randomly generated task
sets.

Finally, we also conducted the long lasting tests for the
three strategies FIX, DYN and DYN+DVFS in the experi-
ments. As shown in Fig. 9, ecoScout with the default strategy
DYN+DVFS continued to operate for 82 minutes while FIX
and DYN are 53 and 71 minutes, respectively.

B. Randomly Generated Task Sets

A testbed has been built upon meCreate for evaluating the
performance of randomly generated task sets. The parameters
are given in Table I.

TABLE I
THE PARAMETER SETTINGS OF RANDOMLY GENERATED TASK SETS.

Parameters Values
Utilization of a task set (0.2 ∼ 0.8) stepped by 0.2
Number of tasks of a task set (30 ∼ 300)
Task period∗ (2,000 ∼ 30,000)ms
Task computation time∗ (100 ∼ 2,000)ms
Shrink ratio sr (0.1 ∼ 0.5)

∗Values for ECL1.

We generated feasible task sets by setting each task set’s
utilization from 20% to 80% (stepped by 20%). For each
utilization, 10 task sets were generated randomly and their

experimental results were averaged. For each task set, we
generate 30 to 300 tasks randomly and their period and
computation time were selected from the ranges (2,000 ∼
30,000)ms and (100 ∼ 2,000)ms randomly. Note that the
parameters (i.e., task period and computation time) in Table I
are used to generate tasks for ECL1. For each task τi, we
generated the corresponding task τ2i for ECL2 according to
the shrink ratio sr (from 0.1 to 0.5 randomly), i.e., the com-
putation time of τ2i is set as Ci(ECL2) = Ci(ECL1)× sr.
In the experiments, each task set has been executed for more
than 60 minutes.

Figures 10 and 11 are the average results in the interval
[sw-2, sw+10], where sw is the time that the remaining
capacity of battery is less than the threshold (i.e., 30%).
In particular, Figure 10 shows the normalized energy con-
sumption of tasks (with respect to that of FIX strategy). The
performance rank is DYN+DVFS > DYN > FIX. Figure 11
shows the normalized average response time of tasks (with
respect to that of FIX strategy). The performance rank is
DYN > FIX > DYN+DVFS. Note that the experimental
results in Figures 10 and 11 are consistent with the results
of Figures 7 and 8.

VII. CONCLUSION

This paper presents a platform meCreate for developing
and executing energy-efficient applications on embedded
real-time systems. meCreate is designed to support an inno-
vative task model, called energy-critical multi-version real-
time task model, which assumes that there are multiple
energy criticality levels in the system and it can be switched
dynamically according to the remaining capacity of bat-
tery. It also assumes that each task has multiple versions
(from higher energy consumption to lower consumption)
corresponding to each energy criticality level. Based on an
environmental data collector application (i.e., ecoScout), we
have demonstrated the procedures for build an application
for energy-constrained ERTS upon meCreate. The energy
efficiency and the performance have been evaluated for
ecoScout and randomly generated task sets, for which we
have some encourage results.

REFERENCES

[1] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-time
systems on dynamic voltage scheduling (dvs) platforms,” in Proceed-
ings of the 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA2007), 2007.

[2] J. Wu, “A Survey of Energy-Efficient Task Synchronization for Real-
Time Embedded Systems,” in Proceedings of the 23rd IEEE RTCSA,
Hsinchu, Taiwan, August 16-18 2017.

[3] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Proceedings of the
28th IEEE International Real-Time Systems Symposium, 2007, pp.
239–243.

[4] J. Wu and J.-L. Wang, “A Real-Time Embedded Platform for Mixed
Energy-Criticality Systems,” in Proceedings of the 7th IEEE Interna-
tional Conference on Applied System Innovation (IEEE ICASI), Chiayi,
Taiwan, September 24-25 2021.

[5] W. Haberl, M. Tautschnig, and U. Baumgarten, “Running COLA
on Embedded Systems,” in Proceedings of the 2008 International
MultiConference of Engineers and Computer Scientists (IMECS),
Hong Kong, March 19-21 2008, pp. 922–928.

[6] C.-F. Hsu, “A Component-Based Software Development Platform for
Rapid Prototyping of Embedded Software,” Master Thesis, Department
of Computer Science and Information Engineering, National Pingtung
University, July 2009.

Engineering Letters, 31:1, EL_31_1_10

Volume 31, Issue 1: March 2023

__

[7] T. Kamiyama, M. Tamura, T. Soeda, M. Yoo, and T. Yokoyama, “An
Embedded Control Software Development Environment with Simulink
Models and UML Models,” IAENG International Journal of Computer
Science, vol. 39, no. 3, pp. 261–268, 2012.

[8] Linux Foundation, “The Yocto Project - It’s Not an Embedded Linux
Distribution, It Creates a Custom One for You,” Available on-line at
http://www.yoctoproject.org (visited on March 13, 2022.), 2022.

[9] Buildroot Developers, “The Buildroot User Man-
ual (revision 08967921c4),” Available on-line at
https://buildroot.org/downloads/manual/manual.pdf (visited on
March 13, 2022.), 2022.

[10] OpenWrt, “About the OpenWrt/LEDE Project,” Available on-line at
https://openwrt.org/about (visited on March 13, 2022.), 2022.

[11] L. Acasandrei and A. Barriga, “SHORES: Software and Hardware
Open Repository for Embedded Systems,” in Proceedings of the 2017
World Congress on Engineering and Computer Science (WCES), San
Francisco, USA, October 25-27 2017, pp. 26–31.

[12] I. Assayad, L. Eljadiri, M. Krichen, A. Zakari, W. Adoni, and T. Nah-
hal, “A Novel Architecture Prototyping Framework with Generic
Properties Verification for Sub-architectures,” Engineering Letters, vol.
29, no. 2, pp. 634–644, 2021.

[13] H. Khandelwal, P. Mankodi, and R. Prajapati, “Enhancement of
Automation Testing System Using Yocto Project,” in Proceedings of
the 2017 International Conference of Electronics, Communication and
Aerospace Technology (ICECA), April 2017, pp. 20–22.

[14] A. Biswas, D. Biswas, S. S. Chauhan, and A. Borwankar, “Smart
Home Equipment Control System with Raspberry Pi and Yocto,” in
Proceedings of 4th World Conference on Smart Trends in Systems,
Security and Sustainability (WorldS4), July 27-28 2020, pp. 553–558.

[15] H. Zhen and F. Hui, “Embedded Parking System Based on OpenWrt
Database Server,” in Proceedings of 5th International Conference
on Instrumentation and Measurement, Computer, Communication and
Control (IMCCC), September 18-20 2020, pp. 1469–1474.

[16] K. V. Prashanth, P. S. Akram, and T. A. Reddy, “Real-Time Issues in
Embedded System Design,” in Proceedings of the 2015 International
Conference on Signal Processing and Communication Engineering
Systems, 2015, pp. 167–171.

[17] M. Engin, “Embedded and Real Time System Design: A Case Study
Fire Fighting Robot,” in Proceedings of the 5th Mediterranean Con-
ference on Embedded Computing (MECO), 2016, pp. 18–21.

[18] S. Cardona and E. Giraldo, “Real-time Multivariable Embedded Con-
trol of a Ball and Plate Prototype,” Engineering Letters, vol. 29, no. 4,
pp. 1375–1380, 2021.

[19] L. A. Rios-Norena, J. S. Velez-Ramirez, and E. Giraldo, “Real-Time
Optimal Embedded Control of a Double Inverted Pendulum,” IAENG
International Journal of Computer Science, vol. 49, no. 2, pp. 341–
348, 2022.

[20] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard-real-time environment,” Journal of the Association for
Computing Mahinery (JACM), vol. 20, no. 1, pp. 46–61, 1973.

Jun Wu received a Ph.D. degree in Computer Sci-
ence and Information Engineering from National
Chung Cheng University, Chiayi, Taiwan. He is
currently a Professor at Department of Computer
Science and Information Engineering, National
Pingtung University, Pingtung, Taiwan. He was
also a Visiting Researcher at the University of
York, a Visiting Scholar at the University of Pitts-
burgh, and a Visiting Scholar at Academia Sinica.
His research interests include: (1) energy-efficient
task scheduling and synchronization for real-time

embedded systems, and (2) high performance resource management for
virtualization platforms. Dr. Wu is a member of IEEE and IAENG.

Jia-Lin Wang received a Master degree in Com-
puter Science and Information Engineering from
National Pingtung University, Pingtung, Taiwan,
in 2021. His research interests include real-time
embedded system platforms and database systems.
He is currently an Engineer

Engineering Letters, 31:1, EL_31_1_10

Volume 31, Issue 1: March 2023

__

