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Abstract—The traditional sparse subspace clustering algo-
rithms are easily affected by the similarity matrix, which
may lead to different clustering results by different similarity
matrix. That is to say, constructing a reasonable similarity
matrix is the key to sparse subspace clustering. Based on re-
weighting subspace clustering, a semi-supervised sparse sub-
space clustering algorithm based on re-weighting is proposed
in the paper. Firstly, the global similarity structure of the data
can be better captured by constraining the coefficient between
the cannot-link labels to be 0. Secondly, with the help of re-
weighted l1-norm minimization sparse optimization framework,
the adaptive similarity matrix can be obtained. Furthermore,
the above similarity matrix can be adjusted by using prior
information. Experimental results indicate that the proposed
clustering algorithm is more efficient than other clustering
algorithms on benchmark data sets.

Index Terms—pairwise constraint, re-weighting, semi-
supervised, sparse subspace clustering.

I. INTRODUCTION

IN today’s society, all kinds of data are flooded in people’s
lives. High-dimensional data widely is available in ma-

chine learning, signal and image processing, computer vision,
pattern recognition and other fields. Clustering analysis of
high-dimensional data will enhance the calculation time
and storage requirements of the algorithm. Moreover, when
high-dimensional data contains noise, traditional clustering
algorithms, such as K-means clustering, spectral clustering ,
fuzzy clustering and so on, can no longer handle this type
of data well. However, considering that high-dimensional
data are often distributed on the union of multiple low-
dimensional subspaces, obtaining the low-dimensional struc-
ture of high-dimensional data can not only reduce the com-
putational cost and storage requirements of the algorithm,
but also reduce the noise influence in the data and improve
the performance of clustering analysis [1]. Therefore, the
subspace clustering problem is proposed. Given a set of
points drawn from a union of subspaces, the task is to find
the number of subspaces, their dimensions, the basis for each
subspace, and the segmentation of the data[2]. After recent
years of development and research, many subspace clustering
methods have been proposed, which can be roughly divided
into five categories: based on matrix factorization[3], based
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on algebra [4], [5], based on iteration [6], [7], based on
statistics [8], [9] and based on spectral clustering [10], [11].

Sparse subspace clustering (SSC) is a subspace clustering
method based on spectral clustering. The algorithm has
attracted widespread attention, and its main idea is based on
the fact that each point in a union of subspaces has a sparse
representation with respect to a dictionary formed by all other
data points [12]. Therefore, the core problem is to acquire
the appropriate coefficient matrix, and then use the similarity
matrix by spectral clustering to obtain the final clustering
results[13]. In order to get a more “appropriate” coefficient
matrix, various restrictions and constraints are usually added
to the coefficient matrix in the algorithm model to force it to
have an ideal block diagonal structure. This ideal structure
can help discover and mine the potential manifold structure
information behind the data for clustering.

In [14], a weighted sparse optimization framework is
proposed by using the spatial geometry of data points to
weight the representation coefficients in the sparse opti-
mization framework. The re-weighted l1 norm was used to
replace the traditional l1 norm, and a re-weighted sparse
subspace clustering (RSSC) algorithm was proposed[15]. A
structured sparse subspace clustering (SSSC) algorithm is
proposed, which uses a unified optimization framework to
automatically combine the coefficient matrix and spectral
clustering[16]. The algorithm is built on expressing each data
point as a structured sparse linear combination of all other
data points, where the structure is induced by a norm that
depends on the unknown segmentation. A scalable sparse
subspace clustering by orthogonal matching pursuit (SSSC-
OMP) algorithm based on orthogonal matching pursuit was
proposed to solve the sparse solution of sparse subspace
model[17]. In order to reduce the computational complexity
of using the OMP method for large-scale data, a learning
OMP (learning orthogonal matching pursuit, LOMP) algo-
rithm is proposed in [18]. An improved SSC algorithm
is used to select the appropriate band subset to solve the
problem of hyperspectral image classification in [19].

The above are all unsupervised clustering algorithms. In
practical applications, a priori information of a small amount
of data can often be obtained. If we just use the unsupervised
learning, these priori information will be wasted. In order
to make full use of the prior information to improve the
clustering accuracy, semi-supervised learning is proposed.
According to the different forms of supervision informa-
tion, semi-supervised clustering can be divided into: semi-
supervised clustering based on label information and semi-
supervised clustering based on pairwise constraints[20]. In
[21], a unified manifold learning framework (FME) for semi-
supervised was proposed and further studies can be found in
[22]. By using a novel adaptive loss minimization method,
a semi-supervised elastic embedding (SEE) algorithm were
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proposed in [23]. In order to use the neighboring informa-
tion, a semi-supervised sparse subspace clustering algorithm
LR-LDS4C was given in [24]. For making better use of
the pairwise constraints of the given labels, a label-guided
weighted semi-supervised neutrosophic clustering algorithm
LG-WSSNCM was introduced in [25].

Semi-supervised sparse subspace clustering is an impor-
tant semi-supervised learning method [26]. How to make
full use of the supervised information to improve the results
of sparse subspace clustering is an important problem. In
the paper, the label information of some samples is selected
as the supervision information, and a re-weighted semi-
supervised sparse subspace clustering algorithm (SSRSSC)
is proposed based on the re-weighted l1 norm minimization
framework. The contributions of the given algorithm are
not only to consider combining the label information with
the construction of the similarity matrix, but also make full
use of the supervision information to cluster. Specifically,
firstly, with the help of pairwise constraint information
and re-weighted l1 norm minimization sparse optimization
framework, the optimal coefficient matrix Z is obtained by
updating iteration; secondly, similarity matrix is constructed
by using Z, and the clustering model is adjusted by Laplacian
regularization term of the constructed similarity matrix to
obtain the projected data F . Finally, the final clustering result
is obtained by taking the largest of each row of F .

The remainder of this paper is organized as following.
In Section II, we introduce related work. In Section III, we
introduced the establishment and solution of the SSRSSC
model. Experimental results and analysis are presented in
Section IV. Finally, Section V concludes our paper.

II. RELATED WORK

A. Sparse subspace clustering algorithm

The analysis of high-dimensional data can be transformed
into the study of coefficient matrix of high-dimensional
data in low-dimensional space. Then, for the input high-
dimensional data matrix X = [x1, · · · , xn] ∈ Rd×n, it can
be expressed X = XZ , where X ∈ Rd×n as a dictionary
and Z ∈ Rn×n as a coefficient matrix. Zij = 0 indicates that
the sample points xi and xj belong to different subspaces.
Arrange the input data column by column according to its
subspace category. Ideally, Z should have a block diagonal
structure[13].

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · Zk

 ,

where Zi is the representation coefficient matrix of the
data in the i-th subspace. When Z with the block diagonal
structure is obtained, the subspace structure of input data can
be obtained. The sparse subspace clustering algorithm is to
use different norm constraints Z to make it have the ideal
structure of block diagonal as far as possible, so as to explore
the subspace structure of data. Therefore, the basic model of
sparse subspace can be expressed as follows:

min
Z

f(Z)

s.t. X = XZ,Zii = 0.
(1)

where f(Z) is a sparse function of the self-representation
matrix Z , such as ∥Z∥1 and ∥Z∥2,1 . The constraint
Zii = 0 is used to avoid the special case where each data is
represented only by itself. When noise is considered in the
model, the constraint condition X = XZ can be replaced by
X = XZ + E, and the appropriate regular term constraint
can be applied to noise E. Elhamifar and Vidal proposed the
most classical sparse subspace clustering model as follows:

min
Z,E

∥Z∥1 + λ∥E∥2,1

s.t. X = XZ + E,Zii = 0.
(2)

where ∥Z∥1 represents the l1 norm of matrix Z, which has
strong sparsity[13]; E ∈ Rd×n is a noise matrix, ∥E∥2,1
represents the l2,1 norm of matrix E, which has strong
robustness [27]; by introducing a robust error term ∥E∥2,1,
the influence of outliers and noise points on the robust
segmentation results of SSC can be reduced; the parameter
λ > 0 is used to balance the two terms in the objective
function.

B. Re-weighted sparse optimization framework

The SSC algorithm use the sparse representation of vectors
lying on a union of subspaces to cluster the data into separate
subspaces. In order to obtain the sparse representation of each
data point, the re-weighted l1 norm minimization is used to
perform convex relaxation. At the same time, in practical
problems, data points are often mixed with sparse singular
values and noise. In addition, the data are often distributed on
the union of affine subspaces rather than linear subspaces. So
a re-weighted sparse optimization framework is established
as follows:

min
Z,E

∥W ⊙ Z∥1 + λ∥E∥2,1

s.t. X = XZ + E,Zii = 0.
(3)

where W ∈ Rn×n is a re-weighted diagonal matrix. In
reference[16], flog(x) function is introduced, and its re-
weighted matrix updating formula is as follows W k

i = 1
|xk

i |+ϵ
.

However, in practical applications, subspaces are interde-
pendent and data may be in nonlinear manifolds. In these
cases, the block diagonal structure of Z is often greatly
affected. In order to overcome this difficulty, in the second
section, a new method is proposed to extend the re-weighted
sparse optimization model (SSRSSC) in RSSC framework
by considering the label information of samples.

III. ESTABLISHMENT AND SOLUTION OF OBJECTIVE
FUNCTION

A. The establishment of objective function

In order to make Z have a better block diagonal struc-
ture, the label information of known samples is integrated
into the original RSSC framework, and a new re-weighted
semi-supervised sparse representation (SSRSSC) model is
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proposed. The core idea of SSRSSC is to know the prior in-
formation of some samples when solving the RSSC problem
so that the samples on the same subspace should be divided
into a cluster. Therefore, Z should be kept sparse and have
block diagonal structure. Since the labels of some samples
are known, the coefficient Zi,j between two data points from
different clusters is directly forced to zero. Therefore, the
SSRSSC model solves the following problems:

min
Z,E

∥W ⊙ Z∥1 + λ∥E∥2,1

s.t. X = XZ + E,Zi,j = 0, ∀(i, j) ⊂ Ω, ZT 1 = 1.
(4)

where 1 is an all-one vector, Ω the set of edges between
two labeled samples from different classes and sample itself,
whereby (i, j) ⊂ Ω indicates that sample xi and sample xj

are not in the same class. As we can see from (1), similar
to SSC, SSRSSC also seeks the sparse representation Z
among all the data points. Meanwhile, by enforcing Zi,j = 0,
(i, j) ⊂ Ω , it makes use of the label information to
help prevent the block-diagonal structure of Z from being
destroyed in real world scenarios. By enforcing the sum-to-
one constraint on the rows of the coefficient matrix, we hope
to obtain the invariance to translations. The same trick is
also used by existing methods, such as the popular Locally
Linear Embedding (LLE)[28]. Since the SSRSSC problem
(4) is convex, it can be efficiently solved by fast first-order
optimization methods, as we describe next.

B. The solution of objective function

Then, applying LADMAP[29] to the standard form (4)
yields the following updating rules. The problem (4) is
solved by using the augmented Lagrange multiplier method
as follows:

Ł(Z,E, Y1, y2, y3, β) = ∥W ⊙ Z∥1 + λ∥E∥2,1
+ < Y1, XZ + E −X > + < y2, ρΩ(Z) >

+ < y3, Z
T 1 − 1 > +

β

2
(∥XZ + E −X∥2F

+ ∥ρΩ(Z)∥22 + ∥ZT 1 − 1∥22)

(5)

a) Updating Z, fix E, Y1, y2, y3, β: Here, we first note that

FZ =< Y1, XZ + E −X > + < y2, ρΩ(Z) >

+ < y3, Z
T 1 − 1 > +

β

2
(∥XZ + E −X∥2F

+ ∥ρΩ(Z)∥22 + ∥ZT 1 − 1∥22)

(6)

The derivation of formula (6) is as follows:

∇FZ = XTY1 + β(XT (XZ + E −X))

+ ρ∗Ω(y2) + 1(y3)T + ρ∗Ω(ρΩ(Z)) + 11TZ − 11T
(7)

For any Z1, Z2 the following formula (7) is as follows:

β(∥XTX(Z1 − Z2) + ρ∗Ω(ρΩ(Z1 − Z2))

+ 11T (Z1 − Z2)∥F )
≤ β(∥XTX(Z1 − Z2)∥F + ∥ρ∗Ω(ρΩ(Z1 − Z2))∥F

+ ∥11T (Z1 − Z2)∥F )
≤ β(∥X∥22 + n+ 1)∥(Z1 − Z2)∥F

(8)

Here,∥X∥22 + n + 1 = ηA according to the above formula,
the Lipschitz constant LZ

F is β(∥X∥22 + n+ 1) = βηA.

∥∇F (Z1)−∇F (Z2)∥F ≤ LZ
F ∥Z1 − Z2∥F (9)

According to Taylor’s formula, formula (5) can be solved by
the following formula (10):

L(Z) = ∥W ⊙ Z∥1+ < Z − ZK ,∇F (ZK) >

+
LZ
F

2
∥Z − ZK∥2F

(10)

Formulate the above formula, it is as follows:

∥W ⊙ Z∥1 +
LZ
F

2
∥Z − (Zk − 1

LZ
F

∇F (ZK))∥2F (11)

According to the proximity point operator, it is as follows:

Zk+1 = S W

LZ
F

Zk − 1

LZ
F

∇F (Zk)

= S W
βηA

Zk − 1

LZ
F

∇F (Zk)
(12)

Here, we note that ZK − 1
LZ

F

∇F (ZK) = Z∗
K .

Zk+1 = sgn(Z∗
k)max(|Z∗

k | −
W

βηA
, 0) (13)

b) Updating E, fix Z, Y1, y2, y3, β: Similarly, we note that

FE =< Y1, XZ + E −X > +
β

2
(∥XZ + E −X∥2F ) (14)

According to references[21], it is as follows:

Ek+1 = max(1− λ

LE
F (∥E∗∥2)

, 0)E∗

= max(1− λ

β(∥E∗∥2)
, 0)E∗

(15)

Here, E∗
k = Ek − 1

LE
F

∇F (Ek).
c) Updating Y1,y2,y3, fix Z,E, β:: Third, the Lagrange

multiplier Y1,y2,y3 is updated as:

Y1,k+1 = Y1,k + β(XZ + E −X) (16)

y2,k+1 = y2,k + β(ρΩ(Z)) (17)

y3,k+1 = y3,k + β(ZT 1 − 1) (18)

d) Updating β , fix Z,E, Y1, y2, y3: the penalty β is
updated adaptively as follows:

βk+1 = min(βmax, γβk) (19)

Where

γ =

{
γ0, ZE ≤ ε
1, otherwise.

(20)
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where γ0 ≥ 1 is a constant, 0 < ε < 1 is a threshold and
ZE = βk max(

√
ηA∥Zk+1 − Zk∥F ,

√
ηB∥Ek+1 − Ek∥F ).

Based on the above analysis, the detailed procedure for
the given algorithm is summarized in Algorithm 1. We adopt
the popular Local and Global Consistency (LGC)[30] as the
classification framework. Specifically, LGC builds upon an
undirected graph, and utilizes the graph and known labels to
recovery a continuous classification function F ∈ Rn×c by
optimizing the following energy function:

min
F∈Rn×c

tr(FTLZF + µ(F − Y )T (F − Y )) (21)

where c is the number of classes, Y ∈ Rn×c is the label
matrix, in which Yi,j = 1 if sample xi is associated with
label j for j ⊂ 1, 2, · · · , c , and Yi,j = 0 otherwise. LZ is
the normalized graph Laplaction LZ = D− 1

2 (D − Z)D− 1
2 ,

in which D is a diagonal matrix with Di,j =
∑

j Zi,j .
The weight µ ⊂ [0,∞) balance the local fitting and global
smoothness of the function F .

TABLE I: SSRSSC algorithm

Algorithm 1 LADMAP for Solving the SSRSSC Problem

Input: Data matrux X = [x1, · · · , xn] ∈ Rd×n ,
balance parameter λ, ηA, ηB , µ, and indices set Ω.
Initialize Z = 0, E = 0, Y1 = 0, y2 = 0, y3 = 0,
βmax = 1010, γ = 1.1, ε = 10−8

Do
Update Z by(13).
Update E by(15).
Update Y1 by(16).
Update y2 by(17).
Update y3 by(18).
Update β by(19).

While
∥XZ + E −X∥∞ < ε and
βk max(

√
ηA∥Zk+1 − Zk∥F ,

√
ηB∥Ek+1 − Ek∥F ) < ε.

Output: The optimal solution Z.

According to the optimization process of Algorithm 1,
a theoretical complexity analysis of the SSRSSC algorithm
will be performed. Denote n, d, c and t are the number of
samples, the data’s dimension, the number of clusters and the
maximum number of iterations respectively. The complexity
of the SSRSSC algorithm has three main components. (1)
Construction of constraint set Ω: Considering that Ω is relat-
ed to the number of manually labeled samples, the complex-
ity of this part does not exceed O(n2). (2) The alternating
iterative process of variables Z,E, Y1, y2, y3 and β in the
SSRSSC algorithm: where the complexity corresponding to
variables Z,E, Y1, y3 and β is O[t(n2d+n2+dn)]. Assuming
that the number of manually labeled samples is m, the
complexity corresponding to variable y2 is O(tm2). Thus,
the total complexity of this part is O[t(n2d+n2+dn+m2)].
(3) The clustering process: where the complexity correspond-
ing to the variable F is O(n3). It is worth noting that
we did not choose a discretization procedure such as K-
means to process F and obtain the clustering result. The
most valuable Fij (maximum value) corresponds to the j-th
cluster. Therefore, the total complexity of this part is O(n3).
In summary, the total complexity of the given method is
O[t(n2d+ n2 + dn+m2) + n3 + n2].

IV. EXPERIMENTS

A. Datasets

To illustrate the effectiveness of the given algorithm, we
will conduct a series of experiments, and we performed
experiments on four benchmark datasets: 1) Isolet dataset;
2) Yale dataset; 3) Coil 20 dataset; 4) USPS dataset.

1) Isolet dataset
The number of categories of the Isolet data set is 26 , the

number of sample points is 1560 , and the dimension is 617.
2) Yale dataset
The Yale Faces dataset contains 165 grayscale images

in GIF format of 15 individuals. There are 11 images per
subject, one per different facial expression or configuration.
In the experiments, the original images were normalized and
cropped into 32× 32 pixels for clustering.

3) Coil 20 dataset
Evaluation on Visual Object Recognition: We verify the

importance of label information for graph learning for non-
linear manifolds by conducting visual object recognition
experiments on the COIL 20 dataset. The dataset contains
20 objects. The images of each objects were taken 5 degrees
apart as the object is rotated on a turntable, resulting in 72
images for each object. The size of the grayscale image is
3232 pixels.

TABLE II: Clustering performance on the Isolet dataset.

LRR SR SSLRR SSRSSC
0.1 23.23±0.03 27.36±0.07 21.84±0 16.91±0.004
0.2 16.23±0.01 17.36±0.02 15.11±0.01 12.23±0.02
0.3 13.54±0.01 11.63±0.01 11.26±0.1 9.77±0.01
0.4 10.64±0.002 8.77±0.01 8.71±0.001 7.88±0.0005
0.5 8.69±0.001 6.43±0.002 6.55±0.002 5.83±0.001
0.6 6.51±0.03 4.88±0.03 4.98±0.001 4.71±0.001

TABLE III: Clustering performance on the Yale dataset.

LRR SR SSLRR SSRSSC
0.1 19.66±0.02 17.37±0.02 25.63±0.33 13.37±0.003
0.2 9.21±0.003 13.27±0.004 17.14±0.04 9.15±0.001
0.3 5.35±0.002 8.61±0.004 14.65±0.03 5.76±0.003
0.4 3.37±m0.0003 5.54±0.002 11.64±0.006 3.69±0.002
0.5 2.18±0.001 3.62±0.01 9.88±0.02 2.75±0.001
0.6 2.03±0.001 2.83±0.001 7.96±0.004 1.62±0.0004

TABLE IV: Clustering performance on the Coil 20 dataset.

LRR SR SSLRR SSRSSC
0.1 17.86±0.03 8.92±0.01 19.38±0.02 6.64±0.003
0.2 9.54±0.004 2.78±0.002 11.38±0.01 4.18±0.009
0.3 5.49±0.008 1.65±0.002 7.28±0.01 3.22±0.01
0.4 4.09±0.002 0.91±0.002 5.40±0.002 2.04±0.003
0.5 2.87±0.002 0.78±0.002 3.92±0.003 1.35±0.001
0.6 2.03±0.001 0.44±0.0003 3.01±0.003 0.78±0.002

TABLE V: Clustering performance on the USPS dataset.

LRR SR SSLRR SSRSSC
0.1 13.69±0.26 7.69±0.31 7.27±0.29 6.10±0.22
0.2 10.98±0.14 5.66±0.27 6.44±0.27 5.65±0.19
0.3 9.33±0.14 4.90±0.28 5.76±0.18 5.00±0.16
0.4 7.85±0.23 3.90±0.15 4.88±0.20 4.14±0.18
0.5 6.95±0.22 3.12±0.14 4.29±0.16 3.45±0.24
0.6 6.17±0.14 2.63±0.12 3.91±0.16 2.65±0.08
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4) USPS dataset
The USPS digit dataset is described in [26]. A popular

subset contains 9, 298 images of 16 × 16 pixels recording
handwriting digits from 0 to 9.

B. Preliminary analysis of the given algorithm

In this subsection, we will give preliminary analysis of
the given the SSRSSC algorithm. Firstly, the given algorithm
will be compared with the other three algorithms to evaluate
the clustering performance. Secondly, the performance of
block diagonal structure will be shown. The prior information
of all algorithms is selected according to the proportion of
0.1,0.2,0.3,0.4,0.5,0.5,0.6, and the label information of the
corresponding proportion is randomly selected as the prior
information in each class of all data sets. According to
reference[26], the value of the parameter µ of the above
algorithm is 0.9. In this paper, perform 10 independent
repeated experiments for each algorithm in proportion to the
label information, and the mean and variance were used to
represent the final clustering results of the algorithm.
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Fig. 1: Intuitive graph of similarity matrix of SSRSSC
algorithm(a),SSLRR algorithm(b),SR algorithm(c) and LRR
algorithm(d).
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Fig. 2: NMI and RI evaluation results of five different semi-
supervised clustering algorithms on Isolet dataset

To demonstrate the performance of the given algorith-
m, the LRR algorithm[31], SR algorithm[32], and SSLRR
algorithm[26] are selected and the clustering error rate will
be used to evaluate the clustering performance. Table 2− 5
shows the clustering results of Isolet, Coil, Yale and USPS
datasets. From Table 2 and Table 3, we can find that with the
increase of label information, the error rate of the SSRSSC
algorithm is significantly reduced and is lower than other
comparison algorithms. From Table 4 and Table 5, we can
find that when the label information is only 0.1, the error rate
of the SSRSSC algorithm is the lowest; with the increase of
label information, the error rate of the SSRSSC algorithm
is only slightly higher than that of the SR algorithm, but
still lower than the LRR algorithm and SSLRR algorithm.
In summary, the clustering result of the SSRSSC algorithm
proposed in this paper is slightly better than other comparison
algorithms.

In order to show the block diagonal structure of the given
algorithm, we take the first 780 points of the Isolet data set,
and when the label information is 30, the intuitive diagram
of the similarity matrix of the SSRSSC algorithm and the
comparison algorithm is shown in Figure 1. From Figure 1, it
is obvious that the SSRSSC algorithm proposed in this paper
has a better block diagonal structure than the comparison
algorithm.

C. Further performance analysis

In this subsection, We will further analyze the performance
of the given SSRSSC algorithm. The given algorithm will
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Fig. 3: NMI and RI evaluation results of five different semi-
supervised clustering algorithms on Yale dataset

be compared with FME [21], SEE [23], LR-LDS4C [24]
and LG-WSSNCM [25], and ACC and NMI will be used
to evaluate the clustering performance. In the parameter
setting, FME: µ = [0.001, 0.01, 0.1, 1, 10, 100, 1000], γ =
[0.001, 0.01, 0.1, 1, 10, 100, 1000]. SEE: γ = [0.001, 0.01,
0.1, 1, 10, 100, 1000], σ = [0.1, 0.5, 1, 1.5, 2, 2.5, 3]. LR-
LDS4C: k = [5, 10, 20, 30, 40, 45, 50], λ = [0.001,
0.01, 0.1, 1, 10, 100, 1000] and LG-WSSNCM: w1 = 0.3,
w2 = 0.4, w3 = 0.55. SSRSSC: λ = [0.001, 0.01,
0.1, 1, 10, 100, 1000], ϵ select in [0.1, 3]. We choose the best
experimental results for comparison.

Fig. 2-7 show the evaluation results of the NMI and RI
for different semi-supervised clustering algorithms on the
given four datasets. Horizontal axis is the prior information
and longitudinal axis is the value of NMI or RI. The prior
information of all algorithms is selected according to the
proportion p is 0.1, 0.2, 0.3, 0.4, 0.5 or 0.6 respectively. It can
be obtained that in most cases, the clustering performance of
all semi-supervised clustering algorithms will decrease with
the decrease of the percentage of labeled samples. When p =
0.6, FME shows better performance compared with the given
algorithm SSRSSC. For Coil dataset, the performance of SEE
is poor, which possibly due to the given parameters. That is
to say, the SEE algorithm is not optimal under the given pa-
rameters. The same situation is also reflected in the algorithm
LG-WSSNCM for dataset USPS. However, under the same
parameter values, the designed experiment can still reflect
the overall performance of the algorithm. More importantly,
in most cases, the given algorithm SSRSSC is superior to
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Fig. 4: NMI evaluation results of five different semi-
supervised clustering algorithms on Coil dataset, the follow-
ing figure is a zoom in for the above figure.

the other four semi-supervised clustering algorithms, which
fully show the effectiveness of the given algorithm.

D. Parameters analysis

There are two parameters in the SSRSSC algorithm.
Generally, the results of the algorithm will change by the
value of parameters. Without losing generality, we select
Isolet dataset to reveal the changes by the parameters and
the given prior information proportion and the performance
of ACC is selected to show the results. Fig.6 shows the ACC
values that vary with the parameters λ and ϵ. The values of
λ are 0.001, 0.01, 0.1, 1, 10, 100 and 1000. ϵ are 0.1, 0.5, 1,
1.5, 2, 2.5 and 3. Fig. 8 (a), (b) and (c) show the ACC values
according to two parameters when p = 0.2, p = 0.4 and p =
0.6 respectively. We can see that the ACC is sensitive when
p = 0.2 and p = 0.4, and the ACC is not sensitive when p
= 0.6. Therefore, the performance of clustering is important
for parameter selection, especially when there is less prior
information.

V. CONCLUSION

This paper proposes a semi-supervised sparse subspace
clustering algorithm based on reweighting. The algorithm
not only makes the learned optimal similarity matrix have
a good block diagonal structure, but also takes full account
of the supervision information. On the one hand, it uses
supervision information to construct reasonable similarity
matrix; on the other hand, it uses supervision information as
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Fig. 5: RI evaluation results of five different semi-supervised
clustering algorithms on Coil dataset, the following figure is
a zoom in for the above figure.

label information to guide clustering results. In this paper, the
experimental results on benchmark data sets are carried out,
and the experimental results further verify the effectiveness
of the proposed SSRSSC algorithm. The follow-up research
can consider how to ensure its performance is still good while
reducing the amount of known label data, and also consider
combining with other clustering algorithms.

REFERENCES

[1] A.K. Jain, M.N. Murty and P.J. Flynn, “Data clustering: a review”, ACM
Computing Survey, vol. 31, no.3, pp. 264-323, 1999.

[2] L. Parsons, E. Haque and H. Liu, “Subspace clustering for high
dimensional data: a review”, ACM SIGKDD Explorations Newsletter,
vol. 6, no.1, pp.90-105, 2004.

[3] W.Ying, Z. Zhang, T.S. Huang, and J.Y. Lin, “Multibody grouping
via orthogonal subspace decomposition”, in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition 2001, pp.
II252-II257.

[4] Y. Ma, A.Y. Yang and D.R. Fossum, “Estimation of subspace arrange-
ments with applications in modeling and segmenting mixed data”, SIAM
Review, vol. 50, no.3, pp. 413-458, 2008. DOI: 10.1137/060655523.

[5] S.R. Rao, A.Y. Yang, S.S. Sastry and Y.W. Ma, “Robust algebraic
segmentation of mixed rigid- body and planar motions from two views”,
International Journal of Computer Vision, vol. 88, no.3, pp. 425-446,
2010.

[6] J. Ho, M. Yang, J. Lim, K. Lee, and D. Kriegman, “Clustering
appearances of objects under varying illumination conditions”, in IEEE
Conference Computer Vision and Pattern Recognition 2003, pp. 11C18.

[7] P.S. Bradley and O.L. Mangasarian, “K - plane clustering”. Journal of
Global Optimization, vol.16, no.1, pp. 23-32, 2000.

[8] M.E. Tipping and C.M. Bishop, “Mixtures of probabilistic principal
component analyzers”, Neural Computation, vol. 11, no.2, pp. 443-482.,
1999

10% 20% 30% 40% 50% 60%
65

70

75

80

85

90

95

100
NMI

SSRSSC
SEE
LG-WSSNCM
LR-LDS4C
FME

10% 20% 30% 40% 50% 60%
87

88

89

90

91

92

93

94

95

96

97
NMI

SSRSSC
SEE
FME

Fig. 6: NMI evaluation results of five different semi-
supervised clustering algorithms on USPS dataset, the fol-
lowing figure is a zoom in for the above figure.

[9] Y. Ma, H. Derksen, W.Hong and J. Wright, “Segmentation of mul-
tivariate mixed data via lossy data coding and compression”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 29,
no.9, pp. 1546-1562, 2007. DOI: 10.1109/TPAMI.2007.1085.

[10] U.V. Luxburg, “A tutorial on spectral clustering”, Statistic and Com-
puting, vol. 17, no.4, pp. 395-416, 2007.

[11] G.L. Chen, G. Lerman, “Spectral curvature clustering (SCC)”, Inter-
national Journal of Computer Vision, vol. 81, no.3, pp. 317-330, 2009.

[12] E. Elhamifar and R. Vidal, “Sparse subspace clustering”, in IEEE
Conference on Computer Vision and Pattern Recogenition 2009, pp.
2790-2797.

[13] E. Elhamifar and R. Vidal, “Sparse subspace clustering: algorith-
m, theory and applications”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no.11, pp.2765-2781, 2013. DOI:
10.1109/TPAMI.2013.57.

[14] D.S. Pham, S. Budhaditya, D.Phung and S. Venkatesh, “Reweighted
sparse subspace clustering via exploitation of constraints”, in IEEE
Conference on Computer Vision and Pattern Recognition 2012, pp. 550-
557.

[15] J. Xu, K. Xu, K. Chen and J. Ruan, “Reweighted sparse subspace
clustering”, Computer Vision and Image Understanding, vol. 138, pp.
25-37, 2015.

[16] C. G. Li and R. Vidal, “Structured sparae clustering: a unified
optimization framework”, in IEEE Conference on Computer Vision and
Image Recognition 2015, pp. 277-286.

[17] C. You, D. Robinson and R. Vidal, “Scalable sparse subspace cluster-
ing by orthogonal matching pursuit”, in IEEE Conference on Computer
Vision and Pattern Recognition 2016, pp. 3918-3927.

[18] J. Li, Y. Kong and Y. Fu, “Sparse subspace clustering by learning
approximation l0 codes”, AIAA Conference on Artificial Intelligence,
2017, pp. 2189-2195.

[19] J. Sun, L. Zhang, B. Du and Y.M. Lai, “Band selection using improved
sparse subspace clustering for hyperspectral imagery classifycation”,
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 8, no.6, pp. 2784-2797, 2015.

[20] S. Basu, A.Banerjee and R.J. Mooney, “A probabilistic framework for
semi-supervised clustering”, in ACM SICKDD International Conference
on Knowledge Discovery and Data Mining 2004, pp. 59-68.

Engineering Letters, 31:1, EL_31_1_11

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 



10% 20% 30% 40% 50% 60%
92

93

94

95

96

97

98

99

100
RI

SSRSSC
SEE
LG-WSSNCM
LR-LDS4C
FME

10% 20% 30% 40% 50% 60%
97.6

97.8

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6
RI

SSRSSC
SEE
FME

Fig. 7: RI evaluation results of five different semi-supervised
clustering algorithms on USPS dataset, the following figure
is a zoom in for the above figure.

[21] F. Nie, D. Xu, I. W. Tsang, and C. Zhang, “Flexible manifold embed-
ding: A framework for semi-supervised and unsupervised dimension
reduction”, IEEE Transactions on Image Processing, vol. 19, no. 7, pp.
1921-1932, 2010. DOI: 10.1109/TIP.2010.2044958.

[22] S. Qiu, F. Nie, X. Xu, C. Qing and D. Xu, “Accelerating Flexible
Manifold Embedding for Scalable Semi-Supervised Learning”. IEEE
Transactions on Circuits and Systems for Video Technology, vol. 29,
no. 9, pp. 2786-2795, 2019. DOI: 10.1109/TCSVT.2018.2869875.

[23] F. Nie, H. Wang, H. Huang and C. Ding, “Adaptive loss minimization
for semi-supervised elastic embedding”, in Proceedings of the 23th
International Joint Conference on Artificial Intelligence 2013, pp.1565-
1571. https://www.ijcai.org/Proceedings/13/Papers/233.pdf.

[24] H. Zhu, Y. Ma, “Semi-supervised sparse subspace clustering based
on label discrimination and local linear reinforcement”, Application
Research of Computers, vol. 38, no. 10, pp.3014-3018,3034, 2021. DOI:
10.19734/j.issn.1001-3695.2021.03.0044.

[25] D. Zhang, Y. Ma, H. Zhu and F. Smarandache, “A label-guided
weighted semi-supervised neutrosophic clustering algorithm”, Journal
of Intelligent & Fuzzy Systems, vol. 43, no. 5, pp. 5661-5672, 2022.
DOI: 10.3233/JIFS-212812.

[26] L.S. Zhuang, Z.H. Zhou, S.H. Gao, J. Yin, Z. Lin and Y. Ma, “Label
information guided graph construction for semi-supervised learning”,
IEEE Transaction on Image Processing, , vol. 26, no. 9, pp. 4182-4192,
2017.

[27] F. Nie, H. Huang, X. Cai and C. Ding, “Efficient and robust feature
selection via joint L2,1 norms minimization”, in Proceedings of the
23rd International Conference on Neural Information Processing Sys-
tems 2010, pp. 1813-1821.

[28] S.Roweis and L. Saul, “Nonlinear dimensionality reduction by locally
linear embedding” Science, vol. 290, no.5500, pp. 2323-2326, 2000.

[29] Z. Lin, R. Liu and Z. Su. “Linearized alternating direction method
with adaptive penalty for low rank representation”, in Conference and
Workshop on Neural Information Processing Systems 2011, pp. 612-
620.

[30] D. Zhou, T. Bousquet T. Lal, J. Weston and B.S. Olkopf, “Learning
with local and global consistency”, Conference and Workshop on Neural
Information Processing Systems, vol. 16, no.3, pp. 595-602, 2003.

[31] G.C. Liu, Z.C. Lin and Y. Yu, “Robust subspace segmentation by low-

0

0.2

0.4

0.1

0.6

A
C

C

0.5

0.8

1

1 1000

eps

1001.5
102

lambda

12.5 0.1
3 0.01

0.001
(a) p =0.2

0

0.2

0.4

0.1

0.6

A
C

C

0.5

0.8

1

1 1000

eps

1001.5
102

lambda

12.5 0.1
3 0.01

0.001
(b) p = 0.4

0

0.2

0.4

0.1

0.6

A
C

C

0.5

0.8

1

1 1000

eps

1001.5
102

lambda

12.5 0.1
3 0.01

0.001
(c) p = 0.6

Fig. 8: ACC evaluation results of the given SSRSSC algorith-
m on Isolet dataset w.r.t two parameters λ and ϵ for different
prior information. (a) p=0.2, (b) p=0.4, (c) p=0.6

rank sepresentation”, in International Conference on Machine Learning
2010, pp. 1172-1180.

[32] J. Wright, A. J. Yang, A. Ganesh, A. Wagner and M.Yi, “Robust face
recognition via sparse representation”, IEEE Trans on Pattern Analysis
and Machine Intelligence, vol. 55, no.5, pp. 210-227, 2009.

Qiaoyan Li received her Bachelor Degree on
Computational Mathematics from Northwest Uni-
versity in 2000, and Master degree on Applied
Mathematics from Xi’an Polytechnic University in
2007. She is currently an associate professor of
School of Science, Xi’an Polytechnic University.
Her main research interests include statistic learn-
ing, fuzzy logic and neutrosophic set theory.

Engineering Letters, 31:1, EL_31_1_11

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 



Xue Zhao is currently a postgraduate student of
School of Science, Xi’an Polytechnic University,
China. Her main research interests include ma-
chine learning and computational mathematics.

Hengdong Zhu received his Bachelor Degree on
Information and Computing Science from Xi’an
Polytechnic University in 2018, and master Degree
Computational Mathematics on Xi’an Polytechnic
University in 2021. His main research interests
include machine learning and computational math-
ematics.

Engineering Letters, 31:1, EL_31_1_11

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 




