# A Relative Closeness Coefficient Model Based on the Distance of Virtual DMUs Cross-Efficiency Method for Ranking Thai Economic Development

Narong Wichapa, and Suphan Sodsoon

Abstract-Economic development is a process that seeks to improve economic well-being to enhance the quality of life of a community. So, sustainable economic development is an important goal for all countries. In this study, the crossefficiency scores of each decision-making unit (DMU) were calculated using the virtual DMUs cross-efficiency approach, which is based on the distance between ideal and anti-ideal DMUs. The interval cross-efficiency matrix was generated using the viewpoints of minimization and maximization of the objective function (Virtual DMUs distance) of the virtual DMUs cross-efficiency method. After that, we formulated a novel optimization model based on the perspectives of TOPSIS, called the relative closeness coefficient model (RCC model), to convert interval cross-efficiency scores into crisp scores for ranking the DMUs. The proposed method was validated using four numerical examples involving six nursing homes, fourteen bank branches, fourteen international passenger airlines, and the economic development of twenty Thai provinces. The ranking results were compared with other cross-efficiency method rankings. The results show that the ranking results derived from the proposed method were easy to use but effective for solving DEA ranking problems.

*Index Terms*— cross-efficiency method, relative closeness coefficient, TOPSIS, data envelopment analysis, economic development, virtual DMUs

#### I. INTRODUCTION

**E**CONOMIC development is related to increases in consumption, savings, investments and rising incomes of the population. Undoubtedly, it is a principal goal of all countries. Thailand has worked ceaselessly over the past four decades to build its economy by moving from a lowincome country to a middle-income country. Gross Domestic Product, also known as GDP, is the market worth of all finished goods and services produced inside Thailand's

Manuscript received May 01, 2022; revised November 16, 2022.

This paper is supported by Department of Industrial Engineering, Faculty of Engineering and Industrial Technology, Kalasin University, Thailand.

Narong Wichapa is an Assistant Professor of the Department of Industrial Engineering, Faculty of Engineering and Industrial Technology, Kalasin University, Kalasin 46000, Thailand. (Corresponding author to provide phone: +6685-002-8205; e-mail: narong.wi@ksu.ac.th).

Suphan Sodsoon is an Associate Professor of the Department of Industrial Engineering, Faculty of Engineering and Industrial Technology, Kalasin University, Kalasin 46000, Thailand. e-mail: suphan\_sodsoon@hotmail.com). borders over time. Economic growth can be assessed from the perspective of GDP. Since economic development is a process that seeks to improve economic wellbeing to enhance the quality of life of a community, the Thai government has formulated a national economic and social development plan and other policies to continually encourage budget allocation, investments, and infrastructure development [1]. The Gross Provincial Product (GPP) is provincial national income data that can describe a province's overall economy, based on the same concept as the GDP; the GPP can assess the well-being of the people of a province. Therefore, allocating government budgets and other resources for producing all finished goods and services can improve the people's livelihoods in the province. However, each province's budget allocation and other resources should be measured using these inputs to improve GPP. Therefore, measuring efficiency and ranking each province using these input factors are essential to set up appropriate government policies for the economic development of each province.

Data envelopment analysis (DEA) model, pioneered by Charn et al. [2], is a nonparametric technique for estimating the relative efficiency of a group of homogenous decisionmaking units (DMUs) with various inputs and outputs [3]. Over the past four decades, DEA approaches have garnered increasing interest from academics and researchers in a variety of domains such as economics [4], engineering [5], logistics [6], agriculture [7] et cetera. If the relative efficiency score of a DMU is determined to be one, then the DMU is considered efficient. Otherwise, it is said that the DMU is inefficient. However, due to self-assessment, the DMU can measure its own performance using the most beneficial weight. Consequently, it is impossible to distinguish between efficient DMUs [8]. The data envelopment analysis cross-efficiency method (DEA-CE method), offered by Sexton [9], can be used to discriminate DMUs and make weight choices more acceptable to overcome the disadvantages of the traditional DEA models. Unlike traditional DEA models, the DEA-CE method adopts the traditional DEA models with peer-assessment and selfassessment to assess and rank homogenous DMUs. This method allows each DMU to calculate its relative efficiency score from its favorable DEA weights and n-1 peerassessment relative efficiency scores generated by the favorable DEA weights of other DMUs. Then, each DMU's

average cross-efficiency score (ACE score) must be calculated first. Each DMU can be ranked based on its ACE value; if the DMU has a higher ACE score, it will be ranked healthier [10]. This principle has been extended to other cross-efficiency methods for improving the performance of DMU rankings [11], especially the second goal method. Due to its strong discrimination ability, the DEA-CE principles have been widely applied to DEA ranking problems in various fields [12].

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is one of the multi-attribute decision analysis methods (MADM methods) that was originally offered in 1981by Hwang and Yoon [13]. TOPSIS operates on the premise that the selected alternative must have the shortest Euclidean distance from the positive ideal solution (PIS) and the greatest Euclidean distance from the negative ideal solution (NIS). Based on TOPSIS principles, the distances to both PIS and NIS must be assessed concurrently, and a preference order is ordered according to its relative closeness coefficient. According to Kim et al. [14], Shih et al. [15] and our observations, the principal benefits of the TOPSIS technique are (i) the rationale of human choice as represented by sound logic; (ii) relative closeness coefficient that concurrently considers both the best and worst alternatives and (iii) a simple calculation process. These principal benefits make TOPSIS a primary MADM method, and it has been widely used [16],[17],[18], [19],[20],[21].

According to the literature review, the virtual DMUs cross-efficiency method, proposed by Wang et al. [22], is one of the powerful DEA cross-efficiency methods for discrimination among DMUs. It is an attractive method because the concepts of TOPSIS were taken into the traditional cross-efficiency model, especially Model III [22], in which the distances between the ideal decision-making unit (IDMU), the anti-ideal decision-making unit (ADMU) and the evaluated decision-making unit (DMU<sub>d</sub>), called virtual DMUs distances, are considered simultaneously. Unfortunately, they consider only the maximization perspective of the virtual DMUs distance (Max Z). In fact, the minimization perspective of the virtual DMUs distance (Min Z) should not be overlooked. The cross-efficiency ranking that considers both maximization and minimization perspectives of the virtual DMUs distance is more comprehensive and reliable than individual perspectives. In this paper, both perspectives (Min Z and Max Z) of the cross-efficiency model obtained from model III [22] are considered simultaneously, to produce the interval crossefficiency matrix (ICE matrix). Subsequently, we introduce a new optimization model based on perspectives of TOPSIS, called the relative closeness coefficient model (RCC model), to convert interval cross-efficiency scores into crisp scores (relative closeness coefficients) to rank all DMUs. The principal advantages of the proposed method are that it can be applied to tackle large-size problems with interval data, and it can be employed to incorporate various DEA crossefficiency methods for discrimination among DMUs. Moreover, the proposed model is simple to calculate using any optimization solver. Using the proposed method, decision-makers can make more trustworthy choices than with the individual cross-efficiency methods.

The remainder of this study is structured as follows. Section 2 is the literature review. Section 3 presents the traditional cross-efficiency approach. Section 4 presents the cross-efficiency approach based on virtual DMUs. Section 5 introduces the proposed RCC model for ranking DMUs. Section 6 presents two numerical examples of the proposed method. Section 7 is the Conclusion.

#### II. LITERATURE REVIEW

The DEA cross-efficiency approach is one of the most effective approaches to rank the DMUs for DEA problems. Despite the widespread use of cross-efficiency approaches the non-uniqueness of optimal weights has become one of the most significant problems [23]. To address this problem, Sexton et al. [9] developed the DEA cross-efficiency models based on the secondary goal method. Doyle and Green [23] presented the most well-known secondary goal-based crossefficiency models, the aggressive and benevolent crossefficiency models. Based on this concept, Liang et al. [24] developed secondary goal-based cross-efficiency models for this work [23]. Wang and Chin [25] further developed alternative models for the cross-efficiency method to expand the number of DEA methodological options. Wu et al. [26] extended the DEA cross-efficiency model based on the secondary goal method for weight selection, considering both desirable and undesirable targets of all the DMUs. Wang et al. [27], [28] proposed another approach for the secondary goal model, the DEA neutral model. Liu et al. [29] presented a revised neutral model based on the secondary goal. Besides, the game cross-efficiency method was offered for the cross-efficiency evolution process. Liang et al. [30] proposed an effective model based on the game cross-efficiency model. The concept of this method has been extended to various game cross-efficiency models [31], [32]. Besides, Wang et al. [33] offered the DEA cross-efficiency models based on virtual DMUs for ranking all DMUs. The proposed models are effective and attractive models because the ideas of TOPSIS were taken into the traditional crossefficiency model. In Model III [22], the virtual DMUs distance has been maximized for DMU rankings. Unfortunately, they offer only maximization of the objective function (virtual DMUs distance) of the proposed DEA cross-efficiency model. The information contained in the different perspectives of DEA cross-efficiency models should be considered together for increased reliability in the decision-making process. Undoubtedly, ranking results considering both perspectives provide more comprehensive and reliable perspectives.

Combining the DEA cross-efficiency score an additional significant method. The arithmetic average technique is the most prevalent. However, it cannot be utilized to analyze the correlation between weights and efficiency scores [33]. Additionally, many researchers [34],[35],[36],[37],[38] have proposed combination cross-efficiency methods: the perspective of entropy weight, CRITIC weight, standard deviation weight and others. Although the entropy weight is widely used in the cross-efficiency method, its application to interval data of cross-efficiency scores has been offered recently. Wang et al. [39] proposed a Shannon's entropy method to convert the interval cross-efficiency scores into crisp scores to rank all DMUs. Lu and Liu [40] proposed a

novel Gibbs entropy optimization model to evaluate the optimal Gibbs entropy values to rank all DMUs. This model is exciting because it can be utilized to convert interval cross-efficiency scores into crisp scores to rank DMUs. It is simple to apply optimization solvers in computing. Recently, Wichapa et al. [41] presented a novel Gibbs entropy model for combining interval cross-efficiency scores, which are derived from aggressive and benevolent cross-efficiency models for ranking DMUs. The main advantages of this method are that it can be applied to solve large-size ranking problems with uncertainty, and it can be used to combine other cross-efficiency models to rank DMUs. Besides, it is simple but powerful to use in computing by using optimization solvers. Inspired by the above ideas of the combination of the cross-efficiency score, we present an alternative ranking method for interval crossefficiency score derived from both maximization and minimization perspectives of the objective function (Virtual DMUs distance) of the proposed cross-efficiency model (M-III [22]) to rank DMUs. To be precise, the proposed method should be able to solve large-size problems with interval data, and it should be able to combine other cross-efficiency models for ranking DMUs. Furthermore, the proposed model should be simple to calculate with any optimization solver. Certainly, by using the proposed method, decisionmakers can achieve more reliable decisions than individual perspectives.

In this paper, we consider the combination of maximization and minimization perspectives of virtual DMUs distance of model III [22] for ranking DMUs. Our method uses the virtual DMUs cross-efficiency models to make full use of the information contained in each model (each perspective). In addition, the novel RCC model, based on the concepts of TOPSIS, is developed to transform interval cross-efficiency scores, derived from both maximization and minimization perspectives of model III [18], into crisp values for ranking all DMUs.

#### III. CROSS-EFFICIENCY METHOD

#### A. CCR Model

The CCR model, which was developed by Charnes et al. [2], is a powerful mathematical model for assessing the performance of a group of DMUs with multiple outputs and multiple inputs. Assume that each DMU<sub>*j*</sub> (j = 1, 2, ..., n) with the inputs ( $x_{ij}$ , i = 1, 2, ..., m) produces outputs of DMU<sub>*j*</sub> ( $y_{rj}$ , r = 1, 2, ..., s). Let  $u_{rk}$  and  $v_{ik}$  be the weights of outputs and inputs respectively. For a set of DMU<sub>*d*</sub> ( $1 \le d \le n$ ), the crossefficiency score ( $\theta_{dd}$ ) can be obtained by the CCR model as in model (1).

$$\begin{aligned} \max Z &= \theta_{dd} = \sum_{r=1}^{s} u_{rd} y_{rd} \\ \sum_{r=1}^{s} u_{rd} y_{rj} - \sum_{i=1}^{m} v_{id} x_{ij} \leq 0, \forall j, j = 1, 2, 3, ..., n \\ \sum_{i=1}^{m} v_{id} x_{id} = 1, \forall j \\ v_{id} \geq 0, \forall i, i = 1, 2, 3, ..., m \\ u_{rd} \geq 0, \forall r, r = 1, 2, 3, ..., s \end{aligned}$$
(1)

#### B. The Concept of the Cross-Efficiency Method

After solving Equation (1), let  $u_{rd}^*$  and  $v_{id}^*$  be the optimal weights of outputs and inputs respectively for a given DMU<sub>d</sub>, then the cross-efficiency scores of each DMU<sub>j</sub> (*j*=1,2,3,...,*n*, *j* ≠ *d*) peer-evaluated by DMU<sub>d</sub> are given by

$$\theta_{dj} = \frac{\sum_{r=1}^{s} u_{rd}^* y_{rj}}{\sum_{i=1}^{m} v_{id}^* x_{ij}}, d, j = 1, 2, 3, \dots, n$$
(2)

As a result, the average cross-efficiency score of  $DMU_j$ ( $\overline{\theta}_i$ ), defined by Sexton [9], is as follows.

$$\overline{\theta}_{j} = \frac{1}{n} \sum_{d=1}^{n} \theta_{dj}, d, j = 1, 2, 3, ..., n$$
(3)

#### IV. CROSS-EFFICIENCY METHOD BASED ON IDEAL AND ANTI-IDEAL DECISION-MAKING UNITS

This section presents the well-known cross-efficiency method based on virtual DMUs for calculating interval cross-efficiency scores.

The following are definitions of an Ideal Decision-Making Unit (IDMU) and an Anti-Ideal Decision-Making Unit (ADMU) [22]:

**Definition 1.** A virtual DMU is an IDMU if it requires the fewest inputs to generate the most outputs. If a virtual DMU consumes the greatest number of inputs but produces the smallest number of outputs, it can be categorized as an ADMU.

Based on Definition 1, the inputs, and outputs of an IDMU can be described as follows:

$$x_i^p = \min\{x_{ij}\}, \ i = 1, 2, 3, ..., n$$
$$y_r^p = \max\{y_{rj}\}, \ r = 1, 2, 3, ..., s$$

The inputs and outputs of the ADMU are defined as

$$x_i^n = \max \{x_{ij}\}, i = 1, 2, 3, ..., n$$
  
 $y_r^n = \min \{y_{ri}\} r = 1, 2, 3, ..., s$ 

**Definition 2.** The distances of IDMU, ADMU and between IDMU and ADMU are defined as

$$D_{d}^{\text{IDMU}} = \sum_{i=1}^{m} v_{id} (x_{id} - x_{i}^{p}) + \sum_{r=1}^{s} u_{rd} (y_{i}^{p} - y_{rd}), d = 1, 2, ..., n$$
$$D_{d}^{\text{ADMU}} = \sum_{i=1}^{m} v_{id} (x_{i}^{n} - x_{id}) + \sum_{r=1}^{s} u_{rd} (y_{rd} - y_{i}^{n}), d = 1, 2, ..., n$$
$$D_{\text{ADMU}}^{\text{IDMU}} = \sum_{i=1}^{m} v_{id} (x_{i}^{n} - x_{i}^{p}) + \sum_{r=1}^{s} u_{rd} (y_{i}^{p} - y_{i}^{n}), d = 1, 2, ..., n$$

In Wang's Model-III, the maximization of the virtual DMUs distance is given by

### Volume 31, Issue 1: March 2023

$$\begin{aligned} Max \ D_{ADMU}^{IDMU} &= \sum_{i=1}^{n} v_{id} (x_i^n - x_i^p) + \sum_{r=1}^{n} u_{rd} (y_i^p - y_i^n) \\ \sum_{i=1}^{m} v_{id} \cdot x_{id} &= 1, \\ \sum_{r=1}^{s} u_{rd} \cdot y_{rd} &= \theta_{dd}^*, \\ \sum_{r=1}^{s} u_{rd} \cdot y_{rj} - \sum_{i=1}^{m} v_{id} \cdot x_{ij} \leq 0, \ \forall j, \ j = 1, 2, ..., n, \\ v_{id} \geq 0, \ i = 1, 2, ..., m \\ u_{rd} \geq 0 \ r = 1, 2, ..., s \end{aligned}$$

Details of the other virtual DMUs cross-efficiency models are shown in Wang et al. [22].

#### V. PROPOSED METHOD

This section presents a new method for ranking a set of DMUs based on the virtual DMUs distance.Fig.1 depicts the proposed framework in this paper.



Fig.1. The framework for this paper.

#### A. Generating the ICE matrix

This section presents a combination of both perspectives of min Z and max Z of model (4) to enhance the effectiveness and reliability of the assessment. Details of calculation steps are as follows.

(1) Calculate the relative efficiency scores of each DMU based on the CCR model, namely the CCR score.

(2) Calculate the cross-efficiency scores of each DMU based on min Z and max Z of model (4).

(3) Generate ICE matrix based on the cross-efficiency scores of both perspectives of model (4).

Based on model (4), both min Z and max Z perspectives

must be calculated first. As a result, the ICE matrix can be generated using the minimization perspective  $(X^{minZ})$  and the maximization perspective  $(X^{maxZ})$ . Details are shown in Eq.(5) and Eq.(6).

$$X^{\min Z} = \begin{bmatrix} x_{11}^{\min Z} & x_{12}^{\min Z} & x_{13}^{\min Z} & \cdots & x_{1n}^{\min Z} \\ x_{21}^{\min Z} & x_{22}^{\min Z} & x_{23}^{\min Z} & \cdots & x_{2n}^{\min Z} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{m1}^{\min Z} & x_{m2}^{\min Z} & x_{m3}^{\min Z} & \cdots & x_{mn}^{\max Z} \end{bmatrix}$$

$$X^{\max Z} = \begin{bmatrix} x_{11}^{\max Z} & x_{12}^{\max Z} & x_{13}^{\max Z} & \cdots & x_{1n}^{\max Z} \\ x_{21}^{\max Z} & x_{22}^{\max Z} & x_{23}^{\max Z} & \cdots & x_{2n}^{\max Z} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{m1}^{\max Z} & x_{m2}^{\max Z} & x_{m3}^{\max Z} & \cdots & x_{mn}^{\max Z} \end{bmatrix}$$
(5)

and

where indices *i* and *j* are DMU and target DMU, respectively. The  $x_{ij}^{\min Z}$  and  $x_{ij}^{\max Z}$  are cross-efficiency scores of the minimization and maximization perspectives, respectively. The ICE matrix based on values of  $(X^{\min Z})$  and  $(X^{\max Z})$  can be generated as

$$X = \begin{bmatrix} [x_{11}^{l}, x_{11}^{u}] & [x_{12}^{l}, x_{12}^{u}] & \cdots & [x_{1n}^{l}, x_{1n}^{u}] \\ [x_{21}^{l}, x_{21}^{u}] & [x_{22}^{l}, x_{22}^{u}] & \cdots & [x_{2n}^{l}, x_{2n}^{u}] \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ [x_{m1}^{l}, x_{m1}^{u}] & [x_{m2}^{l}, x_{m2}^{u}] & \cdots & [x_{mn}^{l}, x_{mn}^{u}] \end{bmatrix}$$
(6)

where  $X = \begin{bmatrix} X^{\min Z}, X^{\max Z} \end{bmatrix}$ ,  $x_{ij}^{l} = \min \{x_{ij}^{\min Z}, x_{ij}^{\max Z}\}$  and  $x_{ij}^{u} = \max \{x_{ij}^{\min Z}, x_{ij}^{\max Z}\}$ ,  $\forall i = 1, 2, ..., m, \forall j = 1, 2, ..., n$ .

#### B. Formulating the Relative Closeness Coefficient Model

This section offers a novel optimization model based upon the ideas of TOPSIS for ranking DMUs, called the RCC model. The distance between IDMU, ADMU and DMU<sub>i</sub> will be considered. The proposed RCC model is described as follows. Let RCC<sub>i</sub> (*i*=1,2,3,..., *n*) be the relative closeness coefficient of DMU<sub>i</sub>,  $\eta$  and  $\rho$  are the maximum weights of the summation of distance from negative ideal point to DMU<sub>i</sub> and the summation of distances from positive ideal point to DMU<sub>i</sub> respectively. Let  $x^n$  and  $x^p$  be the negative ideal and positive ideal values of all elements in ICE matrix,  $x^n = \min \{x_{ij}^t, x_{ij}^u\}$  and  $x^p = \max \{x_{ij}^t, x_{ij}^u\}$ , *i*, *j* = 1,2,...,*n*, then the RCC model is

$$\operatorname{RCC}_{i} = \frac{\sum_{j=1}^{n} \eta((x_{ij}^{l} - x^{n}) + (x_{ij}^{u} - x^{n}))}{\sum_{j=1}^{n} \eta((x_{ij}^{l} - x^{n}) + (x_{ij}^{u} - x^{n})) + \sum_{j=1}^{n} \rho((x^{p} - x_{ij}^{l}) + (x^{p} - x_{ij}^{u}))}$$
  
$$\forall i, j = 1, 2, ..., n$$
  
$$\eta, \rho \ge 0$$

To achieve the optimal solution of RCC<sub>i</sub> (maximum relative closeness efficient), the maximum value of RCC<sub>i</sub> (the  $\eta$  and  $\rho$  must be maximum values) can be formulated as

$$\operatorname{Max} \operatorname{RCC}_{i} = \frac{\sum_{j=1}^{n} \eta((x_{ij}^{l} - x^{n}) + (x_{ij}^{u} - x^{n}))}{\sum_{j=1}^{n} \eta((x_{ij}^{l} - x^{n}) + (x_{ij}^{u} - x^{n})) + \sum_{j=1}^{n} \rho((x^{p} - x_{ij}^{l}) + (x^{p} - x_{ij}^{u}))}$$
  
$$\forall i, j = 1, 2, 3, ..., n$$
  
$$\eta, \rho \ge 0, \eta = \rho$$

The above model is a nonlinear fractional programming model. Based on the concept of Charnes and Cooper [42], the above model can be converted to model (7).

$$\begin{aligned} &\operatorname{Max} \operatorname{RCC}_{i} = \sum_{j=1}^{n} \eta((x_{ij}^{l} - x^{n}) + (x_{ij}^{u} - x^{n})) \\ &\sum_{j=1}^{n} \eta((x_{ij}^{l} - x^{n}) + (x_{ij}^{u} - x^{n})) + \\ &\sum_{j=1}^{n} \rho((x^{p} - x_{ij}^{l}) + (x^{p} - x_{ij}^{u})) = 1, \end{aligned}$$

$$\forall i, j = 1, 2, 3, ..., n, \\ \eta, \rho \ge 0, \eta = \rho; \end{aligned}$$

$$(7)$$

The objective function of the proposed model is to be maximized; the RCC<sub>*i*</sub>,  $\eta$  and  $\rho$  can be achieved using model (7). After obtaining the RCC<sub>*i*</sub>, a set of DMUs can be ranked by preference in descending order of the RCC<sub>*i*</sub> value. The larger the RCC<sub>*i*</sub> value, the better the DMU's ranking.

#### VI. NUMERICAL EXAMPLES

Four numerical examples, including six nursing homes, fourteen bank branches, fourteen international passenger airlines, and the economic development of twenty provinces in Thailand, are provided in this section to illustrate the potential applications of the proposed method and its effectiveness in ranking DMUs. Details are provided below.

#### A. Six Nursing Homes

The six nursing homes proposed by Sexton et al. [9] consist of two inputs ( $X_1$  and  $X_2$ ) and two outputs ( $Y_1$  and  $Y_2$ ). Let  $X_1$  and  $X_2$  be staff hours per day and supplies per day respectively. Let  $Y_1$  and  $Y_2$  be total Medicare-plus-Medicaid reimbursed patient days and total privately paid patient days respectively. The data set for the six nursing homes is shown in TABLE I.

| TABLE I<br>Data set For six nursing homes |       |       |         |       |        |  |  |  |  |  |
|-------------------------------------------|-------|-------|---------|-------|--------|--|--|--|--|--|
| DMUs                                      | $X_I$ | $X_2$ | $Y_{I}$ | $Y_I$ | CCR    |  |  |  |  |  |
| 1                                         | 1.50  | 0.20  | 1.40    | 0.35  | 1.0000 |  |  |  |  |  |
| 2                                         | 4.00  | 0.70  | 1.40    | 2.10  | 1.0000 |  |  |  |  |  |
| 3                                         | 3.20  | 1.20  | 4.20    | 1.05  | 1.0000 |  |  |  |  |  |
| 4                                         | 5.20  | 2.00  | 2.80    | 4.20  | 1.0000 |  |  |  |  |  |
| 5                                         | 3.50  | 1.20  | 1.90    | 2.50  | 0.9775 |  |  |  |  |  |
| 6                                         | 3.20  | 0.70  | 1.40    | 1.50  | 0.8675 |  |  |  |  |  |

The CCR scores of DMUs must be calculated first using Eq. (1). Next, both min Z and max Z perspectives of Eq. (4), were solved using LINGO software. As a result, the cross-efficiency matrices of each perspective were generated as listed in TABLE II and TABLE III, respectively.

| TABLE II<br>THE CROSS-EFFICIENCY MATRIX OF MAXIMIZATION PERSPECTIVE |        |        |        |        |        |        |  |  |  |  |  |
|---------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--|--|--|--|--|
| DMUs/Target<br>DMUs                                                 | 1      | 2      | 3      | 4      | 5      | 6      |  |  |  |  |  |
| 1                                                                   | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |  |  |  |  |  |
| 2                                                                   | 1.0000 | 1.0000 | 0.8640 | 1.0000 | 1.0000 | 1.0000 |  |  |  |  |  |
| 3                                                                   | 0.5000 | 0.5000 | 1.0000 | 0.8295 | 0.8295 | 0.8295 |  |  |  |  |  |
| 4                                                                   | 0.7000 | 0.7000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |  |  |  |  |  |
| 5                                                                   | 0.7083 | 0.7083 | 0.9676 | 0.9775 | 0.9775 | 0.9775 |  |  |  |  |  |
| 6                                                                   | 0.7551 | 0.7551 | 0.8046 | 0.8675 | 0.8675 | 0.8675 |  |  |  |  |  |

|             |           | TA       | ABLE III   |           |            |    |
|-------------|-----------|----------|------------|-----------|------------|----|
| THE CROSS   | -EFFICIEN | NCY MATI | RIX OF MIN | IMIZATION | PERSPECTIV | /E |
| DMUs/Target |           |          |            |           | _          |    |

| DMUs/Target<br>DMUs | 1      | 2      | 3      | 4      | 5      | 6      |
|---------------------|--------|--------|--------|--------|--------|--------|
| 1                   | 1.0000 | 0.4977 | 0.7111 | 0.2889 | 1.0000 | 1.0000 |
| 2                   | 0.3505 | 1.0000 | 0.2667 | 0.6500 | 1.0000 | 1.0000 |
| 3                   | 1.0000 | 0.4129 | 1.0000 | 0.4063 | 0.8295 | 0.8295 |
| 4                   | 0.4056 | 1.0000 | 0.4103 | 1.0000 | 1.0000 | 1.0000 |
| 5                   | 0.4301 | 0.9506 | 0.4136 | 0.8844 | 0.9775 | 0.9775 |
| 6                   | 0.4099 | 0.8027 | 0.3333 | 0.5804 | 0.8675 | 0.8675 |

After obtaining the cross-efficiency matrices of both perspectives, the ICE matrix was generated using Eq. (6). Details of the ICE matrix of the six nursing homes problem are shown in TABLE IV.

| TABLE IV<br>The interval cross-efficiency matrix of six nursing homes |          |          |          |          |          |          |  |  |  |  |  |
|-----------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|--|--|--|--|--|
| DMUs                                                                  | 1        | 2        | 3        | 4        | 5        | 6        |  |  |  |  |  |
| 1                                                                     | [1.0000, | [0.4977, | [0.7111, | [0.2889, | [1.0000, | [1.0000, |  |  |  |  |  |
|                                                                       | 1.0000]  | 1.0000]  | 1.0000]  | 1.0000]  | 1.0000]  | 1.0000]  |  |  |  |  |  |
| 2                                                                     | [0.3505, | [1.0000, | [0.2667, | [0.6500, | [1.0000, | [1.0000, |  |  |  |  |  |
|                                                                       | 1.0000]  | 1.0000]  | 0.8640]  | 1.0000]  | 1.0000]  | 1.0000]  |  |  |  |  |  |
| 3                                                                     | [0.5000, | [0.4129, | [1.0000, | [0.4063, | [0.8295, | [0.8295, |  |  |  |  |  |
|                                                                       | 1.0000]  | 0.5000]  | 1.0000]  | 0.8295]  | 0.8295]  | 0.8295]  |  |  |  |  |  |
| 4                                                                     | [0.4056, | [0.7000, | [0.4103, | [1.0000, | [1.0000, | [1.0000, |  |  |  |  |  |
|                                                                       | 0.7000]  | 1.0000]  | 1.0000]  | 1.0000]  | 1.0000]  | 1.0000]  |  |  |  |  |  |
| 5                                                                     | [0.4301, | [0.7083, | [0.4136, | [0.8844, | [0.9775, | [0.9775, |  |  |  |  |  |
|                                                                       | 0.7083]  | 0.9506]  | 0.9676]  | 0.9775]  | 0.9775]  | 0.9775]  |  |  |  |  |  |
| 6                                                                     | [0.4099, | [0.7551, | [0.3333, | [0.5804, | [0.8675, | [0.8675, |  |  |  |  |  |
|                                                                       | 0.7551]  | 0.8027]  | 0.8046]  | 0.8675]  | 0.8675]  | 0.8675]  |  |  |  |  |  |

After obtaining the ICE matrix, the values of  $RCC_i$  were calculated. For example, to obtain the value of  $RCC_1$  value, the relevant data listed in TABLE IV were entered into Eq. (7):

- $x^{n} = \min\{[1.0000, 1.0000], [0.4977, 1.0000], ..., [0.8675, 0.8675]\}$ = 0.2667
- $x^{p} = \max \{ [1.0000, 1.0000], [0.4977, 1.0000], ..., [0.8675, 0.8675] \}$ = 1.0000

As a result, the mathematical model for finding the optimal value of  $RCC_1$  is

 $Max RCC_1 =$ 

$$\begin{split} \eta & [(1.0000 - 0.2667) + (1.0000 - 0.2667) + \\ & (0.4977 - 0.2667) + (1.0000 - 0.2667) + \\ & (0.7111 - 0.2667) + (1.0000 - 0.2667) + \\ & (0.2889 - 0.2667) + (1.0000 - 0.2667) + \\ & (1.0000 - 0.2667) + (1.0000 - 0.2667) + \\ & (1.0000 - 0.2667) + (1.0000 - 0.2667)]; \end{split}$$

Subject to:

$$\begin{split} &\eta[(1.0000-0.2667)+(1.0000-0.2667)+\\ &(0.4977-0.2667)+(1.0000-0.2667)+\\ &(0.7111-0.2667)+(1.0000-0.2667)+\\ &(0.2889-0.2667)+(1.0000-0.2667)+\\ &(1.0000-0.2667)+(1.0000-0.2667)+\\ &(1.0000-0.2667)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-0.7111)+(1.0000-1.0000)+\\ &(1.0000-0.2889)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.0000)+\\ &(1.0000-1.00$$

In this paper, the mathematical model of  $RCC_1$  was solved using the LINGO software. As a result,  $RCC_1$  is 0.8293. TABLE V provides information on each  $RCC_i$  value.

| ,                | TABLE V      |            |            |            |        |        |  |  |  |  |  |  |
|------------------|--------------|------------|------------|------------|--------|--------|--|--|--|--|--|--|
|                  | I HE KELAIIV | E CLOSENE: | SS COEFFIC | IENT OF EA | CH DMU |        |  |  |  |  |  |  |
| DMUs             | DMU1         | DMU2       | DMU3       | DMU4       | DMU5   | DMU6   |  |  |  |  |  |  |
| RCC <sub>i</sub> | 0.8293       | 0.7876     | 0.6553     | 0.7973     | 0.7671 | 0.6339 |  |  |  |  |  |  |
| Rank             | 1            | 3          | 5          | 2          | 4      | 6      |  |  |  |  |  |  |

Finally, the ranking comparisons for the proposed method, benevolent, aggressive and Wang's models [22], namely Model-III (M-III) and Model-IV (M-IV), are provided in TABLE VI.

| TABLE VI                |                       |  |  |  |  |  |  |  |
|-------------------------|-----------------------|--|--|--|--|--|--|--|
| THE RANKING COMPARISONS | FOR SIX NURSING HOMES |  |  |  |  |  |  |  |

| DMUs | Ben.   | Rank | Agg.   | Rank | M-III  | Rank |
|------|--------|------|--------|------|--------|------|
| 1    | 1.0000 | 1    | 0.7639 | 1    | 1.0000 | 1    |
| 2    | 0.9773 | 3    | 0.7004 | 3    | 0.9773 | 2    |
| 3    | 0.8580 | 5    | 0.6428 | 5    | 0.7481 | 6    |
| 4    | 1.0000 | 1    | 0.7184 | 2    | 0.9000 | 3    |
| 5    | 0.9758 | 4    | 0.6956 | 4    | 0.8861 | 4    |
| 6    | 0.8570 | 6    | 0.6081 | 6    | 0.8195 | 5    |

|      | (      | TABLE VI<br>CONTINUED) |          |      |
|------|--------|------------------------|----------|------|
| DMUs | M-IV   | Rank                   | Proposed | Rank |
| 1    | 0.7639 | 1                      | 0.8293   | 1    |
| 2    | 0.7004 | 3                      | 0.7876   | 3    |
| 3    | 0.6428 | 5                      | 0.6553   | 5    |
| 4    | 0.7184 | 2                      | 0.7973   | 2    |
| 5    | 0.6956 | 4                      | 0.7671   | 4    |
| 6    | 0.6081 | 6                      | 0.6339   | 6    |

As seen in TABLE VI, the rankings of each cross-efficiency model were obtained. The aggressive, M-IV and proposed models assess that  $DMU_1 > DMU_4 > DMU_2 > DMU_4 > DMU_3 > DMU_6$ , but the Model-III is different. Besides, the benevolent model cannot distinguish between  $DMU_1$  and  $DMU_4$ .

Fig. 2 shows the results of the proposed method with M-III model. From this figure, it can be seen that the proposed method tends to be inconsistent with the M-III model. Only the  $DMU_3$  is the same ranking. However, based on TABLE VI, the proposed method tends to be consistent with the other methods.



Fig.2. The ranking comparisons for the six nursing homes problem

Spearman's rank correlation test was used to evaluate the correlation coefficients  $(r_s)$  of each method. The details of the  $r_s$  values of each method are shown in TABLE VII.

TADLEVII

| THE CORRELATION TEST FOR SIX NURSING HOMES |            |            |       |       |          |  |  |  |  |  |
|--------------------------------------------|------------|------------|-------|-------|----------|--|--|--|--|--|
|                                            | Benevolent | Aggressive | M-III | M-IV  | Proposed |  |  |  |  |  |
| Benevolent                                 | -          | 0.986      | 0.841 | 0.986 | 0.986    |  |  |  |  |  |
| Aggressive                                 | 0.986      | -          | 0.886 | 1.000 | 1.000    |  |  |  |  |  |
| M-III                                      | 0.841      | 0.886      | -     | 0.886 | 0.886    |  |  |  |  |  |
| M-IV                                       | 0.986      | 1.000      | 0.886 | -     | 1.000    |  |  |  |  |  |
| Proposed                                   | 0.986      | 1.000      | 0.886 | 1.000 | -        |  |  |  |  |  |

As seen in TABLE VII, the  $r_s$  values for the proposed method and benevolent, aggressive, Model-III and Model-IV, are obtained as  $r_s = 0.986$ , 1.000, 0.886 and 1.000, respectively. The proposed method is highly correlated with the well-known cross-efficiency models, including benevolent, aggressive and Model-IV. By comparison with well-known models, the proposed method provides higher  $r_s$  while Model-III provides lower  $r_s$ . This means that the proposed method is more consistent with other methods than the M-III model. The comparison for the proposed method and traditional M-III is shown in Fig.3.



Fig.3. Comparison of the proposed method and traditional M-III

As seen in Fig.3, Spearman's rank correlation test was used to evaluate the  $r_s$  values of each method. As a result, the  $r_s$  for the proposed method and the benevolent, aggressive and M-IV were computed as  $r_s = 0.986$ , 1.000 and 1.000 respectively. The  $r_s$  for the traditional model (M-III) and the benevolent, aggressive and M-IV were computed as  $r_s = 0.841$ , 0.886 and 0.886 respectively. The results show that the proposed method is more reliable than the traditional M-III model [22].

#### B. Sherman and Gold's Dataset for 14 Bank Branches

Sherman and Gold [43] presented an actual dataset of 14 bank branches with three inputs and four outputs. The rent (thousands of dollars), fulltime equivalent personnel, and supplies (thousands of dollars) are input 1, input 2 and input 3, respectively. Details for Sherman and Gold's dataset for 14 bank branches are shown in TABLE VIII.

Using the same calculation procedure of Section A, the CCR scores of DMUs were calculated using Eq. (1). As a result, the CCR scores for DMU<sub>1</sub>, DMU<sub>2</sub>, DMU<sub>3</sub>, DMU<sub>4</sub>, DMU<sub>5</sub>, DMU<sub>6</sub>, DMU<sub>7</sub>, DMU<sub>8</sub>, DMU<sub>9</sub>, DMU<sub>10</sub>, DMU<sub>11</sub>, DMU<sub>12</sub>, DMU<sub>13</sub> and DMU<sub>14</sub> were obtained as: 1.0000, 1.0000, 1.0000, 0.9041, 1.0000, 0.7821, 1.0000, 1.0000, 1.0000, 0.9668, 0.8522, 0.9049, and 1.0000 respectively. As seen in the CCR scores, the efficient DMUs are DMU<sub>1</sub>, DMU<sub>2</sub>, DMU<sub>3</sub>, DMU<sub>4</sub>, DMU<sub>6</sub>, DMU<sub>8</sub>, DMU<sub>9</sub>, DMU<sub>10</sub>, and DMU<sub>14</sub>, and they cannot differentiate between these DMUs. Using the same calculation method as Section *A* of six nursing homes, the ICE matrix for cross-efficiency score of 14 bank branches is shown in Table IX.

 TABLE IX

 The interval cross-efficiency matrix of 14 bank branches

| DMU | 1                 | 2                 | 3                 | 4                 | 5                 | 6                 | 7                 |
|-----|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 1   | [1.000,<br>1.000] | [0.276,<br>0.996] | [0.270,<br>0.722] | [0.839,<br>0.916] | [0.839,<br>0.839] | [0.337,<br>0.870] | [0.722,<br>0.722] |
| 2   | [1.000,           | [0.770,           | [0.730,           | [1.000,           | [1.000,           | [0.840,           | [1.000,           |
| 3   | [0.772,           | [0.553,           | [1.000]           | [0.837,           | [0.879,           | [0.743,           | [1.000]           |
| 4   | [0.751,           | [0.425,           | [0.610,           | [1.000,           | [1.000,           | [0.609,           | [0.944,           |
| 5   | 0.937]<br>[0.444, | [0.830,           | [0.433,           | [0.880,           | [0.904,           | [0.398,<br>0.724] | [0.808,           |
| 6   | [0.828,           | [0.603,           | [1.000,           | [0.935,           | [1.000,           | [1.000,           | [1.000,           |
| 7   | 0.869]<br>[0.559, | [0.721,           | [0.674,           | [0.717,           | [0.762,           | [0.558,           | [0.782,           |
| 8   | 0.631]<br>[0.718, | 0.641]<br>[0.088, | 0.782]<br>[0.869, | 0.768]<br>[0.794, | [0.762]           | 0.579]<br>[0.854, | 0.782]<br>[0.924, |
| 9   | 0.726]<br>[0.093, | 0.854]<br>[0.526, | 0.924]<br>[0.122, | 0.855]<br>[0.094, | 0.841]<br>[0.097, | 0.966]<br>[0.128, | 0.924]<br>[0.122, |
| 10  | 0.729]<br>[0.523, | 0.716]<br>[0.572, | 0.743]<br>[0.902, | 0.102]<br>[0.649, | 0.097]<br>[0.728, | 1.000]<br>[0.497, | 0.122]<br>[0.902, |
| 10  | 0.560]<br>[0.563, | 0.777]<br>[0.593, | 0.989]<br>[0.786, | 0.759]<br>[0.669, | 0.728]<br>[0.740, | 0.904]<br>[0.566, | 0.902]<br>[0.791, |
| 11  | 0.567]            | 0.871]            | 0.791]            | 0.742]            | 0.740]            | 0.708]            | 0.791]            |
| 12  | 0.581]            | 0.616]            | 0.817]            | 0.760]            | 0.747]            | 0.650]            | 0.817]            |
| 13  | [0.364,<br>0.519] | 0.570]            | [0.443,<br>0.615] | [0.607,<br>0.641] | 0.661]            | [0.431,<br>0.579] | 0.615]            |
| 14  | [0.540,<br>0.593] | [0.000,<br>0.829] | [0.751,<br>0.802] | [0.710,<br>0.782] | [0.788,<br>0.788] | [0.643,<br>0.688] | [0.802,<br>0.802] |

TABLE IX (CONTINUED)

| 11041 |                                            |       |       |        |         |        |         | DMU | 8                 | 9                 | 10                | 11                | 12                | 13                | 14                |
|-------|--------------------------------------------|-------|-------|--------|---------|--------|---------|-----|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|       | TABLE VIII<br>Data set of 14 bank branches |       |       |        |         |        |         | 1   | [0.359,<br>0.660] | [0.459,<br>0.934] | [0.268,<br>0.485] | [0.256,<br>0.256] | [0.268,<br>0.268] | [0.246,<br>0.246] | [0.256,<br>0.299] |
| DMUs  | $X_I$                                      | $X_2$ | X3    | Y1     | Y 2     | Y 3    | Y4      | 2   | [0.878,<br>1.000] | [0.626,<br>1.000] | [0.732,<br>0.872] | [1.000,<br>1.000] | [0.929,<br>0.929] | [1.000,<br>1.000] | [1.000,<br>1.000] |
| 1     | 140000                                     | 42900 | 87500 | 484000 | 4139100 | 59860  | 2951430 | 3   | [0.716,<br>1.000] | [0.484,<br>0.772] | [1.000,<br>1.000] | [0.914,<br>0.914] | [1.000,<br>1.000] | [0.864,<br>0.864] | [0.882,<br>0.914] |
| 2     | 48800                                      | 17400 | 37900 | 384000 | 1685500 | 139780 | 3336860 | 4   | [0.610,<br>0.716] | [0.202, 0.698]    | [0.623,<br>0.841] | [0.709,<br>0.709] | [0.736,<br>0.736] | [0.679,<br>0.679] | [0.709,<br>0.724] |
| 3     | 36600                                      | 14200 | 29800 | 209000 | 1058900 | 65720  | 3570050 | 5   | [0.389, 0.443]    | [0.951,<br>0.377] | [0.452, 0.743]    | [0.785,           | [0.727, 0.727]    | [0.786,<br>0.786] | [0.785, 0.812]    |
| 4     | 47100                                      | 9300  | 26800 | 157000 | 879400  | 27340  | 2081350 | 6   | [1.000,           | [0.205,           | [1.000,           | [1.000,           | [1.000,           | [0.971,           | [1.000,           |
| 5     | 32600                                      | 4600  | 19600 | 46000  | 370900  | 18920  | 1069100 | 7   | [0.361,           | [0.795,           | [0.685,           | [0.727]           | [0.760,           | 0.971]<br>[0.694, | [0.721,           |
| 6     | 50800                                      | 8300  | 18900 | 272000 | 667400  | 34750  | 2660040 | ,   | 0.551]            | 0.449]            | 0.782]            | 0.727]            | 0.760]            | 0.694]            | 0.727]            |
| 7     | 40800                                      | 7500  | 20400 | 53000  | 465700  | 20240  | 1800250 | 8   | 1.000]            | 1.000]            | 0.927]            | [0.904,<br>0.904] | [0.948,<br>0.948] | 0.866]            | [0.880,<br>0.904] |
| 8     | 31900                                      | 9200  | 21400 | 250000 | 642700  | 43280  | 2296740 | 9   | [0.228,<br>1.000] | [0.334,<br>1.000] | [0.123,<br>0.472] | [0.094,<br>0.094] | [0.116,<br>0.116] | [0.085,<br>0.085] | [0.088,<br>0.094] |
| 9     | 36400                                      | 76000 | 21000 | 407000 | 647700  | 32360  | 1981930 | 10  | [0.438,<br>0.876] | [0.376,<br>0.451] | [1.000,<br>1.000] | [0.853,<br>0.853] | [1.000,<br>1.000] | [0.781,<br>0.781] | [0.804,<br>0.853] |
| 10    | 25700                                      | 7900  | 19000 | 72000  | 402500  | 19930  | 2284910 | 11  | [0.473,           | [0.308,           | [0.794,           | [0.967,           | [0.926,           | [0.956,           | [0.953,           |
| 11    | 44500                                      | 8700  | 21700 | 105000 | 482400  | 49320  | 2245160 | 10  | [0.452,           | [0.341,           | [0.726,           | [0.799,           | [0.852,           | [0.757,           | [0.779,           |
| 12    | 42300                                      | 8900  | 25800 | 94000  | 511000  | 26950  | 2303000 | 12  | 0.632]            | 0.424]            | 0.850]            | 0.799]            | 0.852]            | 0.757]            | 0.799]            |
| 13    | 40600                                      | 5500  | 19400 | 84000  | 287400  | 34940  | 1141750 | 13  | [0.428,<br>0.473] | [0.453,<br>0.357] | [0.459,<br>0.608] | [0.869,<br>0.869] | [0.723,<br>0.723] | [0.905,<br>0.905] | [0.869,<br>0.892] |
| 14    | 76100                                      | 11900 | 32800 | 199000 | 694600  | 67160  | 3338390 | 14  | [0.552,<br>0.670] | [0.000,<br>0.507] | [0.762,<br>0.833] | [1.000,<br>1.000] | [0.928,<br>0.928] | [1.000,<br>1.000] | [1.000,<br>1.000] |

After obtaining the ICE matrix for cross-efficiency score of 14 bank branches, the optimal RCC<sub>i</sub> values were obtained using model (7). Finally, the ranking comparisons for all DMUs are provided in TABLE X.

| _                 | TABLE X<br>RANKING COMPARISONS FOR 14 BANK BRANCHES |            |                    |        |        |      |  |  |  |  |  |
|-------------------|-----------------------------------------------------|------------|--------------------|--------|--------|------|--|--|--|--|--|
| DMUs              | Ben.                                                | Rank       | Agg.               | Rank   | M-III  | Rank |  |  |  |  |  |
| $DMU_1$           | 0.6011                                              | 12         | 0.4391             | 13     | 0.6580 | 12   |  |  |  |  |  |
| $DMU_2$           | 0.9758                                              | 2          | 0.8826             | 1      | 0.9858 | 1    |  |  |  |  |  |
| $DMU_3$           | 0.9503                                              | 3          | 0.7886             | 4      | 0.8678 | 3    |  |  |  |  |  |
| $\mathrm{DMU}_4$  | 0.7746                                              | 8          | 0.6754             | 6      | 0.8462 | 5    |  |  |  |  |  |
| $DMU_5$           | 0.6327                                              | 11         | 0.6011             | 10     | 0.7446 | 7    |  |  |  |  |  |
| $DMU_6$           | 0.9886                                              | 1          | 0.8731             | 2      | 0.9654 | 2    |  |  |  |  |  |
| DMU <sub>7</sub>  | 0.6826                                              | 10         | 0.5525             | 12     | 0.6691 | 11   |  |  |  |  |  |
| $DMU_8$           | 0.8813                                              | 4          | 0.8114             | 3      | 0.8640 | 4    |  |  |  |  |  |
| DMU <sub>9</sub>  | 0.4523                                              | 14         | 0.2269             | 14     | 0.1770 | 14   |  |  |  |  |  |
| $DMU_{10}$        | 0.8094                                              | 5          | 0.6581             | 8      | 0.7181 | 9    |  |  |  |  |  |
| $DMU_{11}$        | 0.7767                                              | 7          | 0.6658             | 7      | 0.7351 | 8    |  |  |  |  |  |
| $DMU_{12}$        | 0.7029                                              | 9          | 0.6064             | 9      | 0.6941 | 10   |  |  |  |  |  |
| DMU <sub>13</sub> | 0.5887                                              | 13         | 0.5811             | 11     | 0.6402 | 13   |  |  |  |  |  |
| DMU <sub>14</sub> | 0.7794                                              | 6          | 0.6979             | 5      | 0.7686 | 6    |  |  |  |  |  |
|                   |                                                     | TA<br>(Coi | ABLE X<br>NTINUED) |        |        |      |  |  |  |  |  |
| DMU               | M-IV                                                |            | Rank               | Propos | sed    | Rank |  |  |  |  |  |
| $DMU_1$           | 0.4182                                              | 2          | 13                 | 0.516  | 50     | 13   |  |  |  |  |  |
| $DMU_2$           | 0.8724                                              | Ļ          | 2                  | 0.953  | 34     | 2    |  |  |  |  |  |
| $DMU_3$           | 0.8499                                              | )          | 3                  | 0.884  | 46     | 3    |  |  |  |  |  |
| $DMU_4$           | 0.6914                                              | Ļ          | 8                  | 0.760  | )4     | 5    |  |  |  |  |  |
| DMU <sub>5</sub>  | 0.6308                                              | 3          | 10                 | 0.6426 |        | 10   |  |  |  |  |  |
| $DMU_6$           | 0.8798                                              | 3          | 1                  | 0.9748 |        | 1    |  |  |  |  |  |
| DMU <sub>7</sub>  | 0.6192                                              | 2          | 11                 | 0.626  | 58     | 11   |  |  |  |  |  |

 $DMU_{14}$ 0.738260.75616As seen in TABLE X, the rankings of each cross-efficiencymodel were obtained. Fig. 4 shows the results of theproposed method with M-III model. From this figure, it canbe seen that the proposed method tends to be consistent with

4

14

5

7

9

12

0.8683

0.2521

0.7411

0.7330

0.6638

0.5815

4

14

7

8

9

12

 $DMU_8$ 

DMU<sub>9</sub>

DMU<sub>10</sub>

DMU<sub>11</sub>

DMU<sub>12</sub>

DMU<sub>13</sub>

the M-III model.

0.8100

0.2578

0.7554

0.7234

0.6663

0.5875



Fig.4. The ranking comparisons for the 14 bank branches problem

The  $r_s$  values of each method were tested using Spearman's rank correlation test. The details of the  $r_s$  values of each method are shown in TABLE XI.

| TABLE XI<br>The correlation test for 14 bank branches |            |            |       |       |          |  |  |  |  |
|-------------------------------------------------------|------------|------------|-------|-------|----------|--|--|--|--|
|                                                       | Benevolent | Aggressive | M-III | M-IV  | Proposed |  |  |  |  |
| Benevolent                                            | -          | 0.938      | 0.991 | 0.960 | 1.000    |  |  |  |  |
| Aggressive                                            | 0.938      | -          | 0.956 | 0.978 | 0.938    |  |  |  |  |
| M-III                                                 | 0.991      | 0.956      | -     | 0.969 | 0.991    |  |  |  |  |
| M-IV                                                  | 0.960      | 0.978      | 0.969 | -     | 0.960    |  |  |  |  |
| Proposed                                              | 1.000      | 0.938      | 0.991 | 0.960 | -        |  |  |  |  |

As seen in TABLE XI, the Spearman correlation coefficients ( $r_s$ ) for the proposed method and benevolent, aggressive, Model-III and Model-IV, are obtained as  $r_s = 1.000, 0.938, 0.991$  and 0.960, respectively. This means that the proposed method is more consistent with other methods than the M-III model. The comparison results for the proposed method and traditional M-III are shown in Fig.5.



Fig.5. Comparison of results for the proposed method and M-III

As seen in Fig.5, the comparison results of the proposed method and M-III show that the proposed method has a higher correlation coefficient ( $r_s$ ) than the traditional M-III model [22].

#### C. Fourteen International Passenger Airlines Problem

Tofallis [44] presented an actual dataset of fourteen international passenger airlines with three inputs and two outputs. Let  $X_1$ ,  $X_2$  and  $X_3$  be aircraft capacity, operating cost, and non-flight assets respectively. Let  $Y_1$  and  $Y_2$  be passenger kilometers and non-passenger revenue respectively. Details for the dataset for fourteen international passenger airlines are shown in TABLE XII.

|                   | TABLE XII |          |         |             |            |        |  |  |  |  |
|-------------------|-----------|----------|---------|-------------|------------|--------|--|--|--|--|
| DA                | TA SET OF | FOURTEEN | INTERNA | FIONAL PASS | ENGER AIRI | LINES  |  |  |  |  |
| DMU               | $X_{I}$   | $X_2$    | $X_3$   | $Y_{I}$     | $Y_2$      | CCR    |  |  |  |  |
| $DMU_1$           | 5723      | 3239     | 2003    | 26677       | 697        | 0.8684 |  |  |  |  |
| $DMU_2$           | 5895      | 4225     | 4557    | 3081        | 539        | 0.3379 |  |  |  |  |
| $DMU_3$           | 24099     | 9560     | 6267    | 124055      | 1266       | 0.9475 |  |  |  |  |
| $DMU_4$           | 13565     | 7499     | 3213    | 64734       | 1563       | 0.9581 |  |  |  |  |
| $DMU_5$           | 5183      | 1880     | 783     | 23604       | 513        | 1.0000 |  |  |  |  |
| $DMU_6$           | 19080     | 8032     | 3272    | 95011       | 572        | 0.9766 |  |  |  |  |
| $DMU_7$           | 4603      | 3457     | 2360    | 22112       | 969        | 1.0000 |  |  |  |  |
| $DMU_8$           | 12097     | 6779     | 6474    | 52363       | 2001       | 0.8588 |  |  |  |  |
| DMU <sub>9</sub>  | 6587      | 3341     | 3581    | 26504       | 1297       | 0.9477 |  |  |  |  |
| DMU <sub>10</sub> | 5654      | 1878     | 1916    | 19277       | 972        | 1.0000 |  |  |  |  |
| DMU <sub>11</sub> | 12559     | 8098     | 3310    | 41925       | 3398       | 1.0000 |  |  |  |  |
| DMU <sub>12</sub> | 5728      | 2481     | 2254    | 27754       | 982        | 1.0000 |  |  |  |  |
| DMU <sub>13</sub> | 4715      | 1792     | 2485    | 31332       | 543        | 1.0000 |  |  |  |  |
| $DMU_{14}$        | 22793     | 9874     | 4145    | 122528      | 1404       | 1.0000 |  |  |  |  |

Based on the same calculation procedure of Section A and Section B, the ICE matrix for cross-efficiency score of fourteen international passenger airlines is shown in TABLE XIII.

After obtaining the ICE matrix, the optimal  $RCC_i$  values were obtained using Eq.(7). Finally, the ranking comparisons for all DMUs are provided in TABLE XIV.

| THEI | TABLE XIII           THE INTERVAL CROSS-EFFICIENCY MATRIX OF FOURTEEN INTERNATIONAL           PASSENGER AIRLINES |                   |                   |                   |                   |                   |                   |   |  |  |
|------|------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---|--|--|
| DMU  | 1                                                                                                                | 2                 | 3                 | 4                 | 5                 | 6                 | 7                 |   |  |  |
| 1    | [0.868,<br>0.868]                                                                                                | [0.450,<br>0.450] | [0.623,<br>0.623] | [0.868,<br>0.868] | [0.849,<br>0.487] | [0.473,<br>0.473] | [0.788,<br>0.791] |   |  |  |
| 2    | [0.172,<br>0.172]                                                                                                | [0.338,<br>0.338] | [0.047,<br>0.047] | [0.172,<br>0.172] | [0.174,<br>0.102] | [0.025,<br>0.025] | [0.272,<br>0.258] |   |  |  |
| 3    | [0.883,<br>0.883]                                                                                                | [0.194,<br>0.194] | [0.948,<br>0.948] | [0.883,<br>0.883] | [0.884,<br>0.481] | [0.690,<br>0.690] | [0.683,<br>0.695] |   |  |  |
| 4    | [0.958,<br>0.958]                                                                                                | [0.426,<br>0.426] | [0.703,<br>0.703] | [0.958,<br>0.958] | [0.941,<br>0.706] | [0.697,<br>0.697] | [0.785,<br>0.789] |   |  |  |
| 5    | [0.965,<br>0.965]                                                                                                | [0.366,<br>0.366] | [1.000,<br>1.000] | [0.965,<br>0.965] | [1.000,<br>1.000] | [1.000,<br>1.000] | [0.736,<br>0.729] |   |  |  |
| 6    | [0.882,<br>0.882]                                                                                                | [0.111,<br>0.111] | [0.956,<br>0.956] | [0.882,<br>0.882] | [0.878,<br>0.611] | [0.977,<br>0.977] | [0.608,<br>0.627] |   |  |  |
| 7    | [0.921,<br>0.921]                                                                                                | [0.778,<br>0.778] | [0.477,<br>0.477] | [0.921,<br>0.921] | [0.880,<br>0.471] | [0.338,<br>0.338] | [1.000,<br>1.000] |   |  |  |
| 8    | [0.781,<br>0.781]                                                                                                | [0.611,<br>0.611] | [0.516,<br>0.516] | [0.781,<br>0.781] | [0.770,<br>0.371] | [0.292,<br>0.292] | [0.859,<br>0.848] | - |  |  |
| 9    | [0.785,<br>0.785]                                                                                                | [0.728,<br>0.728] | [0.508,<br>0.508] | [0.785,<br>0.785] | [0.789,<br>0.401] | [0.268,<br>0.268] | [0.907,<br>0.882] | = |  |  |
| 10   | [0.782,<br>0.782]                                                                                                | [0.635,<br>0.635] | [0.652,<br>0.652] | [0.782,<br>0.782] | [0.825,<br>0.557] | [0.356,<br>0.356] | [0.794,<br>0.759] | - |  |  |
| 11   | [1.000,<br>1.000]                                                                                                | [1.000,<br>1.000] | [0.429,<br>0.429] | [1.000,<br>1.000] | [1.000,<br>1.000] | [0.442,<br>0.442] | [1.000,<br>0.966] |   |  |  |
| 12   | [0.946,<br>0.946]                                                                                                | [0.634,<br>0.634] | [0.750,<br>0.750] | [0.946,<br>0.946] | [0.960,<br>0.538] | [0.440,<br>0.440] | [0.940,<br>0.920] |   |  |  |
| 13   | [1.000,<br>1.000]                                                                                                | [0.426,<br>0.426] | [1.000,<br>1.000] | [1.000,<br>1.000] | [1.000,<br>0.375] | [0.456,<br>0.456] | [1.000,<br>1.000] |   |  |  |
| 14   | [1.000,<br>1.000]                                                                                                | [0.228,<br>0.228] | [1.000,<br>1.000] | [1.000,<br>1.000] | [1.000,<br>0.746] | [1.000,<br>1.000] | [0.728,<br>0.740] | = |  |  |

#### TABLE XIII (CONTINUED)

| DMU | 8       | 9       | 10      | 11      | 12      | 13      | 14      |
|-----|---------|---------|---------|---------|---------|---------|---------|
| 1   | [0.788, | [0.703, | [0.475, | [0.475, | [0.751, | [0.623, | [0.623, |
|     | 0.788]  | 0.703]  | 0.559]  | 0.868]  | 0.704]  | 0.559]  | 0.473]  |
| 2   | [0.272, | [0.281, | [0.242, | [0.242, | [0.206, | [0.047, | [0.047, |
|     | 0.272]  | 0.281]  | 0.181]  | 0.172]  | 0.279]  | 0.181]  | 0.025]  |
| 3   | [0.683, | [0.623, | [0.288, | [0.288, | [0.785, | [0.948, | [0.948, |
|     | 0.683]  | 0.623]  | 0.630]  | 0.883]  | 0.626]  | 0.630]  | 0.690]  |
| 4   | [0.785, | [0.699, | [0.493, | [0.493, | [0.811, | [0.703, | [0.703, |
|     | 0.785]  | 0.699]  | 0.565]  | 0.958]  | 0.702]  | 0.565]  | 0.697]  |
| 5   | [0.736, | [0.778, | [0.648, | [0.648, | [1.000, | [1.000, | [1.000, |
|     | 0.736]  | 0.778]  | 0.785]  | 0.965]  | 0.782]  | 0.785]  | 1.000]  |
| 6   | [0.608, | [0.510, | [0.170, | [0.170, | [0.718, | [0.956, | [0.956, |
|     | 0.608]  | 0.510]  | 0.514]  | 0.882]  | 0.514]  | 0.514]  | 0.977]  |
| 7   | [1.000, | [0.839, | [0.605, | [0.605, | [0.781, | [0.477, | [0.477, |
|     | 1.000]  | 0.839]  | 0.572]  | 0.921]  | 0.838]  | 0.572]  | 0.338]  |
| 8   | [0.859, | [0.821, | [0.582, | [0.582, | [0.753, | [0.516, | [0.516, |
|     | 0.859]  | 0.821]  | 0.638]  | 0.781]  | 0.819]  | 0.638]  | 0.292]  |
| 9   | [0.907, | [0.948, | [0.738, | [0.738, | [0.837, | [0.508, | [0.508, |
|     | 0.907]  | 0.948]  | 0.759]  | 0.785]  | 0.945]  | 0.759]  | 0.268]  |
| 10  | [0.794, | [1.000, | [1.000, | [1.000, | [1.000, | [0.652, | [0.652, |
|     | 0.794]  | 1.000]  | 1.000]  | 0.782]  | 1.000]  | 1.000]  | 0.356]  |
| 11  | [1.000, | [1.000, | [1.000, | [1.000, | [1.000, | [0.429, | [0.429, |
|     | 1.000]  | 1.000]  | 0.697]  | 1.000]  | 1.000]  | 0.697]  | 0.442]  |
| 12  | [0.940, | [1.000, | [0.792, | [0.792, | [1.000, | [0.750, | [0.750, |
|     | 0.940]  | 1.000]  | 0.885]  | 0.946]  | 1.000]  | 0.885]  | 0.440]  |
| 13  | [1.000, | [1.000, | [0.526, | [0.526, | [0.984, | [1.000, | [1.000, |
|     | 1.000]  | 1.000]  | 1.000]  | 1.000]  | 1.000]  | 1.000]  | 0.456]  |
| 14  | [0.728, | [0.648, | [0.337, | [0.337, | [0.857, | [1.000, | [1.000, |
|     | 0.728]  | 0.648]  | 0.621]  | 1.000]  | 0.652]  | 0.621]  | 1.000]  |

| TABLE XIV                                                |
|----------------------------------------------------------|
| RANKING COMPARISONS FOR FOURTEEN INTERNATIONAL PASSENGER |
| AIRI INES                                                |

|   | DMUs              | Ben.   | Rank       | Agg.                | Rank   | M-III  | Rank    |
|---|-------------------|--------|------------|---------------------|--------|--------|---------|
|   | $DMU_1$           | 0.7543 | 12         | 0.5990              | 12     | 0.6582 | 12      |
| _ | $DMU_2$           | 0.1894 | 14         | 0.1652              | 14     | 0.1790 | 14      |
|   | DMU <sub>3</sub>  | 0.7678 | 9          | 0.6226              | 11     | 0.6811 | 11      |
|   | DMU <sub>4</sub>  | 0.8222 | 6          | 0.6734              | 7      | 0.7292 | 7       |
|   | DMU <sub>5</sub>  | 0.8912 | 3          | 0.7983              | 1      | 0.8469 | 1       |
|   | DMU <sub>6</sub>  | 0.7554 | 11         | 0.6385              | 9      | 0.6831 | 10      |
|   | DMU <sub>7</sub>  | 0.8214 | 7          | 0.6478              | 8      | 0.7133 | 8       |
|   | DMU <sub>8</sub>  | 0.7242 | 13         | 0.5855              | 13     | 0.6465 | 13      |
|   | DMU <sub>9</sub>  | 0.7590 | 10         | 0.6309              | 10     | 0.6948 | 9       |
|   | $DMU_{10}$        | 0.7803 | 8          | 0.6813              | 6      | 0.7469 | 6       |
|   | DMU <sub>11</sub> | 0.9193 | 1          | 0.7742              | 2      | 0.8337 | 3       |
|   | DMU <sub>12</sub> | 0.8850 | 4          | 0.7314              | 5      | 0.8049 | 4       |
|   | DMU <sub>13</sub> | 0.9190 | 2          | 0.7503              | 3      | 0.8366 | 2       |
|   | DMU <sub>14</sub> | 0.8659 | 5          | 0.7316              | 4      | 0.7846 | 5       |
|   |                   |        | TAI<br>(CO | BLE XIV<br>NTINUED) |        |        |         |
|   | DMU               | M-IV   |            | Rank                | Propos | Rank   |         |
|   | $DMU_1$           | 0.6069 |            | 13                  | 0.654  | 7      | 12      |
|   | $DMU_2$           | 0.1811 |            | 14                  | 0.159  | 3      | 14      |
|   | $DMU_3$           | 0.6224 |            | 11                  | 0.680  | 0      | 10      |
|   | DMU <sub>4</sub>  | 0.6699 |            | 8                   | 0.720  | 5      | 7       |
|   | DMU <sub>5</sub>  | 0.7789 |            | 1                   | 0.842  | 5      | 1       |
|   | DMU <sub>6</sub>  | 0.6342 |            | 10                  | 0.668  | 4<br>2 | 11<br>o |
|   | DMU/              | 0.6077 |            | 12                  | 0.710  | 2<br>5 | 0<br>13 |
|   | DMU <sub>9</sub>  | 0.6576 |            | 9                   | 0.695  | 4      | 9       |
| _ | DMU <sub>10</sub> | 0.6914 |            | 6                   | 0.757  | 7      | 6       |
|   | DMU <sub>11</sub> | 0.7742 |            | 2                   | 0.831  | 5      | 3       |
|   | DMU <sub>12</sub> | 0.7464 |            | 4                   | 0.813  | 5      | 4       |
| _ | $DMU_{13}$        | 0.7655 |            | 3                   | 0.839  | 9      | 2       |
|   | DMU <sub>14</sub> | 0.7243 |            | 5                   | 0.774  | 7      | 5       |

Fig. 6 shows the results of the proposed method with the M-III model. From this figure, it can be seen that the proposed method tends to be highly consistent with the M-III model. Only the  $DMU_3$  and  $DMU_6$  were ranked differently by the two methods.



Fig.6. Ranking comparisons for fourteen international passenger airlines

The details of the  $r_s$  values of each method are shown in TABLE XV.

TABLE XV CORRELATION TEST FOR THE FOURTEEN INTERNATIONAL PASSENGER AIRLINES PROFILEM

|            | Benevolent | Aggressive | M-III | M-IV  | Proposed |
|------------|------------|------------|-------|-------|----------|
| Benevolent | -          | 0.952      | 0.956 | 0.952 | 0.965    |
| Aggressive | 0.952      | -          | 0.987 | 0.982 | 0.978    |
| M-III      | 0.956      | 0.987      | -     | 0.987 | 0.996    |
| M-IV       | 0.952      | 0.982      | 0.987 | -     | 0.982    |
| Proposed   | 0.965      | 0.978      | 0.996 | 0.982 | -        |

As seen in TABLE XV, the  $r_s$  values for the proposed method and benevolent, aggressive, Model-III and Model-IV, are computed as  $r_s = 0.965$ , 0.978, 0.996 and 0.982, respectively. This means that the proposed method is strongly consistent with the other methods. The comparison results for the proposed method and traditional M-III are shown in Fig.7.



Fig.7. Comparison results for the proposed method and M-III.

As seen in Fig.7, the proposed method is more consistent with benevolent than M-III while M-III is more consistent with aggressive and M-IV.

#### D. Economic Development of Twenty Thai Provinces

The northeastern region of Thailand covers an area of 160,000 square kilometers, including 20 provinces, with a total population of approximately 22 million. Fig.8 shows a map of Northeast of Thailand.



Fig.8. A map of the Northeast of Thailand.

The region is poorer than the rest of the country, due to the land being difficult to farm, and the fact that the region does not benefit from industries like central and eastern Thailand. Economic development, therefore, depends on the agricultural sector and partly on the industrial sector. The economic crops of the northeastern region are rice, corn, sugar cane, cassava and rubber. Measuring the efficiency of the use of inputs is one way to find ways to develop the region's economy. The northeastern provinces have twenty DMUs with seven inputs  $(X_1, X_2, X_3, X_4, X_5, X_6 \text{ and } X_7)$  and one output  $(Y_1)$ . The  $X_1$ ,  $X_2$ ,  $X_3$ ,  $X_4$ ,  $X_5$ ,  $X_6$ ,  $X_7$  and  $Y_1$  are electrical energy consumption (Ktoe), fuel consumption (Ktoe), agricultural land (km<sup>2</sup>), non-agricultural land (km<sup>2</sup>) annual budget (million baht), labor, total distance of rural roads (km) and Gross Provincial Product (baht) respectively. The data set for twenty Thai provinces, together with the CCR scores of each DMU, is provided in TABLE XVI.

TABLE XVI

|                   | DATA SET OF TWE   | NTY THATP | ROVINCES |        |       |
|-------------------|-------------------|-----------|----------|--------|-------|
| DMUs              | Name              | $X_{I}$   | $X_2$    | $X_3$  | $X_4$ |
| DMU <sub>1</sub>  | Bueng Kan         | 26.41     | 54.79    | 2669   | 1637  |
| $DMU_2$           | Loei              | 43.38     | 136.22   | 4342   | 7083  |
| DMU <sub>3</sub>  | Nong Khai         | 40.91     | 112.92   | 1813   | 1214  |
| $DMU_4$           | Nong Bua Lamphu   | 26.75     | 69.32    | 2700   | 1159  |
| DMU <sub>5</sub>  | Udon Thani        | 131.03    | 682.32   | 6191   | 5539  |
| DMU <sub>6</sub>  | Nakhon Phanom     | 39.96     | 115.13   | 3042   | 2471  |
| DMU <sub>7</sub>  | Mukdahan          | 26.84     | 76.20    | 2062   | 2278  |
| $DMU_8$           | Sakon Nakhon      | 64.80     | 207.88   | 4957.0 | 4649  |
| DMU <sub>9</sub>  | Kalasin           | 66.87     | 150.67   | 4532.0 | 2415  |
| $DMU_{10}$        | Khon Kaen         | 213.03    | 616.67   | 6750   | 4136  |
| DMU <sub>11</sub> | Maha Sarakham     | 68.52     | 176.24   | 4509   | 783   |
| DMU <sub>12</sub> | Roi Et            | 82.14     | 228.37   | 5946   | 2353  |
| DMU <sub>13</sub> | Chaiyaphum        | 75.08     | 202.96   | 5323   | 7455  |
| DMU <sub>14</sub> | Nakhon Ratchasima | 526.62    | 1101.04  | 13416  | 7078  |
| DMU <sub>15</sub> | Buriram           | 102.76    | 358.66   | 7021   | 3302  |
| DMU <sub>16</sub> | Surin             | 79.34     | 245.16   | 6732   | 1392  |
| DMU <sub>17</sub> | Yasothon          | 31.58     | 88.36    | 2748   | 1414  |
| DMU <sub>18</sub> | Sisaket           | 74.33     | 215.59   | 6509   | 2331  |
| DMU <sub>19</sub> | Amnat Charoen     | 20.04     | 61.58    | 2325   | 836   |
| DMU <sub>20</sub> | Ubon Ratchathani  | 137.96    | 359.42   | 8582   | 7162  |

TABLE XVI

|                   | (CONTINUED) |         |          |        |        |  |  |  |  |  |  |  |
|-------------------|-------------|---------|----------|--------|--------|--|--|--|--|--|--|--|
| DMUs              | $X_5$       | $X_6$   | $X_7$    | $Y_I$  | CCR    |  |  |  |  |  |  |  |
| $DMU_1$           | 198.6       | 176738  | 5708.35  | 24711  | 1.0000 |  |  |  |  |  |  |  |
| $DMU_2$           | 225.6       | 298001  | 9382.58  | 54985  | 1.0000 |  |  |  |  |  |  |  |
| $DMU_3$           | 213.3       | 213263  | 4003.22  | 41515  | 1.0000 |  |  |  |  |  |  |  |
| $DMU_4$           | 210.9       | 216339  | 5760.05  | 30003  | 1.0000 |  |  |  |  |  |  |  |
| DMU <sub>5</sub>  | 313.3       | 634742  | 17824.82 | 113887 | 0.8288 |  |  |  |  |  |  |  |
| $DMU_6$           | 283.7       | 273489  | 10268.96 | 45053  | 1.0000 |  |  |  |  |  |  |  |
| $DMU_7$           | 207.5       | 199818  | 5120.59  | 27316  | 0.9058 |  |  |  |  |  |  |  |
| $DMU_8$           | 283.9       | 405249  | 14968.04 | 60737  | 0.8376 |  |  |  |  |  |  |  |
| DMU <sub>9</sub>  | 311.0       | 423177  | 12818.81 | 58617  | 0.9716 |  |  |  |  |  |  |  |
| $DMU_{10}$        | 350.7       | 912976  | 17641.00 | 214018 | 1.0000 |  |  |  |  |  |  |  |
| $DMU_{11}$        | 270.7       | 406719  | 9691.40  | 59208  | 1.0000 |  |  |  |  |  |  |  |
| $DMU_{12}$        | 285.4       | 541263  | 16681.66 | 78134  | 0.9221 |  |  |  |  |  |  |  |
| DMU <sub>13</sub> | 259.6       | 497756  | 13795.04 | 65698  | 0.8429 |  |  |  |  |  |  |  |
| $DMU_{14}$        | 414.3       | 1164344 | 29734.61 | 303996 | 1.0000 |  |  |  |  |  |  |  |
| DMU <sub>15</sub> | 339.5       | 648254  | 17772.54 | 89356  | 0.8319 |  |  |  |  |  |  |  |
| $DMU_{16}$        | 297.2       | 529759  | 15883.96 | 81007  | 1.0000 |  |  |  |  |  |  |  |
| DMU <sub>17</sub> | 231.6       | 292488  | 8345.61  | 28747  | 0.8207 |  |  |  |  |  |  |  |
| $DMU_{18}$        | 310.2       | 554953  | 17414.62 | 72752  | 0.9274 |  |  |  |  |  |  |  |
| DMU <sub>19</sub> | 218.4       | 145848  | 4297.49  | 20267  | 0.9173 |  |  |  |  |  |  |  |
| $DMU_{20}$        | 346.8       | 907108  | 23075.98 | 126088 | 0.9581 |  |  |  |  |  |  |  |

As seen in TABLE XVI, the efficient DMUs are  $DMU_1$ ,  $DMU_3$ ,  $DMU_4$ ,  $DMU_6$ ,  $DMU_{10}$ ,  $DMU_{11}$ ,  $DMU_{14}$  and  $DMU_{16}$ , and they cannot discriminate among DMUs.

Using the same calculation procedure as Section A, the ICE matrix for cross-efficiency score of twenty Thai provinces is shown in Table XVII.

# Engineering Letters, 31:1, EL\_31\_1\_12

| THE INTER         | RVAL CROSS-E   | TABLE   | XVII<br>TRIX OF TWE | NTY THAI PI | ROVINCES |                   |         | TABLE<br>(Contin | XVII<br>IUED) |         |         |
|-------------------|----------------|---------|---------------------|-------------|----------|-------------------|---------|------------------|---------------|---------|---------|
| DMUs              | 1              | 2       | 3                   | 4           | 5        | DMUs              | 11      | 12               | 13            | 14      | 15      |
| DMU               | [1.000,        | [0.738, | [0.897,             | [0.858,     | [0.817,  | DMU               | [0.353, | [0.985,          | [0.891,       | [0.170, | [0.817, |
| $DWU_1$           | 1.000]         | 0.927]  | 1.000]              | 1.000]      | 0.817]   | $DMU_1$           | 0.816]  | 0.985]           | 0.891]        | 0.443]  | 0.817]  |
| DMU               | [1.000,        | [1.000, | [1.000,             | [0.948,     | [1.000,  | DMU.              | [0.207, | [1.000,          | [1.000,       | [0.326, | [1.000, |
| DIVIC             | 1.000]         | 1.000]  | 1.000]              | 1.000]      | 1.000]   | DMO2              | 0.575]  | 1.000]           | 1.000]        | 0.332]  | 1.000]  |
| DMU               | [0.991,        | [0.801, | [1.000,             | [0.994,     | [0.952,  | DMI               | [0.710, | [0.937,          | [0.884,       | [0.265, | [0.952, |
| DINIOS            | 1.000]         | 0.968]  | 1.000]              | 1.000]      | 0.952]   | Dires             | 0.963]  | 0.937]           | 0.884]        | 0.765]  | 0.952]  |
| DMU               | [0.984,        | [0.885, | [0.993,             | [1.000,     | [1.000,  | DMU               | [0.528, | [1.000,          | [0.910,       | [0.194, | [1.000, |
| DiffC4            | 1.000]         | 0.905]  | 1.000]              | 1.000]      | 1.000]   | Diffe4            | 1.000]  | 1.000]           | 0.910]        | 0.558]  | 1.000]  |
| DMU <sub>5</sub>  | [0.503,        | [0.551, | [0.516,             | [0.517,     | [0.829,  | DMUs              | [0.475, | [0.485,          | [0.489,       | [0.495, | [0.829, |
| Diffey            | 0.525]         | 0.686]  | 0.603]              | 0.679]      | 0.829]   | Diffey            | 0.500]  | 0.485]           | 0.489]        | 0.585]  | 0.829]  |
| DMU6              | [0.975,        | [0.889, | [0.959,             | [0.940,     | [0.990,  | DMU6              | [0.425, | [0.941,          | [0.878,       | [0.216, | [0.990, |
| Diffeo            | 0.987]         | 0.935]  | 1.000]              | 0.970]      | 0.990]   | Diffeo            | 0.843]  | 0.941]           | 0.878]        | 0.528]  | 0.990]  |
| DMU <sub>7</sub>  | [0.857,        | [0.803, | [0.865,             | [0.847,     | [0.861,  | DMU <sub>7</sub>  | [0.292, | [0.837,          | [0.781,       | [0.179, | [0.861, |
|                   | 0.885]         | 0.818]  | 0.902]              | 0.882]      | 0.861]   | ,                 | 0.674]  | 0.837]           | 0.781]        | 0.388]  | 0.861]  |
| DMU <sub>8</sub>  | [0.765,        | [0.739, | [0.759,             | [0.760,     | [0.838,  | DMU <sub>8</sub>  | [0.318, | [0.768,          | [0.752,       | [0.292, | [0.838, |
|                   | 0.771]         | 0.760]  | 0.790]              | 0.773]      | 0.838]   |                   | 0.627]  | 0.768]           | 0.752]        | 0.423]  | 0.838]  |
| DMU <sub>9</sub>  | [0.920,        | [0.692, | [0.887,             | [0.825,     | [0.820,  | DMU <sub>9</sub>  | [0.505, | [0.972,          | [0.916,       | [0.257, | [0.820, |
|                   | 0.944]         | 0.858]  | 0.919]              | 0.931]      | 0.820]   | ,                 | 0.891]  | 0.972]           | 0.916]        | 0.544]  | 0.820]  |
| $DMU_{10}$        | [0.994,        | [0.793, | [1.000,             | [1.000,     | [1.000,  | $DMU_{10}$        | [1.000, | [1.000,          | [1.000,       | [0.832, | [1.000, |
| 2111010           | 1.000]         | 1.000]  | 1.000]              | 1.000]      | 1.000]   | Diffeito          | 1.000]  | 1.000]           | 1.000]        | 1.000]  | 1.000]  |
| DMU               | [0.859,        | [0.682, | [0.844,             | [0.843,     | [0.845,  | DMU               | [1.000, | [0.889,          | [0.845,       | [0.298, | [0.845, |
|                   | 0.859]         | 0.813]  | 0.863]              | 0.877]      | 0.845]   |                   | 1.000]  | 0.889]           | 0.845]        | 0.768]  | 0.845]  |
| DMU <sub>12</sub> | [0.862,        | [0.750, | [0.857,             | [0.854,     | [0.913,  | DMU <sub>12</sub> | [0.633, | [0.922,          | [0.894,       | [0.373, | [0.913, |
|                   | 0.868]         | 0.818]  | 0.877]              | 0.873]      | 0.913]   |                   | 0.906]  | 0.922]           | 0.894]        | 0.624]  | 0.913]  |
| DMU               | [0.786,        | [0.690, | [0.790,             | [0.764,     | [0.762,  | DMU <sub>13</sub> | [0.223, | [0.842,          | [0.843,       | [0.319, | [0.762, |
|                   | 0.808]         | 0.762]  | 0.796]              | 0.766]      | 0.762]   |                   | 0.550]  | 0.842]           | 0.843]        | 0.345]  | 0.762]  |
| DMU <sub>14</sub> | [0.813,        | [0.455, | [0.678,             | [0.639,     | [0.586,  | DMU <sub>14</sub> | [0.755, | [0.811,          | [0.819,       | [1.000, | [0.586, |
|                   | 0.852]         | 0.882]  | 0.840]              | 0.844]      | 0.586]   |                   | 0.909]  | 0.811]           | 0.819]        | 1.000]  | 0.586]  |
| DMU <sub>15</sub> | [0.6/3,        | [0.668, | [0.677,             | [0.683,     | [0.832,  | DMU <sub>15</sub> | [0.543, | [0.691,          | [0.679,       | [0.359, | [0.832, |
|                   | 0.681]         | 0.686]  | 0.727]              | 0.754]      | 0.832]   |                   | 0.697]  | 0.691]           | 0.679]        | 0.565]  | 0.832]  |
| DMU <sub>16</sub> | [0.848,        | [0.806, | [0.855,             | [0.876,     | [0.992,  | DMU <sub>16</sub> | [0.902, | [0.899,          | [0.868,       | [0.371, | [0.992, |
|                   | 0.862]         | 0.823]  | 0.881]              | 0.903]      | 0.992]   |                   | 0.985]  | 0.899]           | 0.868]        | 0.758]  | 0.992]  |
| DMU <sub>17</sub> | [0.723, 0.762] | [0.659, | [0.728,             | [0.738,     | [0.815,  | DMU <sub>17</sub> | [0.402, | [0.777]          | [0.717,       | [0.169, | [0.815, |
|                   | 0.762]         | 0./18]  | 0.806]              | 0.768]      | 0.815]   |                   | 0.770]  | 0.777]           | 0./1/]        | 0.410]  | 0.815]  |
| DMU <sub>18</sub> | [0.827,        | [0.772, | [0.822,             | [0.840,     | [0.927,  | DMU <sub>18</sub> | [0.587, | [0.894,          | [0.860,       | [0.320, | [0.927, |
|                   | 0.833]         | 0.777]  | 0.858]              | 0.846]      | 0.927]   |                   | 0.889]  | 0.894]           | 0.860]        | 0.573]  | 0.927]  |
| DMU <sub>19</sub> | [0.802,        | [0.787, | [0.819,             | [0.833,     | [0.873,  | DMU <sub>19</sub> | [0.505, | [0.735,          | [0.656,       | [0.126, | [0.873, |
| - 17              | 0.827]         | 0.798]  | 0.824]              | 0.869]      | 0.873]   |                   | 0.826]  | 0.735]           | 0.656]        | 0.545]  | 0.873]  |
| DMU <sub>20</sub> | [0.858,        | [0.721, | [0.864,             | [0.843,     | [0.858,  | DMU <sub>20</sub> | [0.398, | [0.958,          | [0.954,       | [0.475, | [0.858, |
| - 20              | 0.884]         | 0.815]  | 0.878]              | 0.859]      | 0.858]   | - 20              | 0.766]  | 0.958]           | 0.954]        | 0.495]  | 0.858]  |

## TABLE XVII

# TABLE XVII

|                   | (CONTINUED) |                                              |         |         |         |                   |         | (Contin | IUED)   |         |         |
|-------------------|-------------|----------------------------------------------|---------|---------|---------|-------------------|---------|---------|---------|---------|---------|
| DMUs              | 6           | 7                                            | 8       | 9       | 10      | DMUs              | 16      | 17      | 18      | 19      | 20      |
| DMU               | [0.818,     | [0.952,                                      | [0.817, | [0.985, | [0.238, | DMIL              | [0.725, | [0.810, | [0.817, | [0.832, | [0.985, |
| DMU               | 0.920]      | 0.952]                                       | 0.817]  | 0.985]  | 0.294]  | DMU               | 0.801]  | 0.810]  | 0.817]  | 0.832]  | 0.985]  |
| DMU               | [1.000,     | [1.000,                                      | [1.000, | [1.000, | [0.402, | DMU.              | [0.502, | [0.951, | [1.000, | [0.977, | [1.000, |
| $DMU_2$           | 1.000]      | 1.000]                                       | 1.000]  | 1.000]  | 0.457]  | DMU <sub>2</sub>  | 0.893]  | 0.951]  | 1.000]  | 0.977]  | 1.000]  |
| DMU               | [0.951,     | [1.000,                                      | [0.952, | [0.937, | [0.365, | DMU.              | [0.935, | [0.979, | [0.952, | [0.975, | [0.937, |
| DMU3              | 1.000]      | 1.000]                                       | 0.952]  | 0.937]  | 0.724]  | DWI03             | 0.958]  | 0.979]  | 0.952]  | 0.975]  | 0.937]  |
| DMU               | [1.000,     | [1.000,                                      | [1.000, | [1.000, | [0.273, | DMIL              | [0.939, | [1.000, | [1.000, | [1.000, | [1.000, |
| DMU4              | 1.000]      | 1.000]                                       | 1.000]  | 1.000]  | 0.353]  | DIVIC4            | 1.000]  | 1.000]  | 1.000]  | 1.000]  | 1.000]  |
| DMU               | [0.578,     | [0.516,                                      | [0.829, | [0.485, | [0.582, | DML               | [0.524, | [0.819, | [0.829, | [0.824, | [0.485, |
| DIVIOS            | 0.802]      | 0.516]                                       | 0.829]  | 0.485]  | 0.632]  | Diffes            | 0.810]  | 0.819]  | 0.829]  | 0.824]  | 0.485]  |
| DML               | [1.000,     | [0.995,                                      | [0.990, | [0.941, | [0.303, | DMU               | [0.785, | [1.000, | [0.990, | [1.000, | [0.941, |
| DMC6              | 1.000]      | 0.995]                                       | 0.990]  | 0.941]  | 0.470]  | Direo             | 0.970]  | 1.000]  | 0.990]  | 1.000]  | 0.941]  |
| DMU <sub>7</sub>  | [0.880,     | [0.906,                                      | [0.861, | [0.837, | [0.253, | DMU <sub>7</sub>  | [0.611, | [0.871, | [0.861, | [0.864, | [0.837, |
| DMC               | 0.897]      | 0.906]                                       | 0.861]  | 0.837]  | 0.420]  | Direy             | 0.829]  | 0.871]  | 0.861]  | 0.864]  | 0.837]  |
| DMU               | [0.787,     | [0.767,                                      | [0.838, | [0.768, | [0.389, | DMU <sub>8</sub>  | [0.587, | [0.818, | [0.838, | [0.828, | [0.768, |
| 211103            | 0.822]      | 0.767]                                       | 0.838]  | 0.768]  | 0.396]  |                   | 0.802]  | 0.818]  | 0.838]  | 0.828]  | 0.768]  |
| DMU               | [0.804,     | [0.804, [0.932, [0.820, [0.972, [0.351, ]]]) | DMU     | [0.815, | [0.817, | [0.820,           | [0.816, | [0.972, |         |         |         |
| 2                 | 0.901]      | 0.932]                                       | 0.820]  | 0.972]  | 0.410]  |                   | 0.828]  | 0.817]  | 0.820]  | 0.816]  | 0.972]  |
| DML               | [0.961,     | [0.988,                                      | [1.000, | [1.000, | [1.000, | $DMU_{10}$        | [1.000, | [1.000, | [1.000, | [1.000, | [1.000, |
| Diffeito          | 1.000]      | 0.988]                                       | 1.000]  | 1.000]  | 1.000]  |                   | 1.000]  | 1.000]  | 1.000]  | 1.000]  | 1.000]  |
| DMU               | [0.816,     | [0.846,                                      | [0.845, | [0.889, | [0.402, | DMU <sub>11</sub> | [0.860, | [0.841, | [0.845, | [0.843, | [0.889, |
| Diffen            | 0.849]      | 0.846]                                       | 0.845]  | 0.889]  | 0.416]  |                   | 1.000]  | 0.841]  | 0.845]  | 0.843]  | 0.889]  |
| DMU <sub>12</sub> | [0.877,     | [0.868,                                      | [0.913, | [0.922, | [0.417, | DMU <sub>12</sub> | [0.882, | [0.893, | [0.913, | [0.892, | [0.922, |
|                   | 0.877]      | 0.868]                                       | 0.913]  | 0.922]  | 0.497]  |                   | 0.908]  | 0.893]  | 0.913]  | 0.892]  | 0.922]  |
| DMU <sub>13</sub> | [0.748,     | [0.817,                                      | [0.762, | [0.842, | [0.392, | DMU <sub>13</sub> | [0.489, | [0.737, | [0.762, | [0.738, | [0.842, |
| 2                 | 0.798]      | 0.817]                                       | 0.762]  | 0.842]  | 0.459]  |                   | 0.709]  | 0.737]  | 0.762]  | 0.738]  | 0.842]  |
| DMU <sub>14</sub> | [0.558,     | [0.737,                                      | [0.586, | [0.811, | [0.713, | DMU <sub>14</sub> | [0.588, | [0.585, | [0.586, | [0.606, | [0.811, |
|                   | 0.708]      | 0.737]                                       | 0.586]  | 0.811]  | 1.000]  |                   | 0.724]  | 0.585]  | 0.586]  | 0.606]  | 0.811]  |
| DMU <sub>15</sub> | [0.716,     | [0.681,                                      | [0.832, | [0.691, | [0.404, | DMU <sub>15</sub> | [0.699, | [0.815, | [0.832, | [0.815, | [0.691, |
|                   | 0.801]      | 0.681]                                       | 0.832]  | 0.691]  | 0.475]  |                   | 0.825]  | 0.815]  | 0.832]  | 0.815]  | 0.691]  |
| DMU <sub>16</sub> | [0.876,     | [0.842,                                      | [0.992, | [0.899, | [0.382, | $DMU_{16}$        | [1.000, | [0.964, | [0.992, | [0.972, | [0.899, |
|                   | 0.946]      | 0.842]                                       | 0.992]  | 0.899]  | 0.498]  |                   | 1.000]  | 0.964]  | 0.992]  | 0.972]  | 0.899]  |
| DMU <sub>17</sub> | [0.795,     | [0.799,                                      | [0.815, | [0.777, | [0.238, | DMU <sub>17</sub> | [0.730, | [0.821, | [0.815, | [0.793, | [0.777] |
|                   | 0.817]      | 0.799]                                       | 0.815]  | 0.777]  | 0.332]  |                   | 0.813]  | 0.821]  | 0.815]  | 0.793]  | 0.777]  |
| DMU <sub>18</sub> | [0.854,     | [0.837,                                      | [0.927, | [0.894, | [0.355, | DMU <sub>18</sub> | [0.868, | [0.901, | [0.927, | [0.899, | [0.894, |
|                   | 0.891]      | 0.837]                                       | 0.927]  | 0.894]  | 0.433]  |                   | 0.922]  | 0.901   | 0.927]  | 0.899]  | 0.894]  |
| DMU <sub>19</sub> | [0.817,     | [0.783,                                      | [0.873, | [0.735, | [0.180, | DMU <sub>19</sub> | [0.799, | [0.891, | [0.873, | [0.917, | [0.735] |
|                   | 0.895]      | 0.783]                                       | 0.873]  | 0.735]  | 0.277]  |                   | 0.886]  | 0.891]  | 0.8/3   | 0.917]  | ,0.735] |
| DMU <sub>20</sub> | [0.826,     | [0.895,                                      | [0.858, | [0.958, | [0.466, | DMU <sub>20</sub> | [U./11, | [0.835, | [0.858, | [0.827, | [0.958, |
|                   | 0.879]      | 0.895]                                       | 0.858]  | 0.958]  | 0.636]  | =                 | 0.651]  | 0.655]  | 0.858]  | 0.827]  | 0.938]  |

Finally, the optimal RCC<sub>i</sub> values were obtained using the same calculation steps used for the numerical example of six nursing homes. TABLE XVIII shows the ranking comparisons for each DMU.

| THE RANKING COMPARISONS FOR TWENTY THAI PROVINCES |        |      |        |      |        |      |
|---------------------------------------------------|--------|------|--------|------|--------|------|
| DMUs                                              | Ben.   | Rank | Agg.   | Rank | M-III  | Rank |
| DMU <sub>1</sub>                                  | 0.8971 | 7    | 0.7571 | 12   | 0.8187 | 12   |
| $DMU_2$                                           | 0.9656 | 3    | 0.8261 | 6    | 0.9062 | 5    |
| $DMU_3$                                           | 0.9577 | 4    | 0.8483 | 4    | 0.9309 | 3    |
| $\mathrm{DMU}_4$                                  | 0.9803 | 2    | 0.8627 | 3    | 0.9353 | 2    |
| DMU <sub>5</sub>                                  | 0.6337 | 20   | 0.5961 | 20   | 0.6584 | 20   |
| $DMU_6$                                           | 0.9567 | 5    | 0.8201 | 7    | 0.9140 | 4    |
| DMU <sub>7</sub>                                  | 0.8368 | 13   | 0.7209 | 13   | 0.8019 | 13   |
| $DMU_8$                                           | 0.7818 | 15   | 0.6735 | 18   | 0.7476 | 15   |
| DMU <sub>9</sub>                                  | 0.8813 | 9    | 0.7641 | 11   | 0.8244 | 11   |
| $\mathrm{DMU}_{10}$                               | 0.9994 | 1    | 0.9415 | 1    | 0.9868 | 1    |
| $DMU_{11}$                                        | 0.8587 | 12   | 0.8264 | 5    | 0.8257 | 9    |
| $DMU_{12}$                                        | 0.8884 | 8    | 0.8012 | 8    | 0.8523 | 7    |
| DMU <sub>13</sub>                                 | 0.7701 | 16   | 0.6627 | 19   | 0.7242 | 18   |
| $\mathbf{DMU}_{14}$                               | 0.7346 | 19   | 0.6839 | 15   | 0.6862 | 19   |
| DMU <sub>15</sub>                                 | 0.7368 | 18   | 0.6754 | 17   | 0.7261 | 17   |
| $DMU_{16}$                                        | 0.9157 | 6    | 0.8684 | 2    | 0.8910 | 6    |
| $DMU_{17}$                                        | 0.7660 | 17   | 0.6832 | 16   | 0.7459 | 16   |
| $DMU_{18}$                                        | 0.8733 | 10   | 0.7890 | 9    | 0.8415 | 8    |
| DMU <sub>19</sub>                                 | 0.8120 | 14   | 0.7143 | 14   | 0.7830 | 14   |
| DMU <sub>20</sub>                                 | 0.8690 | 11   | 0.7659 | 10   | 0.8254 | 10   |

| TABLE XVIII<br>The ranking comparisons for twenty Thai provinces |        |      |        |      |        |    |  |  |
|------------------------------------------------------------------|--------|------|--------|------|--------|----|--|--|
| OMUs                                                             | Ben.   | Rank | Agg.   | Rank | M-III  | Ra |  |  |
| $OMU_1$                                                          | 0.8971 | 7    | 0.7571 | 12   | 0.8187 | 12 |  |  |
| $OMU_2$                                                          | 0.9656 | 3    | 0.8261 | 6    | 0.9062 | 5  |  |  |
| OMU <sub>3</sub>                                                 | 0.9577 | 4    | 0.8483 | 4    | 0.9309 | 3  |  |  |
| $\mathbf{DMU}_4$                                                 | 0.9803 | 2    | 0.8627 | 3    | 0.9353 | 2  |  |  |

TABLE XVIII (CONTINUED) DMU M-IV Rank Proposed Rank 11  $DMU_1$ 0.7965 0.7829 12 DMU<sub>2</sub> 0.9028 3 5 0.8712 DMU<sub>3</sub> 0.8803 6 0.8942 3  $DMU_4$ 0.9130 2 0.8978 2 DMU<sub>5</sub> 0.6488 20 0.5821 20 DMU<sub>6</sub> 0.8868 4 0.8713 4 DMU<sub>7</sub> 0.7814 13 0.7433 13 DMU<sub>8</sub> 0.7321 15 0.6909 15 DMU<sub>9</sub> 0.7936 12 0.7892 11 DMU<sub>10</sub> 0.9468 1 0.9873 1 DMU<sub>11</sub> 0.8149 9 0.7967 9  $DMU_{12}$ 7 0.8322 0.8192 7 DMU<sub>13</sub> 0.7130 17 18 0.6741 DMU<sub>14</sub> 0.6550 19 0.6854 16 DMU<sub>15</sub> 0.7125 18 0.6684 19 DMU<sub>16</sub> 0.8833 5 0.8625 6 DMU<sub>17</sub> 0.7299 16 0.6800 17 DMU<sub>18</sub> 0.8264 8 0.8010 8 DMU<sub>19</sub> 0.7653 0.7225 14 14 DMU<sub>20</sub> 0.8087 10 0.7951 10

As seen in TABLE XVIII, all models assess that DMU<sub>1</sub> is the best, and DMU<sub>5</sub> is the worst.

Fig. 9 shows the results of the proposed method with the M-III model. From this figure, it can be seen that the proposed method tends to be highly consistent with the M-III model. Only the  $DMU_{14}$ ,  $DMU_{15}$  and  $DMU_{17}$  were ranked differently by the two methods.



Fig.9. The ranking comparisons for the economic development of twenty provinces of Thailand.

In TABLE XIX, the  $r_s$  values for the proposed method and benevolent, aggressive and Model-III and Model-IV are evaluated as  $r_s = 0.952, 0.953, 0.989$  and 0.979, respectively. This ensures that the proposed method has a strong correlation with other cross-efficiency models.

TABLE XIX THE CORRELATION TEST FOR TWENTY THAI PROVINCES

|            | Benevolent | Aggressive | M-III | M-IV  | Proposed |
|------------|------------|------------|-------|-------|----------|
| Benevolent | -          | 0.890      | 0.958 | 0.964 | 0.952    |
| Aggressive | 0.890      | -          | 0.946 | 0.938 | 0.953    |
| M-III      | 0.958      | 0.946      | -     | 0.986 | 0.989    |
| M-IV       | 0.964      | 0.938      | 0.986 | -     | 0.979    |
| Proposed   | 0.952      | 0.953      | 0.989 | 0.979 | -        |

The comparison results for the proposed method and traditional M-III are shown in Fig.10.



Fig.10. The comparison results for the proposed method and M-III.

As shown in Fig.10, the proposed method and the conventional M-III model have a high correlation with the other models.

Since the original model, Wang's model-III [22], is only considered with a maximization perspective, some ranking problems in DEA may be less reliable. Hence, the proposed method was developed to consider both minimization and maximization perspectives of the virtual DMUs distance in model-III [22], and then the RCC model was developed to combine both perspectives for ranking DMUs with interval cross-efficiency score. The main advantages of the proposed method are that it can be used to address DEA ranking problems with interval data, and it is straightforward but effective. In addition, the RCC model, a new optimization model based on TOPSIS concepts, is simple to solve with any optimization solver.

#### VII. CONCLUSION

There are various mathematical models based on the concepts of the cross-efficiency method that have been offered to tackle ranking problems in DEA. One of the most effective and well-known cross-efficiency methods is the secondary goal method. However, the results of each model's ranking for similar problems may differ. Therefore, it is wise to try alternative methods that provide more reliable results and are easier to use but are powerful in solving the DEA's ranking problems. In this paper, both min Z and max Z perspectives of the virtual DMUs crossefficiency model, namely Model-III [22], were utilized to generate the interval cross-efficiency matrix. Differently from previous work, this research presents a new ranking model based on TOPSIS perspectives, called the RCC model, to tackle interval cross-efficiency scores of interval cross-efficiency matrix for ranking all DMUs. Based on four numerical examples of six nursing homes, Sherman and Gold's dataset for 14 bank branches, fourteen international passenger airlines and twenty Thai provinces, these have illustrated the main advantages, potential and applications of the proposed ranking method. In addition, the RCC model is simple but powerful, and is a flexible model to solve DEA ranking problems. The results from the proposed approach show that it gives more reliable results than individual perspectives for some DEA ranking problems.

#### REFERENCES

- Office of the National Economic and Social Development Board Office of the Prime Minister, The Twelfth Plan (2017-2021), Available: https://www.nesdc.go.th/nesdb\_en/ewt\_w3c/main.php? filename=develop\_issue, 2017.
- [2] A. Charnes, W.W. Cooper and E. Rhodes, "Measuring the efficiency of decision making units", European Journal of Operational Research, vol. 2, no.6, pp 429–444, 1978.
- [3] M.A. Pereira, D.C. Ferreira, J.R. Figueira and R.C. Marques, "Measuring the efficiency of the Portuguese public hospitals: A value modelled network data envelopment analysis with simulation," Expert Systems with Applications, vol. 181, pp 115169, 2021.
- [4] C. Stewart, R. Matousek and T.N. Nguyen, "Efficiency in the Vietnamese banking system: a DEA double bootstrap approach," Research in International Business and Finance, vol. 36, pp 96–111, 2016.
- [5] A. Farris, R.L. Groesbeck, E.M. Van Aken and G. Letens, "Evaluating the Relative Performance of Engineering Design Projects: A Case Study Using Data Envelopment Analysis," IEEE Transactions on Engineering Management, vol. 53, no.3, pp 471–482, 2006.

- [6] X. Ji, J. Wu and Q. Zhu, "Eco-design of transportation in sustainable supply chain management: a DEA-like method," Transportation Research Part D: Transport and Environment, vol. 48, pp 451–459, 2015.
- [7] R.B. Shrestha, W.C. Huang, S. Gautam and T.G. Johnson, "Efficiency of small-scale vegetable farms: policy implications for the rural poverty reduction in Nepal," Agricultural Economics – Czech, vol. 62, pp 181–195, 2016.
- [8] Y.M. Wang and K. Chin, "Some alternative models for DEA crossefficiency evaluation," International Journal of Production Economics, vol. 128, no.1, pp 332–338, 2010b.
- [9] T.R. Sexton, R. H. Silkman and A.J. Hogan, "Data Envelopment Analysis: Critique and Extensions," pp.73–105, CA: Jossey-Bass, San Francisco, 1986.
- [10] P. Liu, "Determination of the Weights for the Ultimate Cross Efficiency Using Expert Scoring Method," Engineering Letters, vol. 29, no.3, pp 1035-1043, 2021.
- [11] P. Liu and L.F.Wang, "Determination of Cross-efficiency Considering the Original Efficiency Value of DMUs in DEA Crossevaluation," International Journal of Applied Mathematics, vol. 49, no.2, pp 181-187, 2019.
- [12] J. Wu, J. Sun and L. Liang, "Methods and applications of DEA crossefficiency: Review and future perspectives," Frontiers of Engineering Management, vol. 8, no.2, pp 199–211, 2021.
- [13] C.L. Hwang, K. Yoon, "Multiple Attribute Decision Making: Methods and Applications," New York, Springer-Verlag, 1981.
- [14] G. Kim, C.S. Park and K.P. Yoon, "Identifying investment opportunities for advanced manufacturing systems with comparativeintegrated performance measurement," International Journal of Production Economics, vol. 50, pp 23–33, 1997.
- [15] H.S. Shih, H.J. Shyur and E.S. Lee, "An extension of TOPSIS for group decision making," Mathematical and Computer Modelling, vol. 45, no. 7-8, pp 801–813, 2007.
- [16] F. Ye and Y.N. Li, "Group multi-attribute decision model to partner selection in the formation of virtual enterprise under incomplete information," Expert Systems with Applications, vol. 36, no. 5, pp 9350-9357, 2009.
- [17] Z. Yue, "A method for group decision-making based on determining weights of decision makers using TOPSIS," Applied Mathematical Modelling, vol. 35, no. 4, pp 1926-1936, 2011.
- [18] M. Behzadian, S.K. Otaghsara, M.Yazdani and J. Ignatius, "A stateof the-art survey of TOPSIS applications," Expert Systems with Applications, vol. 39, no. 17, pp 13051-13069, 2012.
- [19] J. Geng, W. Ye and D. Xu, "A Method Based on TOPSIS and Distance Measures for Single-Valued Neutrosophic Linguistic Sets and Its Application," IAENG International Journal of Applied Mathematics, vol. 51, no. 3, pp 538-545, 2021.
- [20] Q. Liu, Z. Yang, Y. Li, X. Qiao and C. Wei, "Study of Reputation Mechanism of Second-hand University Platform Based on E-sporas Model," IAENG International Journal of Computer Science, vol. 49, no. 2, pp 385-392, 2021.
- [21] S.S.Shang, W.F.Lyv, and L.J.Luo, "Improved Grey FMEA Evaluation with Interval Uncertain Linguistic Variables and TOPSIS," Engineering Letters, vol. 29, no. 2, pp 516-525, 2021.
- [22] Y.M. Wang, K.S. Chin and Y. Luo, "Cross-efficiency evaluation based on ideal and anti-ideal decision making units," Expert Systems with Applications, vol. 38, no. 8, pp 10312-10319, 2011.
- [23] J.R. Doyle and R.H. Green, R, "Efficiency and cross-efficiency in DEA: Derivations, meanings and uses," Journal of the Operational Research Society, vol. 45, no. 5, pp 567–578, 1994.
- [24] L. Liang, J.Wu, W.D. Cook, J. Zhu, "Alternative secondary goals in DEA cross-efficiency evaluation," International Journal of Production Economics, vol. 113, no. 2, pp 1025–1030, 2008a.
- [25] Y.M. Wang and K. Chin, "Some alternative models for DEA crossefficiency evaluation," International Journal of Production Economics vol. 128, no.1, pp 332–338, 2010b.
- [26] J.Wu, J.Chu, J. Sun, Q. Zhu and L. Liang, "Extended secondary goal models for weights selection in DEA cross-efficiency evaluation," Computers & Industrial Engineering, vol. 93, pp 143–151, 2016a.
- [27] Y.M.Wang and K. Chin, "A neutral DEA model for cross-efficiency evaluation and its extension," Expert Systems with Applications, vol. 37, no.5, pp 3666–3675, 2010a.
- [28] Y.M. Wang, K.Chin, and P. Jiang, "Weight determination in the cross-efficiency evaluation," Computers & Industrial Engineering, vol. 61, no.3, pp 497–502, 2011a.
- [29] P.Liu, L.F.Wang, and J.Chang, "A revised model of the neutral DEA model and its extension," Mathematical Problems in Engineering, vol.2017, pp 1619798, 2017a.

- [30] L.Liang, J.Wu, W.D. Cook and J. Zhu, "The DEA game crossefficiency model and its Nash equilibrium," Operations Research, vol. 56, no. 5, pp.1278–1288, 2008b.
- [31] M.A. Hinojosa, S.Lozano, D.V. Borrero, A.M. Mármol, "Ranking efficient DMUs using cooperative game theory," Expert Systems with Applications, vol. 80, pp 273–283, 2017.
- [32] H.Essid, J.Ganouati and S.Vigeant, "A mean-maverick game crossefficiency approach to portfolio selection: An application to Paris stock exchange," Expert Systems with Applications, vol. 113, pp 161–185, 2018.
- [33] J.Wu, J.Sun and L. Liang, "Methods and applications of DEA crossefficiency: Review and future perspectives," Frontiers of Engineering Management, vol. 8, pp 199–211, 2021.
- [34] J.Wu, J.Sun and L.Liang, "DEA cross-efficiency aggregation method based upon Shannon entropy," International Journal of Production Research, vol.50, no.23,pp 6726–6736, 2017.
- [35] G.Yang, J.Yang, W.Liu and X. Li, "Cross-efficiency aggregation in DEA models using the evidential-reasoning approach," European Journal of Operational Research, vol. 231, no.2, pp 393–404,2013.
- [36] M.Song, Q.Zhu,J. Peng and E.D.S, Gonzalez, "Improving the evaluation of cross efficiencies: A method based on Shannon entropy weight," Computers & Industrial Engineering, vol.112, pp 99–106, 2017.
- [37] N. Wichapa, P. Khokhajaikiat and K.Chaiphet, "Aggregating the results of benevolent and aggressive models by the CRITIC method for ranking of decision-making units: A case study on seven biomass fuel briquettes generated from agricultural waste," Decision Science Letters, vol.10, no. 1, pp 79–92, 2021.
- [38] N.Wichapa, A.Lawong and M.Donmuen, "Ranking DMUs using a novel combination method for integrating the results of relative closeness benevolent and relative closeness aggressive models," International Journal of Data and Network Science, vol.5, no. 3, pp 401-416, 2021.
- [39] L.Wang, L.Li and N.Hong, "Entropy Cross-Efficiency Model for Decision Making Units with Interval Data," Entropy, vol.18, no. 10: pp 358,2016.
- [40] T.Lu and S.T. Liu, "Ranking DMUs by Comparing DEA Cross-Efficiency Intervals Using Entropy Measures," Entropy, vol.18, no.12, pp 452,2016.
- [41] N.Wichapa, W.Khanthirat and T. Sudsuansee, "A Novel Gibbs Entropy Model Based upon Cross-Efficiency Measurement for Ranking Decision Making Units," Mathematical Modelling of Engineering Problems, vol.9, no. 2, pp 390-396, 2022.
- [42] A. Charnes and W.W. Cooper, "Programming with linear fractional functionals," Naval Research Logistic Quarterly, vol. 9, no.3-4, pp 181-186, 1962.
- [43] H.D. Sherman and F. Gold, "Bank branch operating efficiency: evaluation with data envelopment analysis," Journal of Banking & Finance, vol.9, no.2, pp 297–315, 1985.
- [44] C. Tofallis, "Input efficiency profiling: An application to airlines," Computers & Operations Research, vol.24, no.3, pp 253-258, 1997b.

**N. Wichapa** is an assistant professor at Department of Industrial Engineering, Kalasin University, Kalasin 46000, Thailand.

**S. Sodsoon** is an associate professor at Department of Industrial Engineering, Kalasin University, Kalasin 46000, Thailand.