On a Resonant Fractional Order Multipoint and Riemann-Stieltjes Integral Boundary Value Problems on the Half-line with Two-dimensional Kernel

Ezekiel K. Ojo^{\dagger}, Samuel A. Iyase, and Timothy A. Anake,

Abstract

This paper investigates existence of solutions of a resonant fractional order boundary value problem with multipoint and Riemann-Stieltjes integral boundary conditions on the half-line with two-dimensional kernel. We utilised Mawhin's coincidence degree theory to derive our results. The results obtained are validated with examples.

Index Terms-Banach spaces, coincidence degree theory, halfline, resonance, Riemann-Stieltjes integral, two-dimensional kernel.

I. Introduction

FRACTIONAL differential equation serves as a powerful tool for mathematical modelling of complex phenomena, such as; viscoelastic media, epidemics, electromagnetics, acoustics, control theory, electrochemistry, finance, and materials science found in science and engineering (see [5], [16], [21], [24], [26]. The interest of researchers and scientists have significantly shifted to fractional-order models because, they are more accurate and provide more degrees of freedom than integer-order models.Valuable results have been obtained in the literature on the existence of solutions of fractional order boundary value problems (BVPs) by using different methods.These methods include; coincidence degree theory of Mawhin (see [2], [8], [10], [12], [16], [18], [22], [27], [28], [29], hybrid fixed point theorem [6], Ge and Ren extension of Mawhin coincidence degree theory [9], extension of continuation theorem [25], monotone iterative technique [11] and the references therein. A fractional order BVP is at resonance if the corresponding homogeneous equation has non-trivial solution.

Some scholars have studied resonant fractional order BVPs on finite interval $[0,1]$ with finite point or integral boundary conditions in which the $\operatorname{dim} \operatorname{ker} L=1$ and the order $1<$ $\alpha \leq 2$ (see [1], [7], [12], [15], [23], [31]).

Recently, Zhang and Liu [30] studied the following class of fractional multipoint boundary value problem at resonance with $\operatorname{dim} \operatorname{ker} L=2$ on an infinite interval, and established

[^0]that solution exists by using coincidence degree theory
$D_{0^{+}}^{\alpha} u(t)=f\left(t, u(t), D_{0^{+}}^{\alpha-2} u(t), D_{0^{+}}^{\alpha-1} u(t)\right), 0<t<+\infty$, subject to;
\[

$$
\begin{aligned}
& u(0)=0,, D_{0^{+}}^{\alpha-2} u(0)=\sum_{i=1}^{m} \alpha_{i} D_{0^{+}}^{\alpha-2} u\left(\xi_{i}\right) \\
& D_{0^{+}}^{\alpha-1} u(+\infty)=\sum_{j=1}^{n} \beta_{j} D_{0^{+}}^{\alpha-1} u\left(\eta_{j}\right)
\end{aligned}
$$
\]

$\sum_{i=1}^{m} \alpha_{i}=1=\sum_{j=1}^{n} \beta_{j} \eta_{j}, \sum_{i=1}^{m} \alpha_{i} \xi_{i}=0=\sum_{j=1}^{n} \beta_{j}$ are critical for resonance; where $D_{0^{+}}^{\alpha}$ is the standard Riemann-Liouville fractional derivative of order α, $2<\alpha \leq 3,0<\xi_{1}<\xi_{2}<\cdots<\xi_{m}<+\infty$, and $0<\eta_{1}<\eta_{2}<\cdots<\eta_{n}<+\infty$.

However, the existence of solutions for a resonant fractional order boundary value problems on the half-line with multipoint and Riemann-Stieltjes integral boundary conditions where $\operatorname{dim} \operatorname{ker} L=2$ and $3<\alpha \leq 4$ have not been widely reported in the literature. We are motivated by this, to focus on investigating existence of solution for the following resonant fractional order boundary value problem

$$
\begin{align*}
& D_{0^{+}}^{\alpha} x(t)=f\left(t, x(t), D_{0^{+}}^{\alpha-3} x(t), D_{0^{+}}^{\alpha-2} x(t), D_{0^{+}}^{\alpha-1} x(t)\right), \\
& x(0)=0=D_{0^{+}}^{\alpha-3} x(0), D_{0^{+}}^{\alpha-2} x(0)=\sum_{i=1}^{m} \mu_{i} D_{0^{+}}^{\alpha-2} x\left(\xi_{i}\right), \\
& D_{0^{+}}^{\alpha-1} x(+\infty)=\int_{0}^{\eta} D_{0^{+}}^{\alpha-2} x(t) d A(t) \tag{1}
\end{align*}
$$

where $t \in(0,+\infty), 3<\alpha \leq 4$, dim $\operatorname{ker} L=2,0<\xi_{1}<$ $\xi_{2}<\xi_{3}<\cdots<\xi_{m}<\infty, \eta \in(0,+\infty)$ and $A(t)$ is a continuous and bounded variation function on $(0,+\infty)$.
Throughout this investigation, the following assumptions are made:

$$
\begin{aligned}
& \left(H_{1}\right) \sum_{i=1}^{m} \mu_{i}=1, \quad \sum_{i=1}^{m} \mu_{i} \xi_{i}=0, \quad \int_{0}^{\eta} t d A(t)=1 \\
& \quad \int_{0}^{\eta} d A(t)=0 \\
& \left(H_{2}\right) \\
& \quad \Delta=\left(1-\sum_{i=1}^{m} \mu_{i} e^{-\xi_{i}}\right)\left(\int_{0}^{\eta}(2+t) e^{-t} d A(t)\right) \\
& \quad+\left(\int_{0}^{\eta} e^{-t} d A(t)\right)\left(\sum_{j=1}^{m} \mu_{i}\left(2+\xi_{i}\right) e^{-\xi_{i}}-2\right) \neq 0
\end{aligned}
$$

$\left(H_{3}\right)$ There exist nonnegative functions $\rho_{1}(t), \rho_{2}(t), \rho_{3}(t), \rho_{4}(t), \rho_{5}(t) \in L^{1}(0,+\infty)$ such that
for all $t \in(0,+\infty)$ and $p, q, r, v \in \mathbb{R}$,

$$
\begin{aligned}
& |f(t, p, q, r, v)| \leq \rho_{1}(t) \frac{|p|}{1+t^{\alpha}}+\rho_{2}(t) \frac{|q|}{1+t^{2}} \\
& \quad+\rho_{3}(t) \frac{|r|}{1+t^{\alpha-1}}+\rho_{4}(t) \frac{|v|}{1+t^{\alpha-2}}+\rho_{5}(t)
\end{aligned}
$$

$\Theta:=\left\|\rho_{1}\right\|_{L^{1}}+\left\|\rho_{2}\right\|_{L^{1}}+\left\|\rho_{3}\right\|_{L^{1}}+\left\|\rho_{4}\right\|_{L^{1}} \quad$ and $\left\|\rho_{i}\right\|_{L^{1}}=\int_{0}^{\infty}\left|\rho_{i}\right| d t, i=1,2,3,4$.
$\left(H_{4}\right)$ There exist non-negative constants A_{1} and A_{2} such that, for all $x \in \operatorname{dom} L \backslash \operatorname{ker} L$, if one of the following is satisfied:
(i) $\left|D_{0+}^{\alpha-3} x(t)\right|>A_{1}$, for any $t \in\left(0, A_{2}\right]$;
(ii) $\left|D_{0+}^{\alpha-2} x(t)\right|>A_{1}$, for any $t \in\left(0, A_{2}\right]$;
(iii) $\left|D_{0+}^{\alpha+1} x(t)\right|>A_{1}$, for any $t \in\left(A_{2},+\infty\right)$,
then either $\Pi_{1} N x(t) \neq 0$ or $\Pi_{2} N x(t) \neq 0$.
$\left(H_{5}\right)$ There exists $B>0$ such that, for any $c_{1}, c_{2} \in \mathbb{R}$ satisfying $\left|c_{1}\right|>B$ or $\left|c_{2}\right|>B$, then either
$\Pi_{1} N\left(c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}\right)+\Pi_{2} N\left(c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}\right)<0$,
or

$$
\begin{equation*}
\Pi_{1} N\left(c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}\right)+\Pi_{2} N\left(c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}\right)>0 \tag{3}
\end{equation*}
$$

then, the BVP (1) has at least one solution in X provided $H \Theta<1$ where $H=\left(\frac{1}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha-1)}+\frac{11}{2}\right)$ and $\Theta=\left\|\rho_{1}(t)\right\|_{1}+\left\|\rho_{2}(t)\right\|_{1}+\left\|\rho_{3}(t)\right\|_{1}+\left\|\rho_{4}(t)\right\|_{1}$.
This paper unlike most of the previous works, focuses on two-dimensional kernel on the half-line with multipoint and Riemann-Stieltjes integral boundary conditions.

The rest of the paper is organized as follows. Section 2 presents some lemmas and definitions which are germane to the study. Section 3 focuses on the main existence results. Section 4 is concerned with examples to validate the results while in section 5, we draw conclusion.

A. Preliminaries

In this section, we recall some basic knowledge of the fractional calculus of Riemann-Liouville type and coincidence degree theory of Mawhin. Some definitions, lemmas and theorems that will be useful in the research study are highlighted.
Definition 1: [10]. The Riemann-Liouville fractional integral of order $\alpha>0$ for a function $f:(0,+\infty) \rightarrow \mathbb{R}$ is given by

$$
I_{0^{+}}^{\alpha}=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f(s) d s
$$

provided the right - hand side integral is point-wise defined on $(0,+\infty)$.

Definition 2: [10] The Riemann-Liouville fractional derivative of order $\alpha>0$ for a function $f:(0,+\infty) \rightarrow \mathbb{R}$ is given by

$$
\begin{aligned}
D_{0^{+}}^{\alpha} f(t) & =\frac{d^{n}}{d t^{n}} I_{0^{+}}^{n-\alpha} f(t) \\
& =\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d t^{n}} \int_{0}^{t}(t-s)^{n-\alpha-1} f(s) d s
\end{aligned}
$$

where $n=[\alpha]+1$, provided that the right-hand side integral is point-wise defined on $(0,+\infty)$.
Lemma 1: [18]. If $\alpha>0$ and $f, D_{0^{+}}^{\alpha} f \in L^{1}(0,1)$, then

$$
I_{0^{+}}^{\alpha} D_{0^{+}}^{\alpha} f(t)=f(t)+c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}+\cdots+c_{n} t^{\alpha-n}
$$

where $n=[\alpha]+1, \quad c_{i} \in \mathbb{R} \quad(i=1,2, \cdots, n)$ are arbitrary constants.

Lemma 2: [7]. Given that $\alpha>\beta>0$. Suppose that $f(t) \in L^{1}(0,1)$, then

$$
I_{0^{+}}^{\alpha} I_{0^{+}}^{\beta} f(t)=I_{0^{+}}^{\alpha+\beta} f(t), D_{0^{+}}^{\beta} I_{0^{+}}^{\alpha} f(t)=I_{0^{+}}^{\alpha-\beta} f(t)
$$

In particular,

$$
D_{0^{+}}^{\alpha} I_{0^{+}}^{\alpha} f(t)=f(t)
$$

Lemma 3: [4]. Given that $\alpha>0, n \in \mathbb{N}$ and $D=\frac{d}{d x}$. If the fractional derivatives $\left(D_{0^{+}}^{\alpha} f\right)(t)$ and $\left(D_{0^{+}}^{\alpha+n} f\right)(t)$ exist, then

$$
\left(D^{n} D_{0^{+}}^{\alpha} f\right)(t)=\left(D_{0^{+}}^{\alpha+n} f\right)(t)
$$

Lemma 4: [4]. Suppose that $\alpha>0, \lambda>-1, t>0$, then $I_{0^{+}}^{\alpha} t^{\lambda}=\frac{\Gamma(\lambda+1)}{\Gamma(\lambda+\alpha+1)} t^{\lambda+\alpha}$ and
$D_{0^{+}}^{\alpha} t^{\lambda}=\frac{\Gamma(\lambda+1)}{\Gamma(\lambda-\alpha+1)} t^{\lambda-\alpha}$. In particular,
$D_{0^{+}}^{\alpha} t^{\alpha-m}=0$, for $m=1,2,3, \cdots, n$ where $n=[\alpha]+1$.
Definition 3: [19]. Let $n \in \mathbb{R}_{+}$and $m=[n]$. The operator

$$
D_{0^{+}}^{n} f=D_{0^{+}}^{m} I_{0^{+}}^{m-n} f
$$

is called Riemann-Liouville fractional differential operator of order n.
If $n=0$, then $D_{0^{+}}^{0}=I$, the identity operator.
Lemma 5: [4] Let $n \in \mathbb{R}_{+}$and $m \in \mathbb{N}$ such that $m>n$. Then

$$
D_{0^{+}}^{n}=D_{0^{+}}^{m} I_{0^{+}}^{m-n}
$$

Definition 4: [17]. Let $(X,\|\|$.$) and (W,\|\|$.$) be real$ Banach spaces.
A linear operator $L: \operatorname{dom} L \subset X \rightarrow W$ is called a Fredholm operator of index zero provided that
(i) $\operatorname{Im} L$ is a closed subset of W , and
(ii) $\operatorname{dim} \operatorname{ker} L=$ codim $\operatorname{Im} L<+\infty$.

Definition 5: [22]. Let $L: \operatorname{dom} L \subset X \rightarrow W$ be a Fredholm operator, then, there exist continuous projectors $P: X \rightarrow X$ and $\Pi: W \rightarrow W$ such that $\operatorname{Im} P=\operatorname{ker} L$, $\operatorname{ker} \Pi=\operatorname{Im} L, X=\operatorname{ker} L \oplus \operatorname{ker} P, \quad W=\operatorname{Im} L \oplus \operatorname{Im} \Pi$ and the mapping
$\left.L\right|_{\text {dom } L \cap \text { ker } P}: \operatorname{dom} L \cap \operatorname{ker} P \rightarrow \operatorname{Im} L$ is invertible. We denote the inverse of $\left.L\right|_{\text {dom } L \cap \text { Ker } P}$ by
$K_{p}: I m L \rightarrow \operatorname{dom} L \cap \operatorname{ker} P$ and the generalized inverse of L is $K_{P, \Pi}: W \rightarrow \operatorname{dom} L \cap \operatorname{ker} P$ where $K_{P, \Pi}=K_{P}(I-\Pi)$.

Theorem 6: [17]. Let $L: \operatorname{dom} L \subset X \rightarrow W$ be a Fredholm operator of index zero and $N: X \rightarrow W$ is
L-compact on $\bar{\Omega}$. Suppose that the following conditions are satisfied.
(i) $L x \neq \lambda N x$ for any $x \in(\operatorname{dom} L \backslash \operatorname{ker} L) \cap \partial \Omega, \quad \lambda \in(0,1) ;$
(ii) $\quad N x \notin I m L$ for any $x \in \operatorname{ker} L \cap \partial \Omega$;
(iii) $\operatorname{deg}\left(\left.\Pi N\right|_{\text {ker } L}, \operatorname{ker} L \cap \Omega, 0\right) \neq 0$, where $\Pi: W \rightarrow$ W is a projection such that $\operatorname{Im} L=\operatorname{ker} \Pi$. Then, the equation $L x(t)=N x(t)$ has at least one solution in $\operatorname{domL} \cap \bar{\Omega}$.

II. Main Results

Lemma 6: Suppose $\left(H_{1}\right)$ holds. Then:
(i) $\operatorname{ker} L=\left\{x(t) \in \operatorname{dom} L: x(t)=c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}\right.$, for all $\left.t \in(0,+\infty), c_{1}, c_{2} \in \mathbb{R}\right\}$.
(ii) $\operatorname{Im} L=\left\{w \in W: \Pi_{1} w=0=\Pi_{2} w\right\}$, where

$$
\begin{aligned}
& \Pi_{1} w=\sum_{i=1}^{m} \mu_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) w(s) d s \\
& \Pi_{2} w=\int_{0}^{\infty} w(s) d s-\int_{0}^{\eta} \int_{0}^{t}(t-s) w(s) d s d A(t)
\end{aligned}
$$

Proof: (i) Consider the homogeneous boundary value problem, $D_{0^{+}}^{\alpha} x(t)=0$. Since $3<\alpha \leq 4$, let the solution $x(t)=c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}+c_{3} t^{\alpha-3}+c_{4} t^{\alpha-4}$.
Using the initial condition $x(0)=0 \Rightarrow c_{4}=0$.
Then, $x(t)=c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}+c_{3} t^{\alpha-3}$.

$$
\begin{aligned}
D_{0^{+}}^{\alpha-3} x(t) & =\frac{c_{1} \Gamma(\alpha) t^{2}}{\Gamma(3)}+\frac{c_{2} \Gamma(\alpha-1) t}{\Gamma(2)}+\frac{c_{3} \Gamma(\alpha-2)}{\Gamma(1)} \\
D_{0^{+}}^{\alpha-3} x(0) & =0 \Rightarrow c_{3}=0 \\
\text { Hence, } x(t) & =c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}
\end{aligned}
$$

Apply the boundary condition to obtain

$$
\begin{align*}
D_{0^{+}}^{\alpha-2} x(t) & =c_{1} \Gamma(\alpha) t+c_{2} \Gamma(\alpha-1) \\
D_{0^{+}}^{\alpha-2} x(0) & =c_{2} \Gamma(\alpha-1)=\sum_{i=1}^{m} \mu_{i} D_{0^{+}}^{\alpha-2} x\left(\xi_{i}\right) \\
c_{2} \Gamma(\alpha-1) & =c_{1} \Gamma(\alpha) \sum_{i=1}^{m} \mu_{i} \xi_{i}+c_{2} \Gamma(\alpha-1) \sum_{i=1}^{m} \mu_{i} . \\
c_{2} \Gamma(\alpha-1) & \left(1-\sum_{i=1}^{m} \mu_{i}\right)=c_{1} \Gamma(\alpha) \sum_{i=1}^{m} \mu_{i} \xi_{i}=0 . \\
& \sum_{i=1}^{m} \mu_{i}=1, \quad \sum_{i=1}^{m} \mu_{i} \xi_{i}=0 \tag{4}
\end{align*}
$$

and

$$
\begin{gather*}
c_{1} \Gamma(\alpha)\left(1-\int_{0}^{\eta} t d A(t)\right)=c_{2} \Gamma(\alpha-1) \int_{0}^{\eta} d A(t)=0 \\
\int_{0}^{\eta} t d A(t)=1, \quad \int_{0}^{\eta_{j}} d A(t)=0 \tag{5}
\end{gather*}
$$

To prove (ii), suppose $w \in \operatorname{Im} L$, then there exists $x(t) \in \operatorname{dom} L$ such that

$$
\begin{equation*}
L x(t)=w \tag{6}
\end{equation*}
$$

Solving the equation (6)

$$
\begin{equation*}
x(t)=I_{0+}^{\alpha} w(t)+c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}+c_{3} t^{\alpha-3}+c_{4} t^{\alpha-4} \tag{7}
\end{equation*}
$$

Applying the initial condition $x(0)=0=D_{0^{+}}^{\alpha-3} x(0)$ to equation (7) gives $c_{3}=0, c_{4}=0$, thus

$$
\begin{equation*}
x(t)=I_{0+}^{\alpha} w(t)+c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2} . \tag{8}
\end{equation*}
$$

Apply the boundary condition to equation (8),

$$
\begin{aligned}
D_{0+}^{\alpha-2} x(t) & =D_{0+}^{\alpha-2}\left[I_{0+}^{\alpha} w(t)+c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}\right] \\
& =\int_{0}^{t}(t-s) w(s) d s+c_{1} \Gamma(\alpha) t+c_{2} \Gamma(\alpha-1)
\end{aligned}
$$

From the boundary condition
$D_{0^{+}}^{\alpha-2} x(0)=\sum_{i=1}^{m} \mu_{i} D_{0^{+}}^{\alpha-2} x\left(\xi_{i}\right)$, we have

$$
\begin{align*}
c_{2} \Gamma(\alpha-1)= & \sum_{i=1}^{m} \mu_{i}\left(\int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) w(s) d s+\right. \tag{9}\\
& \left.c_{1} \Gamma(\alpha) \xi_{i}+c_{2} \Gamma(\alpha-1)\right)
\end{align*}
$$

hence,

$$
\begin{equation*}
\sum_{i=1}^{m} \mu_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) w(s) d s=0=\Pi_{1} w \tag{10}
\end{equation*}
$$

To obtain $\Pi_{2} w$, apply the boundary condition
$D_{0+}^{\alpha-1} x(+\infty)=\int_{0}^{\eta} D_{0+}^{\alpha-2} x(t) d A(t)$
to $x(t)=I_{0+}^{\alpha} w(t)+c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}$,
then, $D_{0+}^{\alpha-1} x(t)=I_{0+}^{1} w(t)+c_{1} \Gamma(\alpha)+\frac{c_{2} \Gamma(\alpha-1)}{t}$.

$$
\begin{aligned}
D_{0+}^{\alpha-1} x(+\infty)= & \lim _{t \rightarrow+\infty}\left(\int_{0}^{t} w(s) d s+c_{1} \Gamma(\alpha)\right. \\
& \left.+\frac{c_{2} \Gamma(\alpha-1)}{t}\right) \\
= & \int_{0}^{\eta} \int_{0}^{t}(t-s) w(s) d s d A(t) \\
+ & c_{1} \Gamma(\alpha) \int_{0}^{\eta} t d A(t)+c_{2} \Gamma(\alpha-1) \int_{0}^{\eta} d A(t)
\end{aligned}
$$

Hence,
$\int_{0}^{\infty} w(s) d s+c_{1} \Gamma(\alpha)=\int_{0}^{\eta} \int_{0}^{t}(t-s) w(s) d s d A(t)+c_{1} \Gamma(\alpha)$. and

$$
\begin{equation*}
\int_{0}^{\infty} w(s) d s-\int_{0}^{\eta} \int_{0}^{t}(t-s) w(s) d s d A(t)=0=\Pi_{2} w \tag{11}
\end{equation*}
$$

Conversely, for any $w \in W$ satisfying (10) and (11), take $x(t)=I_{0+}^{\alpha} w(t)$, then $x(t) \in \operatorname{dom} L$ and $D_{0+}^{\alpha} x(t)=$ $w \in \operatorname{Im} L$. Thus, we have shown that $\operatorname{Im} L=\{w \in W$: $\left.\Pi_{1} w=\Pi_{2} w=0\right\}$.

Definition 7: Determinant

$$
\Delta=\left|\begin{array}{ll}
a_{11} & a_{12} \tag{12}\\
a_{21} & a_{22}
\end{array}\right|=\left|\begin{array}{ll}
\Pi_{1} e^{-t} & \Pi_{2} e^{-t} \\
\Pi_{1} t e^{-t} & \Pi_{2} t e^{-t}
\end{array}\right|
$$

We apply (10) and (11) to (12) to obtain
$a_{11}=\sum_{i=1}^{m} \mu_{i} e^{-\xi_{i}}-1, a_{12}=-\int_{0}^{\eta} e^{-t} d A(t)$.
$a_{21}=\sum_{i=1}^{m} \mu_{i}\left(2+\xi_{i}\right) e^{-\xi_{i}}-2, a_{22}=-\int_{0}^{\eta}(2+t) e^{-t} d A(t)$
$\Delta=a_{11} a_{22}-a_{12} a_{21}$
Definition 8: Let $\phi_{1}, \phi_{2}: W \quad \rightarrow \quad W$ such that $\phi_{1} w=\frac{1}{\Delta}\left(a_{22} \Pi_{1} w-a_{21} \Pi_{2} w\right) e^{-t}, \phi_{2} w=\frac{1}{\Delta}\left(a_{11} \Pi_{2} w-\right.$ $\left.a_{12} \Pi_{1} w\right) e^{-t}$. It is easy to show that: $\phi_{1}\left(\phi_{1} w(t)\right)=\phi_{1}(t)$, $\phi_{1}\left(\phi_{2} w(t)\right)=0, \phi_{2}\left(\phi_{1} w(t)\right)=0$ and $\phi_{2}\left(\phi_{2} w(t)\right)=\phi_{2}(t)$.

Lemma 7: Suppose $\left(H_{1}\right)$ holds, then $L: \operatorname{dom} L \subset X \rightarrow$ W is a Fredholm operator of index zero.

Proof: We show that $\operatorname{dim} \operatorname{ker} L=$ codim $\operatorname{Im} L$.
Let $P: X \rightarrow X$ and $\Pi: W \rightarrow W$ be linear projections defined as
$P x(t)=\frac{1}{\Gamma(\alpha)} D_{0+}^{\alpha-1} x(0) t^{\alpha-1}+\frac{1}{\Gamma(\alpha-1)} D_{0+}^{\alpha-2} x(0) t^{\alpha-2}$,
$\Pi w=\phi_{1} w(t)+\left(\phi_{2} w(t)\right) t$, for any $x \in \operatorname{ker} L$.

$$
P^{2} x(t)=P(P x(t))=P x(t) .
$$

P is a continuous linear projection operator such that $\operatorname{ker} L=\operatorname{Im} P, \quad x=x-P x+P x, \quad$ where $P x \in \operatorname{ker} L$, $x-P x \in \operatorname{ker} P$ then $X=\operatorname{ker} P \oplus \operatorname{ker} L$. From the way the operators ϕ_{1} and ϕ_{2} are defined, Π is a linear operator. From (8), we can deduce that, given $\Pi w=\phi_{1} w+\left(\phi_{2} w\right) t$

$$
\begin{equation*}
\Pi^{2} w=\Pi\left(\phi_{1} w+\left(\phi_{2} w\right) t=\phi_{1}(\Pi w)+\phi_{2}((\Pi w)) t=\Pi w\right. \tag{13}
\end{equation*}
$$

Thus, Π is a projection operator. Given $w \in W$ such that $w=\Pi w+(w-\Pi w)$, then $\Pi w \in \operatorname{Im} \Pi$ and
$\Pi(w-\Pi w)=\Pi w-\Pi^{2} w=\Pi w-\Pi w=0$. Similarly, $\Pi_{1}(w-\Pi w)=\Pi_{2}(w-\Pi w)=0$.
Therefore, $(w-\Pi w) \in I m L=\operatorname{ker} \Pi$. If $w \in \operatorname{Im} L \cap \operatorname{Im} \Pi$, then $w=\Pi w=0$. Consequently, $W=\operatorname{Im} \Pi \oplus \operatorname{Im} L$ and $\operatorname{dim} \operatorname{ker} L=$ codim $\operatorname{Im} L=2$. Therefore, L is a Fredholm operator of index zero.

Let $(X,\|\cdot\|)$ and $(W,\|\cdot\|)$ be real Banach spaces. Let

$$
\begin{aligned}
X= & \left\{x(t): x(t), D_{0+}^{\alpha-3} x(t), D_{0+}^{\alpha-2} x(t)\right. \\
& D_{0+}^{\alpha-1} x(t) \in C(0,+\infty), \sup _{t>0} \frac{|x(t)|}{1+t^{\alpha}}<+\infty \\
& \sup _{t>0} \frac{\left|D_{0+}^{\alpha-3} x(t)\right|}{1+t^{2}}<+\infty, \sup _{t>0} \frac{\left|D_{0+}^{\alpha-2} x(t)\right|}{1+t^{\alpha-1}}<+\infty \\
& \left.\sup _{t>0} \frac{\left|D_{0+}^{\alpha-1} x(t)\right|}{1+t^{\alpha-2}}<+\infty\right\}
\end{aligned}
$$

and $W=L^{1}(0,+\infty)$ with norms
$\|x(t)\|_{X}=\max \left\{\|x(t)\|_{0},\left\|D_{0+}^{\alpha-3} x(t)\right\|_{0},\left\|D_{0+}^{\alpha-2} x(t)\right\|_{0}\right.$,
$\left.\left\|D_{0+}^{\alpha-1} x(t)\right\|_{0}\right\},\|w\|_{W}=\|w\|_{L^{1}}$ where
$\|x(t)\|_{0}=\sup _{t>0} \frac{|x(t)|}{1+t^{\alpha}},\left\|D_{0+}^{\alpha-3} x(t)\right\|_{0}=\sup _{t>0} \frac{\left|D_{0+}^{\alpha-3} x(t)\right|}{1+t^{2}}$,
$\left\|D_{0+}^{\alpha-2} x(t)\right\|_{0}=\sup _{t>0} \frac{\left|D_{0+}^{\alpha-2} x(t)\right|}{1+t^{\alpha-1}}$,
$\left\|D_{0+}^{\alpha-1} x(t)\right\|_{0}=\sup _{t>0} \frac{\left|D_{0+}^{\alpha-1} x(t)\right|}{1+t^{\alpha-2}}$ and
$\|w\|_{L^{1}}=\int_{0}^{+\infty}|w(t)| d t$.

Lemma 8: Let $L_{p}=\left.L\right|_{\text {dom } L \cap \operatorname{ker} P}: d o m L \cap \operatorname{ker} P \rightarrow$ $I m L$ and $K_{P}: I m L \rightarrow \operatorname{dom} L \cap \operatorname{ker} P$ such that $K_{P} w=I_{0+}^{\alpha} w=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} w(s) d s, w \in \operatorname{Im} L$, then, K_{P} is the inverse of L_{P} and $\left\|K_{P} w\right\|_{X} \leq\|w\|_{L^{1}}$.

Proof: To Show that $K_{P}=L_{P}^{-1}$. Given any $w \in$ $\operatorname{Im} L \subset W$, let $K_{P} w=I_{0+}^{\alpha} w$. Then,
$\left(L_{p} K_{P}\right) w(t)=D_{0+}^{\alpha}\left(K_{P} w(t)=D_{0+}^{\alpha} I_{0+}^{\alpha} w(t)=w(t)\right.$. For $x(t) \in \operatorname{dom} L \cap \operatorname{ker} P$, we have

$$
\begin{aligned}
\left(K_{P} L_{P}\right) x(t) & =\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} D_{0+}^{\alpha} x(s) d s \\
& =x(t)+c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}
\end{aligned}
$$

It follows that $P\left(K_{P} L_{P} x(t)\right)=0$ since $x(t)=c_{1} t^{\alpha-1}+$ $c_{2} t^{\alpha-2} \in \operatorname{ker} L=\operatorname{Im} P$.
$P x(t)=x(t)$ and $\left(K_{P} L_{P}\right) x(t)=x(t)-P x(t)$. Therefore, $x(t) \in \operatorname{dom} L \cap \operatorname{ker} P$, hence $\left(K_{P} L_{P}\right) x(t)=x(t)$. Thus, K_{P} is the inverse of $\left.L\right|_{\text {dom } L \cap \operatorname{ker} P}=L_{P}$.
Next we show that $\left\|K_{P} w\right\|_{X} \leq\|w\|_{L^{1}}$.

$$
\begin{aligned}
\left\|K_{P} w\right\|_{0} & =\sup _{t>0} \frac{1}{\Gamma(\alpha)}\left|\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{1+t^{\alpha}} w(s) d s\right| \\
& \leq \frac{1}{\Gamma(\alpha)}\|w\|_{L^{1}} \leq\|w\|_{L^{1}}
\end{aligned}
$$

$$
\begin{aligned}
\left\|D_{0+}^{\alpha-3} K_{P} w\right\|_{0} & =\sup _{t>0} \frac{1}{\Gamma(3)}\left|\int_{0}^{t} \frac{(t-s)^{2}}{1+t^{2}} w(s) d s\right| \\
& \leq\|y\|_{L^{1}}
\end{aligned}
$$

$\left\|D_{0+}^{\alpha-2} K_{P} w\right\|_{0}=\sup _{t>0} \frac{1}{\Gamma(2)}\left|\int_{0}^{t} \frac{(t-s)}{1+t^{\alpha-1}} w(s) d s\right| \leq\|w\|_{L^{1}}$,
and

$$
\left\|D_{0+}^{\alpha-1} K_{P} w\right\|_{0}=\sup _{t>0}\left|\int_{0}^{t} \frac{w(s)}{1+t^{\alpha-2}} d s\right| \leq\|w\|_{L^{1}}
$$

We conclude that $\left\|K_{P} w\right\|_{X} \leq\|w\|_{L^{1}}$ for any $w \in \operatorname{ImL}$.
Lemma 9: Assume that $\left(H_{3}\right)$ holds and $\Omega \subset X$ is an open bounded subset such that $\operatorname{dom} L \cap \bar{\Omega} \neq \emptyset$, then N is L-compact on $\bar{\Omega}$ where $N: \bar{\Omega} \rightarrow W$.

Proof: We first show that $\Pi N(\bar{\Omega})$ is bounded. Given that Ω is bounded in X, there exists a constant $M>0$ such that $\|x\|_{X} \leq M$ for any $x \in \bar{\Omega}$. Then by $\left(H_{3}\right)$, we obtain

$$
\begin{aligned}
\left|\Pi_{1} N x\right|= & \mid \sum_{i=1}^{m} \mu_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) f\left(s, x(s), D_{0^{+}}^{\alpha-3} x(s),\right. \\
& \left.D_{0^{+}}^{\alpha-2} x(s), D_{0^{+}}^{\alpha-1} x(s)\right) d s \mid \\
\leq & \sum_{i=1}^{m}\left|\mu_{i}\right| \int_{0}^{+\infty}\left(\left\lvert\, \rho_{1}(s) \frac{|x(s)|}{1+s^{\alpha}}\right.\right. \\
& \left.\left.+\rho_{4}(s) \frac{\left|D_{0^{+}}^{\alpha-1} x(s)\right|}{1+s^{\alpha-2}}+\rho_{5}(s) \right\rvert\,\right) d s \\
\leq & \sum_{i=1}^{m}\left|\mu_{i}\right|\left(\left(\left\|\rho_{1}\right\|_{L^{1}},\left\|\rho_{2}\right\|_{L^{1}},\left\|\rho_{3}\right\|_{L^{1}}\right.\right. \\
& \left.\left\|\rho_{4}\right\|_{L^{1}}\right) \max \left\{\|x(t)\|_{0},\left\|D_{0+}^{\alpha-3} x(t)\right\|_{0}\right. \\
& \left.\left.\left\|D_{0+}^{\alpha-2} x(t)\right\|_{0},\left\|D_{0+}^{\alpha-1} x(t)\right\|_{0}\right\}+\rho_{5} \|_{L^{1}}\right) \\
\leq & \Theta \mid x\left\|_{X}+\right\| \rho_{5} \|_{L^{1}}:=M_{1}
\end{aligned}
$$

$$
\begin{aligned}
&\left|\Pi_{2} N x\right|= \mid \int_{0}^{\infty} f\left(s, x(s), D_{0^{+}}^{\alpha-3} x(s), D_{0^{+}}^{\alpha-2} x(s), D_{0^{+}}^{\alpha-1} x(s)\right. \\
&) d s-\int_{0}^{\eta} \int_{0}^{t}(t-s) f\left(s, x(s), D_{0^{+}}^{\alpha-3} x(s), D_{0^{+}}^{\alpha-2} x(s),\right. \\
&\left.D_{0^{+}}^{\alpha-1} x(s)\right) d s d A(t) \mid \\
& \leq \mid \int_{0}^{\infty} f\left(s, x(s), D_{0^{+}}^{\alpha-3} x(s), D_{0^{+}}^{\alpha-2} x(s), D_{0^{+}}^{\alpha-1} x(s)\right. \\
&) d s|+| \int_{0}^{\eta} \int_{0}^{t}(t-s) f\left(s, x(s), D_{0^{+}}^{\alpha-3} x(s),\right. \\
&\left.D_{0^{+}}^{\alpha-2} x(s), D_{0^{+}}^{\alpha-1} x(s)\right) d s d A(t) \mid \\
& \leq \int_{0}^{\infty} \mid f\left(s, x(s), D_{0^{+}}^{\alpha-3} x(s), D_{0^{+}}^{\alpha-2} x(s), D_{0^{+}}^{\alpha-1} x(s)\right. \\
&)\left|d s+\int_{0}^{\eta} \int_{0}^{t}\right| f\left(s, x(s), D_{0^{+}}^{\alpha-2} x(s), D_{0^{+}}^{\alpha-2} x(s),\right. \\
&\left.D_{0^{+}}^{\alpha-1} x(s)\right) \mid d s d A(t) \\
& \leq \Theta^{+}\|x\|_{X}+\left\|\rho_{5}\right\|_{L^{1}} \\
&+ \int_{0}^{\eta} \int_{0}^{t} \mid f\left(s, x(s), D_{0^{+}}^{\alpha-3} x(s), D_{0^{+}}^{\alpha-2} x(s),\right. \\
&\left.D_{0^{+}}^{\alpha-1} x(s)\right) \mid d s d A(t) \\
& \leq \Theta_{\|}\| \|_{X}+\left\|\rho_{5}\right\|_{L^{1}} \\
&+ \int_{0}^{\eta} \int_{0}^{\infty} \mid f\left(s, x(s), D_{0^{+}}^{\alpha-3} x(s), D_{0^{+}}^{\alpha-2} x(s),\right. \\
&+\left.D_{0^{+}}^{\alpha-1} x(s)\right) \mid d s d A(t) \\
& \leq M_{1}+\int_{0}^{\eta} M_{1} d A(t) \\
&= M_{1} \sin c e \int_{0}^{\eta} d A(t)=0
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\|\Pi N x\|_{L^{1}} & =\int_{0}^{+\infty}|\Pi N x(s)| d s \\
& \leq \int_{0}^{+\infty}\left|\Pi_{1} N x(s)\right| d s+\int_{0}^{+\infty}\left|\Pi_{2} N x(s) s\right| d s \\
& \leq \frac{1}{|\Delta|}\left(\left|a_{22}\right| M_{1}+\left|a_{21}\right| M_{1}\right) \\
& +\frac{1}{|\Delta|}\left(\left|a_{12}\right| M_{1}+\left|a_{11}\right| M_{1}\right) \\
& =\frac{1}{|\Delta|}\left(\left|a_{11}\right|+\left|a_{12}\right|+\left|a_{21}\right|+\left|a_{22}\right|\right) M_{1}:=M .
\end{aligned}
$$

Thus, $\Pi N(\bar{\Omega})$ is bounded.
Next we prove that $K_{P, \Pi} N(\bar{\Omega})$ is compact on $(0,+\infty)$. It is sufficient to show that $K_{P, \Pi} N(\bar{\Omega})$ is:
(i) bounded;
(ii) equicontinuous on any subcompact interval of $(0,+\infty)$;
(iii) equiconvergent at infinity.
(i). Given any $x \in \bar{\Omega}$,

$$
\begin{aligned}
& N x(t)=f\left(s, x(s), D_{0+}^{\alpha-3} x(s), D_{0+}^{\alpha-2} x(s), D_{0+}^{\alpha-1} x(s)\right), \\
& \|N x(t)\|_{L^{1}}=\int_{0}^{+\infty} \mid f\left(s, x(s), D_{0+}^{\alpha-3} x(s), D_{0+}^{\alpha-2} x(s)\right. \\
& \left.\quad D_{0+}^{\alpha-1} x(s)\right) \mid d s \\
& \leq \Theta\|x\|_{X}+\left\|\rho_{5}\right\|_{L^{1}}:=M_{1} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left.\frac{\mid K_{P, \Pi} N x(t)}{1+t^{\alpha}} \right\rvert\,\left.=\left\lvert\, \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{1+t^{\alpha}}(I-\Pi) N x(s)\right.\right) d s \mid \\
& \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{+\infty}(|N x(s)|+|\Pi N x(s)|) d s \\
& \leq \frac{1}{\Gamma(\alpha)}\left(M_{1}+M\right), \\
& \frac{\left|D_{0+}^{\alpha-3} K_{P, \Pi} N x(t)\right|}{1+t^{2}}=\left|\frac{1}{\Gamma(3)} \int_{0}^{t} \frac{(t-s)^{3-1}}{1+t^{2}}(I-\Pi) N x(s) d s\right| \\
& \leq \int_{0}^{+\infty}(|N x(s)|+|\Pi N x(s)|) d s \\
&=\left(\|N x(t)\|_{L^{1}}+\|\Pi N x(t)\|_{L^{1}}\right) \\
& \leq M_{1}+M . \\
& \begin{aligned}
\frac{\left|D_{0+}^{\alpha-2} K_{P, \Pi} N x(t)\right|}{1+t^{\alpha-1}} & =\left|\frac{1}{\Gamma(2)} \int_{0}^{t} \frac{(t-s)^{2-1}}{1+t^{\alpha-1}}(I-\Pi) N x(s) d s\right| \\
& \leq \int_{0}^{+\infty}(|N x(s)|+|\Pi N x(s)|) d s \\
& \leq M_{1}+M
\end{aligned}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\left|D_{0+}^{\alpha-1} K_{P, \Pi} N x(t)\right|}{1+t^{\alpha-2}} & =\left|\int_{0}^{t} \frac{1}{1+t^{\alpha-2}}(I-\Pi) N x(s) d s\right| \\
& \leq \int_{0}^{t}|(I-\Pi) N x(s)| d s \\
& =\left(\|N x(t)\|_{L^{1}}+\|\Pi N x(t)\|_{L^{1}}\right) \\
& \leq M_{1}+M .
\end{aligned}
$$

Therefore, $K_{P, \Pi} N(\bar{\Omega})$ is bounded.
(ii) Next, we show that $K_{P, \Pi} N$ is equicontinous on any subcompact interval of $(0,+\infty)$. Let $x \in \bar{\Omega}$, by hypothesis $\left(H_{3}\right)$,

$$
\begin{aligned}
|N x(s)| & =|f(s, p, q, r, v)| \leq \rho_{1}(s) \frac{|p|}{1+s^{\alpha}}+\rho_{2}(s) \frac{|q|}{1+s^{2}} \\
& +\rho_{3}(s) \frac{|r|}{1+s^{\alpha-1}}+\rho_{4}(s) \frac{|v|}{1+s^{\alpha-2}}+\rho_{5}(s) \\
& =\rho_{1}(s) \frac{|x(s)|}{1+s^{\alpha}}+\rho_{2}(s) \frac{\left|D_{0+}^{\alpha-3} x(s)\right|}{1+s^{2}} \\
& +\rho_{3}(s) \frac{\left|D_{0+}^{\alpha-2} x(s)\right|}{1+s^{\alpha-1}}+\rho_{4}(s) \frac{\left|D_{0+}^{\alpha-1} x(s)\right|}{1+s^{\alpha-2}}+\rho_{5}(s) .
\end{aligned}
$$

Suppose $\omega>0$ is any real number in $(0,+\infty)$.
Let $t_{1}, t_{2} \in[0, \omega]$ such that $t_{1}<t_{2}$, then

$$
\begin{aligned}
\left\lvert\, \frac{K_{P, \Pi} N x\left(t_{2}\right)}{1+t_{2}^{\alpha}}-\right. & \left.\frac{K_{P, \Pi} N x\left(t_{1}\right)}{1+t_{1}^{\alpha}} \right\rvert\, \\
= & \left\lvert\, \frac{1}{\Gamma(\alpha)}\left(\int_{0}^{t_{2}} \frac{\left(t_{2}-s\right)^{\alpha-1}}{1+t_{2}^{\alpha}}(I-\Pi) N x(s) d s\right.\right. \\
& \left.-\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\alpha-1}}{1+t_{1}^{\alpha}}(I-\Pi) N x(s) d s\right) \mid \\
\leq & \frac{1}{\Gamma(\alpha)} \int_{t_{1}}^{t_{2}}\left|\frac{\left(t_{2}-s\right)^{\alpha-1}}{1+t_{2}^{\alpha}}\right||(I-\Pi) N x(s)| d s \\
& +\frac{1}{\Gamma(\alpha)} \int_{0}^{t_{1}} \left\lvert\, \frac{\left(t_{2}-s\right)^{\alpha-1}}{1+t_{2}^{\alpha}}\right. \\
- & \frac{\left(t_{1}-s\right)^{\alpha-1}}{1+t_{2}^{\alpha}}||(I-\Pi) N x(s)| d s \rightarrow 0 \\
& \text { as } t_{1} \rightarrow t_{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \left|\frac{D_{0+}^{\alpha-3} K_{P, \Pi} N x\left(t_{2}\right)}{1+t_{2}^{2}}-\frac{D_{0+}^{\alpha-3} K_{P, \Pi} N x\left(t_{1}\right)}{1+t_{1}^{2}}\right| \\
& \\
& =\frac{1}{\Gamma(3)}\left(\left\lvert\, \int_{0}^{t_{2}} \frac{\left(t_{2}-s\right)^{2}}{1+t_{2}^{2}}(I-\Pi) N x(s) d s\right.\right. \\
& \\
& \left.\left.-\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{2}}{1+t_{1}^{2}}(I-\Pi) N x(s) d s \right\rvert\,\right) \\
& \\
& \leq \int_{t_{1}}^{t_{2}}\left|\frac{\left(t_{2}-s\right)^{2}}{1+t_{2}^{2}}\right||(I-\Pi) N x(s)| d s \\
& \\
& +\int_{0}^{t_{1}}\left|\frac{\left(t_{2}-s\right)^{2}}{1+t_{2}^{2}}-\frac{\left(t_{1}-s\right)^{2}}{1+t_{1}^{2}}\right| \\
& \mid I-\Pi) N x(s) \mid d s \quad \rightarrow 0 \text { as } t_{1} \rightarrow t_{2} \\
& \\
& \left\lvert\, \begin{array}{|}
\mid & D_{0+}^{\alpha-2} K_{P, \Pi} N x\left(t_{2}\right) \\
1+t_{2}^{\alpha-1} & \left.\frac{D_{0+}^{\alpha-2} K_{P, \Pi} N x\left(t_{1}\right)}{1+t_{1}^{\alpha-1}} \right\rvert\, \\
-\int_{0}^{t_{1}} \frac{t_{2}-s}{1+t_{2}^{\alpha-1}}(I-\Pi) N x(s) d s \\
& \leq \int_{t_{1}-s}^{t_{2}}\left|\frac{t_{2}-s}{1+t_{1}^{\alpha-1}}(I-\Pi) N x(s) d s\right| \\
\\
\left.+\int_{0}^{t_{1}}\left|\frac{t_{2}-s}{1+t_{2}^{\alpha-1}}\right|(I-\Pi) N x(s) \right\rvert\, d s \\
\mid I-\Pi) N x(s) \mid d s \quad \rightarrow 0 \text { as } t_{1} \rightarrow t_{2} \\
1+t_{1}^{\alpha-1}
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\frac{D_{0+}^{\alpha-1} K_{P, \Pi} N x\left(t_{2}\right)}{1+t_{2}^{\alpha-2}}-\frac{D_{0+}^{\alpha-1} K_{P, \Pi} N x\left(t_{1}\right)}{1+t_{1}^{\alpha-2}}\right| \\
& \quad=\left\lvert\, \int_{0}^{t_{2}} \frac{(I-\Pi) N x(s)}{1+t_{2}^{\alpha-2}} d s\right. \\
& \left.-\int_{0}^{t_{1}} \frac{(I-\Pi) N x(s)}{1+t_{1}^{\alpha-2}} d s \right\rvert\, \\
& \leq \int_{t_{1}}^{t_{2}}\left|\frac{(I-\Pi) N x(s)}{1+t_{2}^{\alpha-2}}\right| d s \\
& \quad+\int_{0}^{t_{1}}\left|\frac{1}{1+t_{2}^{\alpha-2}}-\frac{1}{1+t_{1}^{\alpha-2}}\right| \\
& |(I-\Pi) N x(s)| d s \quad \rightarrow 0 \text { as } t_{1} \rightarrow t_{2}
\end{aligned}
$$

Thus, $K_{P, \Pi} N(\bar{\Omega})$ is equicontinuous.
(iii) To show that $K_{P, \Pi} N(\bar{\Omega})$ is equiconvergent at infinity, consider

$$
\begin{aligned}
\int_{0}^{+\infty}|(I-\Pi) N x(t)| d t & \leq \int_{0}^{+\infty}|N x(t)| d t \\
& +\int_{0}^{+\infty}|\Pi N x(t)| d t \\
& \leq\|N x(t)\|_{L^{1}}+\|\Pi N x(t)\|_{L^{1}} \\
& =M_{1}+M
\end{aligned}
$$

Thus, given $\epsilon>0$ there exists a positive real number K such that

$$
\int_{K}^{+\infty}|(I-\Pi) N x(t)| d t<\epsilon
$$

With the given $\epsilon>0$ there exists a constant $K_{1}>K>0$ such that for any $t_{1}, t_{2} \geq K_{1}$ and $0 \leq s \leq K$,

$$
\lim _{t \rightarrow \infty} \frac{(t-K)^{\alpha-1}}{1+t^{\alpha}}=0, \lim _{t \rightarrow \infty} \frac{(t-K)^{2}}{1+t^{2}}=1
$$

$$
\begin{gathered}
\lim _{t \rightarrow \infty} \frac{(t-K)}{1+t^{\alpha-1}}=0, \text { and } \lim _{t \rightarrow \infty} \frac{1}{1+t^{\alpha-2}}=0 . \\
\left|\frac{\left(t_{1}-s\right)^{\alpha-1}}{1+t_{1}^{\alpha}}-\frac{\left(t_{2}-s\right)^{\alpha-1}}{1+t_{2}^{\alpha}}\right|<\epsilon,\left|\frac{\left(t_{1}-K\right)^{2}}{1+t_{1}^{2}}-\frac{\left(t_{2}-K\right)^{2}}{1+t_{2}^{2}}\right|<\epsilon, \\
\left|\frac{\left(t_{1}-K\right)}{1+t_{1}^{\alpha-1}}-\frac{\left(t_{2}-K\right)}{1+t_{2}^{\alpha-1}}\right|<\epsilon \text { and }\left|\frac{1}{1+t_{1}^{\alpha-2}}-\frac{1}{1+t_{2}^{\alpha-2}}\right|<\epsilon .
\end{gathered}
$$

Therefore, for any $t_{1}, t_{2} \geq K_{1}>K>0$,

$$
\begin{aligned}
& \left|\frac{K_{P, \Pi} N x\left(t_{1}\right)}{1+t_{1}^{\alpha}}-\frac{K_{P, \Pi} N x\left(t_{2}\right)}{1+t_{2}^{\alpha}}\right| \\
& \leq \frac{1}{\Gamma(\alpha)} \left\lvert\, \int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\alpha-1}}{1+t_{1}^{\alpha}}(I-\Pi) N x(s) d s\right. \\
& \left.-\int_{0}^{t_{2}} \frac{\left(t_{2}-s\right)^{\alpha-1}}{1+t_{2}^{\alpha}}(I-\Pi) N x(s) d s \right\rvert\, \\
& \leq \frac{\epsilon}{\Gamma(\alpha)} \int_{0}^{K}|(I-\Pi) N x(s)| d s \\
& +\frac{2 \epsilon}{\Gamma(\alpha)} \int_{K}^{+\infty}|(I-\Pi) N x(s)| d s \\
& <\frac{\epsilon}{\Gamma(\alpha)}\left(M_{1}+M\right)+\frac{2 \epsilon}{\Gamma(\alpha)}=\frac{\left(M_{1}+M+2\right) \epsilon}{\Gamma(\alpha)} .
\end{aligned}
$$

Similarly, we establish that

$$
\left|\frac{D_{0+}^{\alpha-2} K_{P, \Pi} N x\left(t_{1}\right)}{1+t_{1}^{\alpha-1}}-\frac{D_{0+}^{\alpha-2} K_{P, \Pi} N x\left(t_{2}\right)}{1+t_{2}^{\alpha-1}}\right|<\left(M_{1}+M+2\right) \epsilon
$$

$$
\left|\frac{D_{0+}^{\alpha-3} K_{P, \Pi} N x\left(t_{1}\right)}{1+t_{1}^{2}}-\frac{D_{0+}^{\alpha-3} K_{P, \Pi} N x\left(t_{2}\right)}{1+t_{2}^{2}}\right|<\frac{\left(M_{1}+M+2\right) \epsilon}{2}
$$

and

$$
\begin{aligned}
& \left|\frac{D_{0+}^{\alpha-1} K_{P, \Pi} N x\left(t_{1}\right)}{1+t_{1}^{\alpha-2}}-\frac{D_{0+}^{\alpha-1} K_{P, \Pi} N x\left(t_{2}\right)}{1+t_{2}^{\alpha-2}}\right| \\
& \leq \int_{K}^{+\infty}\left|\frac{1}{1+t_{1}^{\alpha-2}}-\frac{1}{1+t_{2}^{\alpha-2}}\right||(I-\Pi) N x(s)| d s \\
& <\left(M_{1}+M\right) \epsilon .
\end{aligned}
$$

We conclude that $K_{P, \Pi} N(\bar{\Omega})$ is equiconvergent at infinity. Hence, it follows that $K_{P, \Pi} N(\bar{\Omega})$ is relatively compact. Hence, N is L-compact on $\bar{\Omega}$.

Lemma 10: Suppose that $\left(H_{3}\right)$ and $\left(H_{4}\right)$ hold, then the set $\Omega_{1}=\{x \in \operatorname{dom} L \mid \operatorname{ker} L: L x(t)=\lambda N x(t), \lambda \in(0,1)\}$ is bounded in X provided $H \Theta<1$.

Proof: Let $x \in \Omega_{1}$ and $N x \in \operatorname{ImL}$

$$
\Pi_{1} N x(t)=\Pi_{2} N x(t)=0 .
$$

Hence, from assumption $\left(H_{4}\right)$, there exist $t_{0} \in\left(0, A_{2}\right]$ and $t_{1} \in\left(A_{2},+\infty\right)$ such that $\left|D_{0+}^{\alpha-3} x\left(t_{0}\right)\right| \leq A_{1}$, $\left|D_{0+}^{\alpha-2} x\left(t_{0}\right)\right| \leq A_{1}$ and $\left|D_{0+}^{\alpha-1} x\left(t_{1}\right)\right| \leq A_{1}$. Combining this with the additive rule of fractional derivative,

$$
\begin{align*}
\left|D_{0+}^{\alpha-1} x(t)\right| & =\left|D_{0+}^{\alpha-1} x\left(t_{1}\right)+\int_{t_{1}}^{t} D_{0+}^{\alpha} x(s) d s\right| \\
& \leq A_{1}+\int_{t_{1}}^{t}|N x(s)| d s \tag{14}\\
& =A_{1}+\|N x\|_{L^{1}}
\end{align*}
$$

$$
\begin{align*}
\left|D_{0+}^{\alpha-2} x(0)\right| & =\left|D_{0+}^{\alpha-2} x\left(t_{0}\right)-D^{-1} D^{\alpha-1} x(t)\right| \\
& \leq\left|D_{0+}^{\alpha-2} x\left(t_{0}\right)\right|+\left|\int_{0}^{t_{0}} D_{x+}^{\alpha-1} x(s) d s\right| \tag{15}\\
& =2 A_{1}+\|N x\|_{L^{1}} \\
\left|D_{0+}^{\alpha-3} x(0)\right| & =\left|D_{0+}^{\alpha-3} x\left(t_{0}\right)-D^{-1} D^{\alpha-2} x(t)\right| \\
& \leq\left|D_{0+}^{\alpha-3} x\left(t_{0}\right)\right|+\left|\int_{0}^{t_{0}} D_{x+}^{\alpha-2} x(s) d s\right| \tag{16}\\
& =3 A_{1}+\|N x\|_{L^{1}}
\end{align*}
$$

From the definition of P, we get

$$
\begin{aligned}
\|P x(t)\|_{0} & =\sup _{t>0} \frac{1}{1+t^{\alpha}} \left\lvert\, \frac{1}{\Gamma(\alpha)} D_{0+}^{\alpha-1} x(0) t^{\alpha-1}\right. \\
& \left.+\frac{1}{\Gamma(\alpha-1)} D_{0+}^{\alpha-2} x(0) t^{\alpha-2} \right\rvert\, \\
& \leq \frac{1}{\Gamma(\alpha)}\left(A_{1}+\|N x\|_{L^{1}}\right) \\
+ & \frac{1}{\Gamma(\alpha-1)}\left(2 A_{1}+\|N x\|_{L^{1}}\right)
\end{aligned} \quad \begin{aligned}
\left\|D_{0+}^{\alpha-1} P x(t)\right\|_{0} & =\sup _{t>0} \frac{\left|D_{0+}^{\alpha-1} x(t)\right|}{1+t^{\alpha-2}} \\
& \leq A_{1}+\|N x\|_{L^{1}}
\end{aligned} \quad \begin{aligned}
& \left\|D_{0+}^{\alpha-2} P x(t)\right\|_{0}=\sup _{t>0} \frac{\left|D_{0+}^{\alpha-1} x(0) t+D_{0+}^{\alpha-2} x(0)\right|}{1+t^{\alpha-1}} \\
& \quad \leq A_{1}+\|N x\|_{L^{1}}+2 A_{1}+\|N x\|_{L^{1}}
\end{aligned}
$$

and

$$
\begin{align*}
\left\|D_{0+}^{\alpha-3} P x(t)\right\|_{0} & =\sup _{t>0} \frac{\frac{1}{2}\left|D_{0+}^{\alpha-1} x(0) t^{2}+D_{0+}^{\alpha-2} x(0) t\right|}{1+t^{2}} \\
& \leq \frac{1}{2}\left(A_{1}+\|N x\|_{L^{1}}\right)+2 A_{1}+\|N x\|_{L^{1}} \tag{20}
\end{align*}
$$

$$
\begin{align*}
\|P x(t)\|_{X}= & \max \left\{\|P x(t)\|_{0},\left\|D_{0+}^{\alpha-3} P x(t)\right\|_{0}\right. \\
& \left.\left\|D_{0+}^{\alpha-2} P x(t)\right\|_{0},\left\|D_{0+}^{\alpha-1} P x(t)\right\|_{0}\right\} \\
\leq & \|P x(t)\|_{0}+\left\|D_{0+}^{\alpha-3} P x(t)\right\|_{0} \\
& +\left\|D_{0+}^{\alpha-2} P x(t)\right\|_{0}+\left\|D_{0+}^{\alpha-1} P x(t)\right\|_{0} \tag{21}\\
= & \left(\frac{5}{2}+\frac{1}{\Gamma(\alpha)}\right)\left(A_{1}+\|N x\|_{L^{1}}\right) \\
& +\left(2+\frac{1}{\Gamma(\alpha-1)}\right)\left(2 A_{1}+\|N x\|_{L^{1}}\right) .
\end{align*}
$$

Observe that $(I-P) x \in \operatorname{dom} L \cap \operatorname{ker} P$ and $L P x=0$. By definition, the operator $K_{P}: I m L \rightarrow \operatorname{dom} L \cap \operatorname{ker} P$ is such that for any $w \in I m L, K_{P} w=I_{0+}^{\alpha} w$. Thus

$$
\begin{aligned}
\|(I-P) x\|_{X} & =\left\|K_{P} L(I-P) x\right\|_{X} \\
& \leq\|L(I-P) x\|_{L^{1}} \\
& =\|L x\|_{L^{1}} \\
& \leq\|N x\|_{L^{1}} .
\end{aligned}
$$

Combining (21) and (22) we get

$$
\begin{aligned}
\|x\|_{X} & =\|P x\|_{X}+\|(I-P) x\|_{X} \\
& \leq\left(\frac{5}{2}+\frac{1}{\Gamma(\alpha)}\right)\left(A_{1}+\|N x\|_{L^{1}}\right) \\
& +\left(2+\frac{1}{\Gamma(\alpha-1)}\right)\left(2 A_{1}+\|N x\|_{L^{1}}\right)+\|N x\|_{L^{1}} \\
& =\left(\frac{13}{2}+\frac{1}{\Gamma(\alpha)}+\frac{2}{\Gamma(\alpha-1)}\right) A_{1} \\
& +\left(\frac{11}{2}+\frac{1}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha-1)}\right)\|N x\|_{L^{1}} \\
& =G A_{1}+H\|N x\|_{L^{1}} \leq G A_{1}+H\left(\Theta\|x\|_{X}+\left\|\rho_{5}\right\|_{L^{1}}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
(1-H \Theta)\|x\|_{X} & \leq G A_{1}+H\left\|\rho_{5}\right\|_{L^{1}} \\
\|x\|_{X} & \leq \frac{G A_{1}+H\left\|\rho_{4}\right\|_{L^{1}}}{1-H \Theta}
\end{aligned}
$$

where

$$
G=\left(\frac{13}{2}+\frac{1}{\Gamma(\alpha)}+\frac{2}{\Gamma(\alpha-1)}\right)
$$

and

$$
H=\left(\frac{11}{2}+\frac{1}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha-1)}\right)
$$

Hence, Ω_{1} is bounded provided $H \Theta<1$
Lemma 11: Suppose that $\left(H_{5}\right)$ holds, then the set $\Omega_{2}=\{x \in \operatorname{ker} L: N x \in \operatorname{Im} L\}$ is bounded in X.

$$
\text { Proof: Let } x \in \Omega_{2} \text {, where } x(t)=c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2},
$$

$c_{1}, c_{2} \in \mathbb{R}$ and $\Pi_{1} N x(t)=\Pi_{2} N x(t)=0$. Since $N x \in \operatorname{ImL}=\operatorname{ker} \Pi$. By $\left(H_{5}\right)$, it follows that $\left|c_{1}\right| \leq B$ and $\left|c_{2}\right| \leq B$.

$$
\begin{aligned}
\left\|D_{0+}^{\alpha-1} x(t)\right\|_{0} & =\sup _{t>0} \frac{\left|D_{0+}^{\alpha-1} x(t)\right|}{1+t^{\alpha-2}}<\left|c_{1} \Gamma(\alpha)\right| \leq B \Gamma(\alpha) \\
\|x\|_{0}= & \sup _{t>0} \frac{|x(t)|}{1+t^{\alpha}}<\left|c_{1}\right|+\left|c_{2}\right| \leq 2 B . \\
\left\|D_{0+}^{\alpha-2} x(t)\right\|_{0} & =\sup _{t>0} \frac{\left|D_{0+}^{\alpha-2} x(t)\right|}{1+t^{\alpha-1}} \\
& \leq\left|c_{1}\right| \Gamma(\alpha)+\left|c_{2}\right| \Gamma(\alpha-1) \\
& =(\Gamma(\alpha)+\Gamma(\alpha-1)) B . \\
\left\|D_{0+}^{\alpha-3} x(t)\right\|_{0} & =\sup _{t>0} \frac{\left|D_{0+}^{\alpha-3} x(t)\right|}{1+t^{2}} \\
& \leq \frac{B}{2} \Gamma(\alpha)+B \Gamma(\alpha-1) \\
& =\left(\frac{\Gamma(\alpha)}{2}+\Gamma(\alpha-1)\right) B . \\
\|x\|_{X} & =\max \left\{\|x\|_{0},\left\|D_{0+}^{\alpha-3} x\right\|_{0},\left\|D_{0+}^{\alpha-2} x\right\|_{0},\right. \\
& \left.\left\|D_{0+}^{\alpha-1} x\right\|_{0}\right\} \\
& \leq 2 B+\left(\frac{\Gamma(\alpha)}{2}+\Gamma(\alpha-1)\right) B \\
& +(\Gamma(\alpha)+\Gamma(\alpha-1)) B+B \Gamma(\alpha) \\
& =\left[2+\frac{5}{2} \Gamma(\alpha)+2 \Gamma(\alpha-1)\right] B .
\end{aligned}
$$

We conclude that Ω_{2} is bounded in X.

Lemma 12: Suppose that the assumption $\left(H_{5}\right)$ holds, then the set
$\Omega_{3}=\{x \in \operatorname{ker} L: \nu \lambda J x(t)+(1-\lambda) \Pi N x(t)=0, \lambda \in[0,1]\}$. is bounded in X, where $\nu=\left\{\begin{array}{ll}-1, & \text { if } 2 \text { holds } \\ +1, & \text { if } 3 \text { holds }\end{array}\right.$, and $J: \operatorname{ker} L \rightarrow \operatorname{Im} \Pi$ is a linear isomorphism defined by

$$
\begin{aligned}
& J\left(c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}\right)=\frac{1}{\Delta}\left(a_{22}\left|c_{1}\right|-a_{21}\left|c_{2}\right|\right) e^{-t} \\
&+\frac{1}{\Delta}\left(-a_{12}\left|c_{1}\right|+a_{11}\left|c_{2}\right|\right) t e^{-t} \\
& c_{1}, c_{2} \in \mathbb{R}
\end{aligned}
$$

Proof: If $\left(H_{5}\right)$ holds, $x \in \Omega_{3}$ can be written as $x(t)=c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}$, with $c_{1}, c_{2} \in \mathbb{R}$.
If $\nu=-1, \lambda J x(t)=(1-\lambda) \Pi N x(t), \lambda \in[0,1]$. By using similar argument as in the proof of lemma 11, it is required only to show that $\left|c_{1}\right| \leq B$ and $\left|c_{2}\right| \leq B$.
For instance, in $\lambda J x(t)=(1-\lambda) \Pi N x(t)=0, \lambda \in[0,1]$; if $\lambda=0$, then $\Pi N x(t)=0$, then

$$
\begin{aligned}
& \frac{1}{\Delta}\left(a_{22} \Pi_{1} N x(t)-a_{21} \Pi_{2} N x(t)\right) e^{-t} \\
& +\frac{1}{\Delta}\left(-a_{12} \Pi_{1} N x(t)+a_{11} \Pi_{2} N x(t)\right) t e^{-t}=0
\end{aligned}
$$

Thus,

$$
\left\{\begin{array}{l}
a_{22} \Pi_{1} N x(t)-a_{21} \Pi_{2} N x(t)=0 \\
-a_{12} \Pi_{1} N x(t)+a_{11} \Pi_{2} N x(t)=0
\end{array}\right.
$$

Since $\Delta \neq 0$, then $\Pi_{1} N x(t)=0=\Pi_{2} N x(t)$.
By assumption $\left(H_{5}\right)$, we have $\left|c_{1}\right| \leq B,\left|c_{2}\right| \leq B$.
Suppose $\lambda=1$ then $J x(t)=0$, thus
$\frac{1}{\Delta}\left(a_{22}\left|c_{1}\right|-a_{21}\left|c_{2}\right|\right) e^{-t}+\frac{1}{\Delta}\left(-a_{12}\left|c_{1}\right|+a_{11}\left|c_{2}\right|\right) t e^{-t}=0$.
Since $\Delta \neq 0$, it follows that

$$
\left\{\begin{array}{l}
a_{22}\left|c_{1}\right|-a_{21}\left|c_{2}\right|=0 \\
-a_{12}\left|c_{1}\right|+a_{11}\left|c_{2}\right|=0
\end{array}\right.
$$

and we get $c_{1}=c_{2}=0$.
With $\lambda \in(0,1)$, by the equation $\lambda J x(t)=(1-\lambda \Pi N x(t))$, we obtain

$$
\begin{aligned}
& \lambda\left[\frac{1}{\Delta}\left(a_{22}\left|c_{1}\right|-a_{21}\left|c_{2}\right|\right) e^{-t}+\frac{1}{\Delta}\left(-a_{12}\left|c_{1}\right|+a_{11}\left|c_{2}\right|\right) t e^{-t}\right] \\
& =(1-\lambda)\left[\frac { 1 } { \Delta } \left(a_{22} \Pi_{1} N x(t)-a_{21} \Pi_{2} N x(t) e^{-t}\right.\right. \\
& \quad+\frac{1}{\Delta}\left(-a_{12} \Pi_{1} N x(t)+a_{11} \Pi_{2} N x(t) t e^{-t}\right]
\end{aligned}
$$

from which we obtain

$$
\left\{\begin{aligned}
\lambda a_{22}\left|c_{1}\right|-\lambda a_{21}\left|c_{2}\right| & =(1-\lambda) a_{22} \Pi_{1} N x(t) \\
& -(1-\lambda) a_{21} \Pi_{2} N x(t) \\
-\lambda a_{12}\left|c_{1}\right|+\lambda a_{11}\left|c_{2}\right| & =-(1-\lambda) a_{12} \Pi_{1} N x(t) \\
& +(1-\lambda) a_{11} \Pi_{2} N x(t)
\end{aligned}\right.
$$

Since $\Delta \neq 0$, then

$$
\left\{\begin{array}{l}
\lambda\left|c_{1}\right|=(1-\lambda) \Pi_{1} N x(t), \\
\lambda\left|c_{2}\right|=(1-\lambda) \Pi_{2} N x(t)
\end{array}\right.
$$

Then, if $\left|c_{1}\right|>B$ and $\left|c_{2}\right|>B$, then by (2)

$$
0<\lambda\left(\left|c_{1}\right|+\left|c_{2}\right|\right)=(1-\lambda)\left(\Pi_{1} N x(t)+\Pi_{2} N x(t)\right)<0
$$

a contradiction.
If $\nu=+1$, then $\lambda J x(t)=-(1-\lambda) \Pi N x(t)), \lambda \in[0,1]$. We claim that $\left|c_{1}\right|<B$ and $\left|c_{2}\right|<B$.
If this claim would not hold, then by (3),

$$
0<\lambda\left(\left|c_{1}\right|+\left|c_{2}\right|\right)=-(1-\lambda)\left(\Pi_{1} N x(t)+\Pi_{2} N x(t)\right)<0
$$

is also a contradiction. Hence, Ω_{3} is bounded in X.
Theorem 9: Assume $\left(H_{1}\right)-\left(H_{5}\right)$ hold, then, the BVP (1) has at least one solution in X provided $H \Theta<1$ where $H=\left(\frac{1}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha-1)}+\frac{11}{2}\right)$ and $\Theta=\left\|\rho_{1}(t)\right\|_{1}+\left\|\rho_{2}(t)\right\|_{1}+$ $\left\|\rho_{3}(t)\right\|_{1}+\left\|\rho_{4}(t)\right\|_{1}$

Proof: . Assume $\Omega \subset X$ is a bounded open set such that $\cup_{i=1}^{3} \Omega_{i} \subset \Omega, i=1,2,3$, then by lemma 9 we have shown that N is L-compact on $\bar{\Omega}$. By applying lemma 10 and lemma 11, we get
(i) $L x(t) \neq \lambda N x(t)$ for any $x \in\left(\left.d o m L\right|_{\operatorname{ker} L}\right) \cap \partial \Omega$, $\lambda \in(0,1)$;
(ii) $N x(t) \notin I m L$ for any $x \in \operatorname{ker} L \cap \partial \Omega$ where $\partial \Omega$ is the boundary of Ω
Lastly, we show that $\operatorname{deg}\left\{\left.\Pi N\right|_{\text {ker } L}, \Omega \cap \operatorname{ker} L, 0\right\} \neq 0$. To verify this, we define

$$
H(x, \lambda)=\lambda J x(t)+(1-\lambda) \Pi N x(t)
$$

From lemma 11, we assert that $H(x, \lambda) \neq 0$ i.e. if $\lambda=0$, then $H(x, 0)=\Pi N x(t)$.
If $\lambda=1$, we obtain $H(x, 1)=J x(t)$.
For any $x \in \operatorname{ker} L \cap \partial \Omega, \lambda \in[0,1]$, by the homotopy property of the Brouwer degree, we obtain

$$
\begin{aligned}
\operatorname{deg}\left\{\left.\Pi N\right|_{\operatorname{ker} L}, \Omega \cap \operatorname{ker} L, 0\right\} & =\operatorname{deg}\{H(\cdot, 0), \Omega \cap \operatorname{ker} L, 0\} \\
& =\operatorname{deg}\{H(\cdot, 1), \Omega \cap \operatorname{ker} L, 0\} \\
& =\operatorname{deg}\{\nu J, \Omega \cap \operatorname{ker} L, 0\} \\
& \neq 0
\end{aligned}
$$

By theorem 6, it follows that $L x(t)=N x(t)$ has at least one solution in dom $L \cap \bar{\Omega}$ in X.

III. Example

Example 1. Consider the boundary value problem:
$D_{0+}^{\frac{7}{2}} x(t)=f\left(t, x(t), D_{0+}^{\frac{1}{2}} x(t), D_{0+}^{\frac{3}{2}} x(t), D_{0+}^{\frac{5}{2}} x(t)\right)$,
$x(0)=0=D_{0+}^{\frac{1}{2}} x(0), D_{0+}^{\frac{3}{2}} x(0)=4 D_{0+}^{\frac{3}{2}} x\left(\frac{1}{2}\right)-3 D_{0+}^{\frac{3}{2}} x\left(\frac{2}{3}\right)$
$D_{0+}^{\frac{5}{2}} x(+\infty)=\int_{0}^{1} D_{0+}^{\frac{3}{2}} x(t) d A(t), t \in(0,+\infty)$,
$A(t)=6\left(t^{2}-t\right)$, and
$f\left(t, x(t), D_{0+}^{\frac{1}{2}} x(t), D_{0+}^{\frac{3}{2}} x(t), D_{0+}^{\frac{5}{2}} x(t)\right)$
$=\frac{1}{50} e^{-4 t} \frac{\sin x(t)}{1+t^{\frac{7}{2}}}$
$+\frac{1}{20} e^{-4 t} \frac{\sin \left(D_{0+}^{\frac{1}{2}} x(t)\right)}{1+t^{2}}$
$+\frac{1}{10} e^{-5 t} \frac{D_{0+}^{\frac{3}{2}} x(t)}{1+t^{\frac{5}{2}}}, t \in(0,1]$
$=\frac{1}{30} e^{-3 t} \frac{\cos \left(D_{0+}^{\frac{5}{2}} x(t)\right)}{1+t^{\frac{3}{2}}}, t \in(1,+\infty)$.

Corresponding to the BVP (1), here

$$
\alpha=\frac{7}{2}, \mu_{1}=4, \mu_{2}=-3, \xi_{1}=\frac{1}{2}, \xi_{2}=\frac{2}{3}, m=2, \eta=1
$$

, We check assumptions $H_{1}-H_{5}$ for the existence of at least a solution for the BVP.
H_{1} : Resonance assumption.
We see that
$\sum_{i=1}^{2} \mu_{i}=1, \sum_{i=1}^{2} \mu_{i} \xi_{i}=0, \int_{0}^{1} t d A(t)=1$, and $\int_{0}^{1} d A(t)=0$. So ,assumption H_{1} holds, the BVP is a resonant problem.
Next, we show that $\Delta=a_{11} a_{22}-a_{12} a_{21} \neq 0$

$$
\begin{aligned}
\Delta & =(-0.1091)(31.2437)-(0.6218)(-0.0407) \\
& =-3.3834 \neq 0
\end{aligned}
$$

The assumption H_{2} holds.
Assumption H_{3} : We show that $H \Theta<1$. Let,
$\rho_{1}(t)=\frac{1}{50} e^{-4 t}, \rho_{2}(t)=\frac{1}{20} e^{-4 t}, \rho_{3}(t)=\frac{1}{10} e^{-5 t}$,
$\rho_{4}(t)=\frac{1}{30} e^{-3 t}, \rho_{5}(t)=0$

$$
\begin{aligned}
& \Theta=0.00491+0.01227+0.01987+0.00055=0.0376 \\
& H=6.5532
\end{aligned}
$$

$H \Theta=0.2464<1$
Hence, the assumption H_{3} is satisfied.
Next, we verify assumption H_{4}.

$$
\begin{aligned}
& \Pi_{1} N x(t) \\
& =\mu_{1} \int_{0}^{\xi_{1}}\left(\xi_{1}-s\right) N x(s) d s+\mu_{2} \int_{0}^{\xi_{2}}\left(\xi_{2}-s\right) N x(s) d s \\
& =4 \int_{0}^{\frac{1}{2}}\left(\frac{1}{2}-s\right) f\left(s, x(s), D_{0+}^{\frac{1}{2}} x(s), D_{0+}^{\frac{3}{2}} x(s), D_{0+}^{\frac{5}{2}} x(s)\right) d s \\
& -3 \int_{0}^{\frac{2}{3}}\left(\frac{2}{3}-s\right) f\left(s, x(s), D_{0+}^{\frac{1}{2}} x(s), D_{0+}^{\frac{3}{2}} x(s), D_{0+}^{\frac{5}{2}} x(s)\right) d s .
\end{aligned}
$$

If $D_{0^{+}}^{\frac{3}{2}} x(s)>A_{1}$, then

$$
\begin{aligned}
& f\left(s, x(s), D_{0+}^{\frac{1}{2}} x(s), D_{0+}^{\frac{3}{2}} x(s), D_{0+}^{\frac{5}{2}} x(s)\right) \\
& >\frac{1}{10} e^{-5 s} A_{1}-\frac{7}{100} e^{-4 s} . \\
& \text { If } D_{0^{+}}^{\frac{3}{2}} x(s)<-A_{1}, \text { then } \\
& f\left(s, x(s), D_{0+}^{\frac{1}{2}} x(s), D_{0+}^{\frac{3}{2}} x(s), D_{0+}^{\frac{5}{2}} x(s)\right) \\
& <\frac{7}{100} e^{-4 s}-\frac{1}{10} e^{-5 s} A_{1} .
\end{aligned}
$$

$$
\begin{aligned}
\Pi_{1} N x(t) & >4 \int_{0}^{\frac{1}{2}}\left(\frac{1}{2}-s\right)\left(\frac{1}{10} e^{-5 s} A_{1}-\frac{7}{100} e^{-4 s}\right) d s \\
& -3 \int_{0}^{\frac{2}{3}}\left(\frac{2}{3}-s\right)\left(\frac{7}{100} e^{-4 s}-\frac{1}{10} e^{-5 s} A_{1}\right) d s
\end{aligned}
$$

Setting $A_{1}=3$ then $\Pi_{1} N x(t) \neq 0$.
Next, we show that $\Pi_{2} N x(t) \neq 0$

$$
\begin{aligned}
\Pi_{2} N x(t) & =\int_{0}^{\infty} w(s) d s-\int_{0}^{1} \int_{0}^{t}(t-s) w(s) d s d A(t) \\
& >\int_{0}^{1}\left(\frac{1}{10} e^{-5 s} A_{1}-\frac{7}{100} e^{-4 s}\right) d s \\
& +\int_{1}^{\infty}-\frac{1}{30} e^{-3 s} d s \\
& -\int_{0}^{1} \int_{1}^{\infty}(t-s)\left(\frac{1}{30} e^{-3 s}\right) d s d A(t) \\
& \text { where } A(t)=6\left(t^{2}-t\right) \\
& =0.01987 A_{1}-0.01718 \neq 0
\end{aligned}
$$

So, the assumption H_{4} holds.
Lastly, we verify assumption H_{5}.

$$
\begin{aligned}
\Pi_{1} N x(t) & =4 \int_{0}^{\frac{1}{2}}\left(\frac{1}{2}-s\right)\left(\frac{7}{100} e^{-4 s}+\frac{1}{10} e^{-5 s}\left(c_{1} \Gamma\left(\frac{7}{2}\right) s\right.\right. \\
& \left.\left.+c_{2} \Gamma\left(\frac{5}{2}\right)\right)\right) d s-3 \int_{0}^{\frac{2}{3}}\left(\frac{2}{3}-s\right)\left(\frac{7}{100} e^{-4 s}\right. \\
& \left.+\frac{1}{10} e^{-5 s}\left(c_{1} \Gamma\left(\frac{7}{2}\right) s+c_{2} \Gamma\left(\frac{5}{2}\right)\right)\right) d s \\
& =-0.0029-0.0030 c_{1}+0.6267 c_{2} .
\end{aligned}
$$

$$
\begin{aligned}
\Pi_{2} N x(t) & =\int_{0}^{1}\left(\frac{7}{100} e^{-4 s}+\frac{1}{10} e^{-5 s}\left(c_{1} \Gamma\left(\frac{7}{2}\right) s\right.\right. \\
& \left.\left.+c_{2} \Gamma\left(\frac{5}{2}\right)\right)\right) d s+\frac{1}{30} \int_{1}^{\infty} e^{-3 s} d s \\
& -\frac{1}{30} \int_{0}^{1} \int_{1}^{\infty}(t-s) e^{-3 s} d s d A(t) \\
& =0.01276 c_{1}+0.02641 c_{2}+0.00662
\end{aligned}
$$

$\Pi_{1} N x(t)+\Pi_{2} N x(t)=0.00372+0.00976 c_{1}+0.65311 c_{2}$.
Let $B=10$. Then if $\left|c_{1}\right|>10$ or $\left|c_{2}\right|>10$ then,
$\Pi_{1} N x(t)+\Pi_{2} N x(t)>0$
Hence, the assumption H_{5} holds.
Since conditions ($H_{1}-H_{5}$) of theorem (9) hold, the boundary value problem (23) has at least one solution in X.

Example 2. Consider the boundary value problem:
$D_{0+}^{\frac{7}{2}} x(t)=f\left(t, x(t), D_{0+}^{\frac{1}{2}} x(t), D_{0+}^{\frac{3}{2}} x(t), D_{0+}^{\frac{5}{2}} x(t)\right)$,
subject to:
$x(0)=0=D_{0+}^{\frac{1}{2}} x(0), D_{0+}^{\frac{3}{2}} x(0)=\frac{5}{3} D_{0+}^{\frac{3}{2}} x\left(\frac{2}{5}\right)-\frac{2}{3} D_{0+}^{\frac{3}{2}} x(1)$
$D_{0+}^{\frac{5}{2}} x(+\infty)=\int_{0}^{1} D_{0+}^{\frac{3}{2}} x(t) d A(t), t \in(0,+\infty)$
where $A(t)=4\left(t^{3}-t\right)$,
$f\left(t, x(t), D_{0+}^{\frac{1}{2}} x(t), D_{0+}^{\frac{3}{2}} x(t), D_{0+}^{\frac{5}{2}} x(t)\right)=\frac{1}{20} e^{-3 t} \cos \left(\frac{x(t)}{1+t^{\frac{7}{2}}}\right)$
$+\frac{1}{10} h_{1}(t) e^{-2 t} D_{0+}^{\frac{3}{2}} x(t)+\frac{1}{15} h_{2}(t) e^{-3 t} \sin \left(\frac{D_{0+}^{\frac{5}{2}} x(t)}{1+t^{\frac{3}{2}}}\right)$,

Corresponding to the BVP (1),

$$
\alpha=\frac{7}{2}, \mu_{1}=\frac{5}{3}, \mu_{2}=-\frac{2}{3}, \xi_{1}=\frac{2}{5}, \xi_{2}=1, m=2, \eta=1
$$

We can easily verify that $\left(H_{1}\right)-\left(H_{3}\right)$ are satisfied . $\Theta=0.06842, H=6.55309$ and $H \Theta=0.4484<1$. Also,

$$
\begin{aligned}
\Delta & =(-0.1293)(0.8923)-(28.74)(-0.0546) \\
& =1.4538 \neq 0
\end{aligned}
$$

Next, we verify the assumption $\left(H_{4}\right)$. Take $A_{1}=10$. Then, if $\left|D_{0+}^{\frac{3}{2}} x(t)\right|>A_{1}$ holds, for any $\mathrm{t} \in[0,1]$, then we have $f\left(s, x(s), D_{0+}^{\frac{1}{2}} x(s), D_{0+}^{\frac{3}{2}} x(s), D_{0+}^{\frac{5}{2}} x(s)\right)$ $>\frac{1}{10} e^{-2 s} A_{1}-\frac{1}{20} e^{-3 s}$.
If $D_{0^{+}}^{\frac{3}{2}} x(s)<-A_{1}$ holds for any $\mathrm{t} \in[0,1]$, then
$f\left(s, x(s), D_{0+}^{\frac{1}{2}} x(s), D_{0+}^{\frac{3}{2}} x(s), D_{0+}^{\frac{5}{2}} x(s)\right)$
$<\frac{1}{20} e^{-3 s}-\frac{1}{10} e^{-2 s} A_{1}$. So

$$
\begin{aligned}
& \Pi_{1} N x(t) \\
& =\mu_{1} \int_{0}^{\xi_{1}}\left(\xi_{1}-s\right) N x(s) d s+\mu_{2} \int_{0}^{\xi_{2}}\left(\xi_{2}-s\right) N x(s) d s \\
& >\frac{5}{3} \int_{0}^{\frac{2}{5}}\left(\frac{2}{5}-s\right)\left(\frac{1}{10} e^{-2 s} A_{1}-\frac{1}{20} e^{-3 s}\right) d s \\
& -\frac{2}{3} \int_{0}^{1}(1-s)\left(\frac{1}{20} e^{-3 s}-\frac{1}{10} e^{-2 s} A_{1}\right) d s \\
& =0.02922 A_{1}-0.01219>0 .
\end{aligned}
$$

Therefore, $\Pi_{1} N x(t) \neq 0$.

$$
\begin{aligned}
\Pi_{2} N x(t) & >\int_{0}^{1}\left(\frac{1}{10} e^{-2 s} A_{1}-\frac{1}{20} e^{-3 s}\right) d s \\
& +\int_{1}^{\infty} \frac{7}{60} e^{-3 s} d s \\
& -\int_{0}^{1} \int_{1}^{t}(t-s)\left(\frac{7}{60} e^{-3 s}-\frac{1}{10} A_{1}\right) d s d A(t) \\
& =0.07429 A_{1}-0.04299 \neq 0 .
\end{aligned}
$$

So, the assumption H_{4} holds.
Choosing $B=25$, if $\left|c_{1}\right|>B,\left|c_{2}\right|>B$, then $\left(H_{5}\right)$ also hold. Since conditions ($H_{1}-H_{5}$) of theorem (9) are satisfied, the boundary value problem (24) has at least one solution in X.

IV. Conclusion

The study has established existence of solution for a resonant fractional order multipoint and Riemann-Stieltjes integral boundary value problem on half-line with the $\operatorname{dim} \operatorname{ker} L=2$ using coincidence degree theory. The result was illustrated with examples. The outcome of the research will further enrich the existing literature in the field.

References

[1] Z. Bai, "On solutions of some fractional m-point boundary value problems at resonance", Electronic Journal of Qualitative Theory of Differential Equations, Vol. 37, pp. 1-15. 2010.
[2] Y. Cui, "Uniqueness of solution for boundary value problems for fractional differential equations," Applied Mathematics Letters, vol. 51, pp. 48-54.2016.
[3] S. Djebali and A. Aoun. "Resonant fractional differential equations with multi-point boundary conditions on $(0,+\infty)$," Journal of Nonlinear Functional Analysis. http://jnfa.mathres.org. 2019
[4] K. Diethelm. The analysis of fractional differential equations. New York: Springer Heidelberg. 2010
[5] S. O. Edeki, O. O. Ugbebor and E. O.Owoloko."Analytical solution of the time-fractional order black-scholes model for stock option valuation no dividend yield basis,"IAENG International Journal of Applied Mathematics, vol.47: 4. 2017
[6] X. Gao and L. Chen. "Existence of solutions for a system of coupled hybrid fractional integro-differential equations," IAENG International Journal of Applied Mathematics, vol.52: 1. 2022
[7] Z. Hu, W. Liu and J. Liu. "Boundary value problems for fractional differential equations," A Springer Open Journal of Boundary Value Problems. http://www.boundaryvalueproblems.com/content/2014/1/176.2014
[8] O. F. Imaga and S. A. Iyase. "On a fractional-order pLaplacian boundary value problem at resonance on the half-line with two dimensional kernel," Advances in Difference Equations. $\mathrm{http}: / /$ doi.org/10.1186/s13662-021-03406-9. 2021
[9] O. F. Imaga, S. O. Edeki and O. O. Agboola. "On the solvability of a resonant p-laplacian third order integral m-point boundary value problem," IAENG International Journal of Applied Mathematics, vol.50: 2. 2020
[10] S. A.Iyase. "On a third-order boundary value problem at resonance on the half-line," Arabian Journal of Mathematics. http://doi.org/10.1007/540065-018-0209-5.2020
[11] D. Ji and Y. Yang. "Positive solutions for fractional nonlocal boundary value problems with dependence on the first order derivative," IAENG International Journal of Applied Mathematics, vol.50: 3. 2020
[12] W. Jiang, X, Huang and B. Wang. "Boundary value problems of fractional differential equations at resonance," 2012 International conference on solid state devices and materials science. http:// www.sciencedirect.com. 2012
[13] W. H. Jiang. "Solvability for fractional differential equations at resonance on the half-line," Journal of Applied Mathematics and Computing. 247, 90-99. 2014
[14] T. Kesavan. Nonlinear Functional Analysis. New Delhi: Hindustan Book Agency. 2004
[15] A. A. Kilbas, H. M. Srivasteva and J. J.Trujillo (2006). Theory and Applications of Fractional Differential Equations. Netherlands: ELSEVIER B.V. 2006
[16] N. Kosmatov. "A boundary value problem of fractional order at resonance." Electronic Journal of Differential Equations, Vol. 2010, No.135, pp. 1-10. Retrieved from http://ejde.math.txstate.edu. 2010
[17] F. Mainardi. "Fractional calculus and Waves in Linear Visco elasticity," https://doi.org/10.1142/p614.2010
[18] J. Mawhin. Topological Degree Methods in Nonlinear Boundary Value Problems, Expository Lectures from the CBMS Regional Conference held at Harrey Mudd College, Claremont, Calif., June 9-15. CBMS Regional Conference Series in Mathematics; American Mathematical Society: Providence, RI, USA. 1979
[19] J. Mawhin. Topological degree and boundary value problems for nonlinear differential equations. In Topological methods for ordinary differential equations, Montecatini terme, 1991; Lecture Notes in Maths, Springer: Berlin, 1993, Vol. 1537, pp. 74-142. 1993
[20] K. S. Miller and B. Ross. An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: John Wiley and Sons Inc. 1993
[21] A. E. Owoyemi, I. M. Sulaiman, M. Mamat and S. E. Olowo. " Stability and bifurcation analysis in a fractional -order epidemic model with sub-optimal immunity," IAENG International Journal of Applied Mathematics, vol.51: 3. 2021
[22] C. Shen, H, Zhou and L, Yang. " On the existence of solution to multi-point boundary value problem of fractional differential equation on the infinite interval," Springer Open Journal of Boundary Value Problems. doi: 10.1186/513661-015-0509-2. 2015
[23] Y. Wang and L, Liu. "Positive solutions for a class of fractional 3point boundary value problems at resonance," Advance in Difference Equations. vol. 2017:7. 2017
[24] N. Xu, W. Liu, W and L, Xiao. "The existence of solutions for nonlinear fractional multi-point boundary value problems at resonance," Journal of Mathematics in Industry. http://www.boundaryvalueproblems.com/content/2012/1/65. 2012
[25] T. Xue, X. Chen and X. Fan. "Solvability of fractional functional boundary value problems with p-laplacian operator at resonance," IAENG International Journal of Applied Mathematics, vol.51:1. 2021
[26] X. Yang, D. Ding and Y. Luo. "Fractional -order quadratic timevarying parameters discrete grey model FQDGM $(1,1)$ and its application,"IAENG International Journal of Applied Mathematics, vol.51:4. 2021
[27] X. Zhang, L. Liu and Y. Wu. '"The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium," Applied Mathematics Letter. 37, 26-33.2014
[28] H. E.Zhang . "Boundary value problems of fractional order at resonance with integral conditions," Journal of Advances in Difference Equations. doi: 10.1186/s 13662-017-1379-8.2017
[29] W. Zhang and W. Liu.''Existence of solutions for fractional differential equations with infinite point boundary conditions at resonance," Springer Open Journal of Boundary Value Problems. http://doi.org/10.1186/s 13661-018-0954-6.2018
[30] W. Zhang and W. Liu. "Existence of solutions of fractional multipoint boundary value problems on an infinite interval at resonance," Sigma Mathematics. 8, 126; doi: 10.3390/math8010 126. www.mdpi.com/journal/Mathematics. 2020
[31] Y. Zou and G. He. "The existence of solutions to integral boundary value problems of fractional differential equations at resonance," Hindawi Journal of Function Spaces. http:doi.org/10.1155/2017/2785937. 2017

[^0]: Manuscript received December 22, 2021; revised February 10, 2023. This work is supported by Covenant University, Nigeria.
 ${ }^{\dagger}$ Corresponding author: Ezekiel K. Ojo is a research PhD student at the Department of Mathematics, Covenant University, Ota, Ogun State, Nigeria (E-mail: kadjoj@yahoo.com, kadejo.ojopgs@stu.cu.edu.ng)

 Samuel A. Iyase is a Professor of Mathematics Department, Covenant University, Ota, Ogun State, Nigeria (E-mail:samuel. iyase@covenantuniversity.edu.ng)

 Timothy A. Anake is a Professor of Mathematics Department, Covenant University, Ota, Ogun State, Nigeria (E-mail: timothy. anake@covenantuniversity.edu.ng)

