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Abstract—Nonlinear fixed point iterative method for finding
a solution of the tensor complementarity problem (TCP) are
proposed in this paper. Theoretical analysis shows that tensor
complementarity problems are equivalent to a fixed point
equation with monotonic increasing odd function. A fixed
point iterative method is proposed based on the fixed point
equation, and corresponding convergence results are studied.
The computer-simulation results further substantiate that the
proposed fixed point iterative method can find a solution of the
TCP.

Index Terms—Tensor complementarity problem, Fixed point,
Iterative method, Convergence.

I. INTRODUCTION

NOWADAYS, nonlinear complementarity problem
(NCP) [1] is a popular research topic in the

optimization fields [2]. Tensor complementarity problem
(TCP) is a subset of the nonlinear complementarity problem
(NCP) [1]. Tensor complementarity comes from many
application problems, such as the n-person game theory [3],
[4], [5], [6], hypergraph clustering, etc [1], [7], [8], [9].

For convenience, we use R, C and R[m,n] denote the real
field, complex field and all order m and dimensional n real
tensor, respectively. Tensors are a high-order extension of
matrices, which have the following form

B = (bi1i2...im), bi1i2...im ∈ R, ik ∈ [n], k ∈ [m].

We call above multi-array A as an order m and dimensional
n real tensor. Let z ∈ Rn, then Bzm−1 is a n dimensional
vector, which can be defined as [10]:

(Bzm−1)i =
n∑

i2,...,im=1

bii2...imzi2 . . . zim , i ∈ [n], (I.1)

here zi is the ith entry of the vector z. Bzm−2 is an n× n
matrix, which can be defined by

(Bzm−2)ij =
n∑

i3,...,im

biji3,...,imzi3 . . . zim , i, j ∈ [n].

For any B ∈ R[m,n] and y ∈ Rn, the tensor complemen-
tarity problem, simplified by TCP(B,y), can be stated as:
finding z ∈ Rn and z holds

z ≥ 0, Bzm−1 + y ≥ 0, z>(Bzm−1 + y) = 0. (I.2)
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If B ∈ R[2,n] and y ∈ Rn, then TCP(B,y) reduces to the
linear case and called as linear complementarity problem
LCP(B,y), that is

z ≥ 0, Bz + y ≥ 0, z>(Bz + y) = 0.

Therefore, TCP(B,y) is a extension of linear case. So far
a large number of researchers have focused on this topic [4],
[6], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22].

Theoretical results of the TCP(B,y) have been reported
in [4], [6], [11], [12], [13], [14], [15], [16], [17], [19], [20],
[21], [22], [23], [24] and the references therein.

Recently, many numerical algorithms for finding the so-
lution of the TCPs have also been provided, such as non-
smooth Newton’s method [25], smoothing type algorithm-
s [4], Kojima-Megiddo-Mizuno type continuation method
[26], gradient dynamic approach [27], inexact Levenberg-
Marquardt method [16], mixed integer programming model
[28]. Dai [29] proposed a fixed iterative method for solving
TCP(B,y). The fixed point method has shown many advan-
tages in dealing with nonlinear problems [30], [31], [32]. In
this paper, we prove that TCP(B,y) (I.2) is equivalent to a
fixed point equation, which is a extension of the fixed point
equation in [29].

This paper arrange the rest parts as follows. In Section
II, we review some preliminary background and give some
definitions and results. We show that the TCP(B,y) is
equivalent to a fixed point equation in Section III. Some
numerical results are considered in Section IV.

II. PRELIMINARIES

We denote the set {1, 2, , . . . , n} by [n] and denote tensor
with capital calligraphic letters, for example B ∈ R[m,n].
We denote the entries of a tensor B ∈ R[m,n] by bi1i2...im ,
where ij ∈ [n] and j ∈ [m]. We denote matrices and vectors
by bold capital and bold lower case letters, respectively. Let
A,B,T ∈ R[2,n] with A = (aij), B = (bij) and T = (tij),
T = max{A,B} means tij = max{aij , bij}.

Firstly, we review a useful Lemma as follows.

Lemma II.1. [29] Suppose z ∈ Rn, we define vector z+ as
(z+)k = max{0, zk}, n ∈ [n]. Thus for all w,v ∈ Rn, the
following inequalities hold:

1) (w + v)+ ≤ w+ + v+;
2) w+ − v+ ≤ (w − v)+;
3) |w| = w+ + (−w)+;
4) w ≤ v implies w+ ≤ v+.

We recall the definitions of eigenvalues and eigenvectors
of tensors, which has been introduced by Lim [33] and Qi
[10], independently.
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Definition II.1. ([10], [33]) Set B ∈ R[m,n]. If there exists
a vector z ∈ Cn \ {0} and z holds

Bzm−1 = λz[m−1],

we call λ ∈ C as an eigenvalue of B, where the entries of
the vector z[m−1] are given by

z
[m−1]
k = zm−1k for k ∈ [n].

This nonzero vector z is the eigenvector associated to eigen-
value λ.

We recall the following lemma.

Lemma II.2. ([34]) Suppose u ∈ Cn\{0} and y ∈ Cn\{0}.
Then 1

zHz
yzH is a solution of the linear system Az = y.

III. FIXED POINT ITERATIVE METHOD FOR TCP

We will prove firstly that TCP(B,y) is equivalent to a
fixed point equation, furthermore, we provide the fixed point
iterative method to solve TCP(B,y) in this section.

A. Odd and monotonically increasing functions

Let W = (wks), the function G(W) is defined as
(g(wks)), k, s ∈ [n], where g(·) is an odd and monotonically
increasing function (OMIF). We usually take g(·) as the
following functions .

Linear function (LF)

glf(z) = z;

Bipolar-sigmoid function (BsF)

gbsf(z, r) =
1 + exp(−r)
1− exp(−r)

1− exp(−rz)
1 + exp(−rz)

, r > 2;

Smooth power-sigmoid function (SpsF)

gspsf(z, r, s) =
1

2
zr +

1 + exp(−r)
1− exp(−r)

1− exp(−sz)
1 + exp(−sz)

,

r ≥ 3, s > 2.

In all, any OMIF g(·) can be used for building of the fixed
pint iterative method [35].

B. Fixed point equation for TCP(B,y)
We transform the TCP(B,y) into a fixed point iterative

method in this subsection. Dai [29] proposed a fixed equation
of the TCP(B,y) and have the following lemma.

Lemma III.1. [29] Suppose B ∈ R[m,n], y ∈ Rn, parameter
α > 0 and Ω = diag(d1, d2, . . . , dn) with dk > 0, k =
1, 2, . . . , n. Then TCP(B,y) (I.2) is equivalent to the fol-
lowing equation

z[m−1] =
(
z[m−1] − αΩ(Bzm−1 + y)

)
+
, (III.1)

where (y)+ = max(y,0).

Notice that, positive diagonal matrix Ω is a projection
operator in equation (III.1). The convergence properties of
fixed iterative method (III.1) is determined by Ω. Hence, we
extend Ω in (III.1) to more common forms.

We extend the matrix Ω to an OMIF g(·) and obtain
TCP(B,y) and fixed point equation are equivalent.

Theorem III.1. Suppose B ∈ R[m,n], y ∈ Rn, α > 0 and
g(·) be a OMIF. Then TCP(B,y) (I.2) is equivalent to the
following equation

z[m−1] =
(
z[m−1] − αG(Bzm−1 + y)

)
+
. (III.2)

Proof: Because g(·) is an odd function, we have
g(−zi) = −g(zi) and

g(zi)

{
≥ 0, for zi ≥ 0;
< 0, for zi < 0.

Suppose that z is a solution of TCP(B,y). If zi = 0 and
(Bzm−1 + y)i ≥ 0, integrate with g(·) is a monotonically
increasing function, we immediately obtain

zm−1i −
(
zm−1i − α(G(Bzm−1 + y))i

)
+

= −
(
−α(G(Bzm−1 + y))i

)
+
= 0.

If (Bzm−1 − y)i = 0 and zi ≥ 0, then

zm−1i −
(
zm−1i − α(G(Bzm−1 + y))i

)
+

= zm−1i − zm−1i = 0.

Conversely, assume that (III.2) holds. Notice that

z[m−1] =
(
z[m−1] − αG(Bzm−1 + y)

)
+
≥ 0,

we have Bzm−1 − y ≥ 0. In fact, if (Bzm−1 + y)i < 0 for
some i, then

0 = zm−1i −
(
zm−1i − α(G(Bzm−1 + y))i

)
+

= α(G(Bzm−1 + y))i < 0,

which is a contradiction. For one hand, if

zm−1i − α(G(Bzm−1 + y))i ≥ 0,

then,

0 = zm−1i −
(
zm−1i − α(G(Bzm−1 + y))i

)
+

= α(G(Bzm−1 + y))i.

Based on g(·) is an odd function, we have (Bzm−1+y)i = 0.
Therefore

zi(Bzm−1 + y)i = 0.

For the other hand, if

zm−1i − α(G(Bzm−1 + y))i < 0,

then,

0 = zm−1i −
(
zm−1i − α(G(Bzm−1 + y))i

)
+
= zm−1i ,

which shows

zi(Bzm−1 + y)i = 0.

This completes the proof.
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C. Fixed point iterative method for TCP(B,y)
In this subsection, we attain a general fixed point iterative

method to solve TCP(B,y) based on fixed point equation
(III.2) as follows.

zk+1 =

[(
z
[m−1]
k − αG(Bzm−1k + y)

)
+

][ 1
m−1 ]

. (III.3)

Next, we consider the convergence properties on the pro-
posed iterative method. We first have the following lemma
for the fixed point iterative method (III.3).

Lemma III.2. Let B ∈ R[m,n]. For any y ∈ Rn, the iterative
sequence {zk} satisfy the recursive inequality∣∣∣z[m−1]k+1 − z

[m−1]
k

∣∣∣ ≤ |I− αyk|
∣∣∣z[m−1]k − z

[m−1]
k−1

∣∣∣ , (III.4)

where yk satisfies

G(Bzm−1k + y)− G(Bzm−1k−1 + y) = yk

(
z
[m−1]
k − z

[m−1]
k−1

)
.

Proof: Based on fixed point iterative formula (III.3), we
obtain the following relation

z
[m−1]
k+1 − z

[m−1]
k =

(
z
[m−1]
k − αG(Bzm−1k + y)

)
+

−
(
z
[m−1]
k−1 − αG(Bzm−1k−1 + y)

)
+

≤ (z
[m−1]
k − z

[m−1]
k−1 − αG(Bzm−1k

+y) + αG(Bzm−1k−1 + y))+

≤ z
[m−1]
k − z

[m−1]
k−1 − α[G(Bzm−1k

+y)− G(Bzm−1k−1 + y)]+.

By Lemma II.2, we have

z
[m−1]
k+1 − z

[m−1]
k ≤

(
z
[m−1]
k − z

[m−1]
k−1

−αyk(z
[m−1]
k − z

[m−1]
k−1 )

)
+

=
(
(I− yk)(z

[m−1]
k − z

[m−1]
k−1 )

)
+

and then(
z
[m−1]
k+1 − z

[m−1]
k

)
+
≤
(
(I− yk)(z

[m−1]
k − z

[m−1]
k−1 )

)
+
.

(III.5)
Analogously, we have(

z
[m−1]
k − z

[m−1]
k+1

)
+
≤
(
(I− yk)(z

[m−1]
k−1 − z

[m−1]
k )

)
+
.

(III.6)
Since |z| = (z)+ +(−z)+, combining (III.5) and (III.6), we
obtain

|z[m−1]k+1 − z
[m−1]
k | ≤ |(I− yk)(z

[m−1]
k − z

[m−1]
k−1 )|

≤ |I− yk||z[m−1]k − z
[m−1]
k−1 |.

(III.7)
We complete the proof.

Based on Lemma III.2, we can attain the convergence
result on the proposed fixed point iterative method.

Theorem III.2. Assume that B ∈ R[m,n]. If ρ(T) < 1,
then the iterative sequence {zk} generated by the fixed
point iterative method (III.3) converges to a solution of the
TCP(B,y) for any y ∈ Rn and initial guess vector z0 ∈ Rn,,
where T = max

1≤k
{Tk} and Tk = |I− yk|.

Proof: Our purpose is to explain

lim
k→+∞

|z[m−1]k+1 − z
[m−1]
k | = 0.

Set T = max
1≤k
{|I− yk|}. From

|z[m−1]k − z
[m−1]
0 | ≤ |z[m−1]k − z

[m−1]
k−1 |+ |z

[m−1]
k−1

−z
[m−1]
k−2 |+ . . .+ |z[m−1]1 − z

[m−1]
0 |.

Together with inequality (III.4) in Lemma III.2 with T =
max
1≤k
{Tk} and Tk = |I− yk|, this lead to

|z[m−1]k − z
[m−1]
0 | ≤ (Tk−1Tk−2 . . .T2T1 + Tk−2 . . .T2

T1 + . . .+ T1 + I)|z[m−1]1 − z
[m−1]
0 |

≤ (Tk−1 + . . .+ I)|z[m−1]1 − z
[m−1]
0 |

≤ (I−T)−1|z[m−1]1 − z
[m−1]
0 |,

it follows from T is a nonnegative matrix and ρ(T) < 1.
Employing the same approach of the proof of Theorem 3.1

in [29], we can show the iterative sequence {zk} converges
to a solution of TCP(B,y). So it is omitted. The proof is
completed.

IV. TEST EXAMPLES

We show the efficacy of the proposed iterative method for
solving TCP(B,y) by using two numerical examples. We
compare proposed fixed point iterative method and method
I present in [29] on iterative numbers and CPU times in this
section,. In all tables, we use ‘LF’, ‘BsF’, ‘SpsF’ and ‘M-I’
denote the proposed fixed point iterative method with LF,
BsF, SpsF and method I present in [29], respectively.

Let

Err = ‖zk − zk−1‖2. (IV.1)

In our numerical tests, we take the stopping criteria as Err <
10−12 or iteration number is less than 1000 times.

In the following two tests, we take vector y ∈ Rn with
yi = (−1)ii for i ∈ [n] and initial vector z0 = (1, 1, . . . , 1)>.
We compare superiority of the proposed iterative method
and method I [29] with α = 1 for solving TCP(B,y) with
different order m and dimension n, where BsF is fbsf (v, 3)
and SpsF is fspsf (v, 5, 7).

Example IV.1. Let tensor B ∈ R[n,n] with

bk1...km
= |sin(k1 + k2 + . . .+ km)|,

then B = nm−1I−B is a nonsingular tensor, it follows from
[36], [37], where I is a real unit tensor.

Example IV.2. Let C ∈ R[m,n] be a randomized tensor
whose elements obey standard uniform distribution on (0, 1).
Suppose

λ = (1 + ε) max
i=1,2,··· ,n

(Cu2)i, ε > 0,

where u = (1, 1, · · · , 1)>. Then B = |λI − C| is a
nonsingular H-tensor [37].

The computer simulations show that the fixed point iter-
ative method with nonlinear function can solve TCP effec-
tively. Moreover, the convergence property of the proposed
fixed point iterative method performs better than that of the
corresponding the method I in [29].
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TABLE I
THE COMPARISON RESULTS ON PRESENT METHOD AND METHOD I [29] FOR EXAMPLE IV.1.

LF BsF SpsF M-I
(m,n) α Ite CPU α Ite CPU α Ite CPU Ite CPU
(3, 2) 0.2 22 0.0239 0.162 15 0.0158 0.162 9 0.0110 9 0.0155
(3, 4) 0.06 19 0.0169 0.035 19 0.0155 0.035 11 0.0106 21 0.0309
(3, 10) 0.012 22 0.0167 0.005 17 0.0138 1E-4 10 0.0082 35 0.0458
(3, 15) 0.006 28 0.0214 0.005 18 0.0139 1E-5 8 0.0074 26 0.0346
(3, 100) 1E-4 33 0.0431 1E-4 20 0.0290 1E-8 8 0.0122 52 0.0654
(4, 4) 0.017 18 0.0194 0.012 12 0.0113 1E-3 7 0.0061 20 0.0184
(4, 10) 0.001 24 0.0203 0.01 11 0.0101 1E-5 5 0.0051 24 0.1754
(4, 15) 3E-4 23 0.0183 0.01 10 0.0088 1E-5 7 0.0063 25 0.1564
(4, 100) 1.2E-6 29 1.3950 1E-4 14 0.6764 1E-8 7 0.3567 34 2.8439

TABLE II
THE COMPARISON RESULTS ON PRESENT METHOD AND METHOD I [29] FOR EXAMPLE IV.2.

Lin Bs Sps M-I
(m,n) α Ite CPU α Ite CPU α Ite CPU Ite CPU
(3, 2) 0.5 17 0.0184 0.6 10 0.0098 0.4 12 0.0121 17 0.0188
(3, 4) 0.15 34 0.0324 0.1 25 0.0252 1E-3 29 0.0308 32 0.0624
(3, 10) 0.02 32 0.0271 0.01 17 0.0145 1E-4 14 0.0131 52 0.0742
(3, 15) 0.02 33 0.0338 0.015 18 0.0219 4E-5 14 0.0222 46 0.0689
(3, 100) 2.5E-4 50 0.0595 1.5E-3 17 0.0223 4E-8 12 0.0179 78 0.1562
(4, 4) 0.002 43 0.0367 0.015 11 0.0103 4E-4 9 0.0123 45 0.0598
(4, 10) 0.001 24 0.0203 1.5E-3 11 0.0112 4E-5 6 0.0068 98 0.1632
(4, 15) 6.5E-4 47 0.0391 1E-3 13 0.0113 2E-5 9 0.0087 125 0.2653
(4, 50) 2E-5 74 0.2419 1.5E-4 13 0.0480 1.5E-7 7 0.0278 203 1.2598
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