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An Fixed Point Iterative Method for Tensor
Complementarity Problems

Ping Wei,

Abstract—Nonlinear fixed point iterative method for finding
a solution of the tensor complementarity problem (TCP) are
proposed in this paper. Theoretical analysis shows that tensor
complementarity problems are equivalent to a fixed point
equation with monotonic increasing odd function. A fixed
point iterative method is proposed based on the fixed point
equation, and corresponding convergence results are studied.
The computer-simulation results further substantiate that the
proposed fixed point iterative method can find a solution of the
TCP.

Index Terms—Tensor complementarity problem, Fixed point,
Iterative method, Convergence.

I. INTRODUCTION

OWADAYS, nonlinear complementarity problem
(NCP) [1] is a popular research topic in the
optimization fields [2]. Tensor complementarity problem
(TCP) is a subset of the nonlinear complementarity problem
(NCP) [1]. Tensor complementarity comes from many
application problems, such as the n-person game theory [3],
[4], [5], [6], hypergraph clustering, etc [1], [7], [8], [9].
For convenience, we use R, C and R[] denote the real
field, complex field and all order m and dimensional n real
tensor, respectively. Tensors are a high-order extension of
matrices, which have the following form

B = (biiy...ir,)s biyis..in, €R, ix € [n], k € [m].

We call above multi-array A as an order m and dimensional
n real tensor. Let z € R™, then Bz™~! is a n dimensional
vector, which can be defined as [10]:

n

>

12, im =1

(Bz"1); = biiy. (L1)

Zig - .- Zip s &€ [N,

o,

here z; is the ith entry of the vector z. Bz™ 2 is an n x n
matrix, which can be defined by

n
(Bz™2)i; = Z Dijis..osim Zis - - Ziys 155 € [1].
[ tm

3heeri

For any B € RI™" and y € R”, the tensor complemen-
tarity problem, simplified by TCP(B,y), can be stated as:
finding z € R™ and z holds

z>0, Bz" ' +y>0,z"(Bz2" ' +y)=0  (12)
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If B € R and y € R”, then TCP(B,y) reduces to the
linear case and called as linear complementarity problem
LCP(B,y), that is

z>0 Bz+y>0,z (Bz+y)=0.

Therefore, TCP(B,y) is a extension of linear case. So far
a large number of researchers have focused on this topic [4],
(61, [111, [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22].

Theoretical results of the TCP(5,y) have been reported
in [4], [6], [11], [12], [13], [14], [15], [16], [17], [19], [20],
[21], [22], [23], [24] and the references therein.

Recently, many numerical algorithms for finding the so-
lution of the TCPs have also been provided, such as non-
smooth Newton’s method [25], smoothing type algorithm-
s [4], Kojima-Megiddo-Mizuno type continuation method
[26], gradient dynamic approach [27], inexact Levenberg-
Marquardt method [16], mixed integer programming model
[28]. Dai [29] proposed a fixed iterative method for solving
TCP(B,y). The fixed point method has shown many advan-
tages in dealing with nonlinear problems [30], [31], [32]. In
this paper, we prove that TCP(B,y) (1.2) is equivalent to a
fixed point equation, which is a extension of the fixed point
equation in [29].

This paper arrange the rest parts as follows. In Section
II, we review some preliminary background and give some
definitions and results. We show that the TCP(B,y) is
equivalent to a fixed point equation in Section III. Some
numerical results are considered in Section IV.

II. PRELIMINARIES

We denote the set {1,2,,...,n} by [n] and denote tensor
with capital calligraphic letters, for example B € RI™m,
We denote the entries of a tensor B € Rl by biyiy. i, »
where i; € [n] and j € [m]. We denote matrices and vectors
by bold capital and bold lower case letters, respectively. Let
A, B, T € R with A = (a;), B = (b;;) and T = (t;5),
T = max{A, B} means tij = max{aij, bl‘j}.

Firstly, we review a useful Lemma as follows.

Lemma IL1. [29] Suppose z € R", we define vector z as
(z4)r = max{0, zx}, n € [n]. Thus for all w,v € R"™, the
following inequalities hold:

D (W+v)y Swy+vy;

2) wy — vy < (W—v)4;

3) w| = Wi + (—w);

4) w < v implies wi < v_.

We recall the definitions of eigenvalues and eigenvectors
of tensors, which has been introduced by Lim [33] and Qi
[10], independently.
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Definition IL1. ([10], [33]) Ser B € RI™". If there exists
a vector z € C™ \ {0} and z holds

Bz™ ! = \zglm— 1

we call A € C as an eigenvalue of B, where the entries of
the vector z[™~1 are given by

z,[cmfl] = Z;C"_l for k € [n].

This nonzero vector z is the eigenvector associated to eigen-
value \.

We recall the following lemma.

Lemma IL.2. ([34]) Suppose u € C"\{0} andy € C™"\{0}.
Then ﬁyzH is a solution of the linear system Az =y.

III. FIXED POINT ITERATIVE METHOD FOR TCP

We will prove firstly that TCP(B,y) is equivalent to a
fixed point equation, furthermore, we provide the fixed point
iterative method to solve TCP(B,y) in this section.

A. 0dd and monotonically increasing functions

Let W = (wgs), the function G(W) is defined as
(9(wis)), k, s € [n], where g(+) is an odd and monotonically
increasing function (OMIF). We usually take g¢(-) as the
following functions .

Linear function (LF)
9ie(2) = 2;
Bipolar-sigmoid function (BsF)

1+exp(—r) 1 —exp(—rz)
1 —exp(—7r) 1 +exp(-rz)’

gbst(2,7) = > 2;

Smooth power-sigmoid function (SpsF)

1, 1+exp(—r)1—exp(—sz)
gspsf(za T, S) = -z 3
2 1 —exp(—r) 1+ exp(—s2)
r>3, s> 2.
In all, any OMIF g(-) can be used for building of the fixed
pint iterative method [35].

B. Fixed point equation for TCP(B,y)

We transform the TCP(B,y) into a fixed point iterative
method in this subsection. Dai [29] proposed a fixed equation
of the TCP(B,y) and have the following lemma.

Lemma IIL1. [29] Suppose B € R™" y € R™, parameter
a > 0 and Q@ = diag(dy,ds,...,d,) with d, > 0, k =
1,2,...,n. Then TCP(B,y) (L2) is equivalent to the fol-
lowing equation

Zm=1 — (z[m—” — aQ(Bz" ! 4 y)) . (L1
+

where (y)+ = max(y,0).

Notice that, positive diagonal matrix 2 is a projection
operator in equation (III.1). The convergence properties of
fixed iterative method (III.1) is determined by 2. Hence, we
extend € in (III.1) to more common forms.

We extend the matrix € to an OMIF ¢(-) and obtain
TCP(B,y) and fixed point equation are equivalent.

Theorem IIL1. Suppose B € RI™", y € R”, o > 0 and
g(:) be a OMIF. Then TCP(B,y) (1.2) is equivalent to the
Jfollowing equation

zlm—1 = (z[m*” —aG(Bz" + Y)) (I1.2)
+

Proof: Because ¢(-) is an odd function, we have
9(=z) = —g(zi) and

9(2i) {

Suppose that z is a solution of TCP(B,y). If z; = 0 and
(Bz™~! +y); > 0, integrate with g(-) is a monotonically
increasing function, we immediately obtain

=0, forz = 0;
<0, forz <0.

N

P (T - alG(B2 T +y))i)
= —(—a(G(Bz""" +y))i), =0.

If (Bz™ ! —y); =0 and z; > 0, then
= (7 — a(@(B 4 y))
=t =.

Conversely, assume that (II1.2) holds. Notice that
Zm—1 — (Z[m—l] ~ aG(Bz™ ! +y)) >0,
+

we have Bz~ —y > 0. In fact, if (Bz™ ! +y); < 0 for
some ¢, then

0 = Zlm—l _ (sz—l _ a(g(Bmel +y>)z’)+
= a(G(Bz™ ! +y)); <0,

which is a contradiction. For one hand, if

#' —oG(B2" T +y))i 2 0,

1
then,

0 — Zm—l _ (Z?”_l — a(Q(BZmil + Y))i)+

K2 K2

a(G(Bz™ 1 +y));.

Based on g(-) is an odd function, we have (Bz™ !+y); = 0.
Therefore

z(Bz™ ' +y); =0.
For the other hand, if

2" a(G(Bz™ 1 +y)) <0,

K3

then,
0=2"" — ("~ a(G(Ba" +y))), =2,
which shows
2;(Bz™ ! +y); = 0.
This completes the proof. ]
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C. Fixed point iterative method for TCP(B,y)

In this subsection, we attain a general fixed point iterative
method to solve TCP(B3,y) based on fixed point equation
(II1.2) as follows.

(]

Zit1 = [(sz_l] —aG(Bz ! + y))J (111.3)
Next, we consider the convergence properties on the pro-
posed iterative method. We first have the following lemma
for the fixed point iterative method (IIL.3).

Lemma IIL2. Ler B € R™". For any y € R", the iterative
sequence {zy} satisfy the recursive inequality

a2y <L - ayi ‘zL’”* "7 e
where yy, satisfies
G(Bz" ' +y)-G(Bz ' +y) =y ( [m—1] zgﬁ;l]) )

Proof: Based on fixed point iterative formula (II1.3), we
obtain the following relation

m—1 m—1
ZL+1] ZEC ! —(L —aG(Bzy™ )+
(Ea *O‘ngzlf* ))
< (z Lm 1] chmll] ag(Bz’,;“
+y) +aG(Bz ! +y))+
<z zL’“l” alg(Bzy~!
+y) =GBz + )l
By Lemma II.2, we have
A < (!
oy =2 )
= (v =)
and then
m—1 m—1 m—1 m—1
(ZL—H } ZL ]>+ ((I_Yk)( [ I L—l ])(Iﬁ~5)

Analogously, we have
m—1 m—1 m—1 m—1
(ch } _ZLH ])+ < ((I—yk)(zL 1 ! ZL ]))+-
(I11.6)

Since |z| = (z)+ + (—2)4, combining (I11.5) and (II1.6), we
obtain

m—1 m—1 m—1
2y -2 <ja-y ><L b )

<= yllz M =2 Y]

_Zk:

(II1.7)
We complete the proof. ]

Based on Lemma III.2, we can attain the convergence
result on the proposed fixed point iterative method.

Theorem IIL.2. Assume that B € RI™7". If p(T) < 1,
then the iterative sequence {zy} genemted by the fixed
point iterative method (II1.3) converges to a solution of the
TCP(B,y) for any'y € R™ and initial guess vector zg € R™,,
where T = r{lggq{Tk} and Ty = |I — yi|.

Proof: Our purpose is to explain
[m—1] Z[mfl]‘ -0

lim |zkJrl &

k—-+o0

T = I—yl}. F
Set T = max{[I — y|}. From

m—1 m—1 m—1 m—1 m—1
e e P SR
B e T

Together with inequality (III.4) in Lemma II1.2 with T =
r{%z({Tk} and Ty = |I — yy/|, this lead to

‘Z[m 1] 7zgm 1}| S (Tk 1Tk 2. T2T1+Tk_2...T2
Ti+...+ Ty +I)\z[m U gl
<(TF1 4 4Tl =gl
< (T-T) Yz =),

it follows from T is a nonnegative matrix and p(T) < 1.
Employing the same approach of the proof of Theorem 3.1
in [29], we can show the iterative sequence {z;} converges
to a solution of TCP(B,y). So it is omitted. The proof is
completed. [ |

IV. TEST EXAMPLES

We show the efficacy of the proposed iterative method for
solving TCP(B,y) by using two numerical examples. We
compare proposed fixed point iterative method and method
I present in [29] on iterative numbers and CPU times in this
section,. In all tables, we use ‘LF’, ‘BsF’, ‘SpsF’ and ‘M-I’
denote the proposed fixed point iterative method with LF,
BsF, SpsF and method I present in [29], respectively.

Let

Err = ||z — 2zk—1]|2- (IV.1)
In our numerical tests, we take the stopping criteria as Err <
10712 or iteration number is less than 1000 times.

In the following two tests, we take vector y € R™ with
yi = (—1)% for i € [n] and initial vector zo = (1,1,...,1)T.
We compare superiority of the proposed iterative method
and method T [29] with o = 1 for solving TCP(B,y) with
different order m and dimension n, where BsF is fys7(v, 3)
and SpsF is fops7(v,5,7).

Example IV.1. Let tensor B € R"™™ with

by k,, = |sin(k1 + k2 + ...+ k)|,

km

then B = n™ YT — B is a nonsingular tensor; it follows from
[36], [37], where I is a real unit tensor.

Example IV.2. Let C € R"™™ be a randomized tensor
whose elements obey standard uniform distribution on (0, 1).
Suppose

A=(1+¢) _max (Cu?);, € >0,
where u = (1,1,--- ,1)T. Then B = |\ — C| is a

nonsingular H-tensor [37].

The computer simulations show that the fixed point iter-
ative method with nonlinear function can solve TCP effec-
tively. Moreover, the convergence property of the proposed
fixed point iterative method performs better than that of the
corresponding the method I in [29].
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TABLE I
THE COMPARISON RESULTS ON PRESENT METHOD AND METHOD I [29] FOR EXAMPLE IV.1.

LF BsF SpsF M-I
(m,n) | « Ite CPU ] Tte CPU ] Tte CPU Tte CPU
(3,2) 0.2 22 0.0239 | 0.162 15 0.0158 | 0.162 9 0.0110 | 9 0.0155

(3,4) 0.06 19  0.0169 | 0.035 19 0.0155 | 0.035 11 0.0106 | 21 0.0309
(3,10) 0.012 22 0.0167 | 0.005 17 0.0138 | 1E-4 10 0.0082 | 35 0.0458
(3,15) 0.006 28 0.0214 | 0.005 18 0.0139 | 1E-5 8 0.0074 | 26 0.0346
(3,100) | 1E-4 33 0.0431 | 1E-4 20 0.0290 | 1E-8 0.0122 | 52 0.0654

(4,4) 0.017 18 0.0194 | 0.012 12 0.0113 | 1E-3 0.0061 | 20 0.0184
(4,10) 0.001 24 0.0203 | 0.01 11 0.0101 | 1E-5 0.0051 | 24 0.1754
(4,15) 3E-4 23 0.0183 | 0.01 10 0.0088 | 1E-5 0.0063 | 25 0.1564
(4,100) | 1.2E-6 29 13950 | 1E-4 14 0.6764 | 1E-8 0.3567 | 34 2.8439

~N 3 W oo

TABLE I
THE COMPARISON RESULTS ON PRESENT METHOD AND METHOD I [29] FOR EXAMPLE 1V.2.

Lin Bs Sps M-I
(m,n) | « Ite CPU «a Ite CPU @ Ite CPU Tte CPU
(3,2) 0.5 17 0.0184 | 0.6 10 0.0098 | 0.4 12 0.0121 | 17 0.0188
(3,4) 0.15 34 0.0324 | 0.1 25  0.0252 | 1E-3 29 0.0308 | 32 0.0624

(3,10) 0.02 32 0.0271 | 0.01 17 0.0145 | 1E-4 14 0.0131 | 52 0.0742
(3,15) 0.02 33 0.0338 | 0.015 18 0.0219 | 4E-5 14 0.0222 | 46 0.0689
(3,100) | 2.5E-4 50 0.0595 | 1.5E-3 17 0.0223 | 4E-8 12 0.0179 | 78 0.1562

(4,4) 0.002 43 0.0367 | 0.015 11 0.0103 | 4E-4 9 0.0123 | 45 0.0598
(4,10) 0.001 24 0.0203 | 1.5E-3 11  0.0112 | 4E-5 6 0.0068 | 98 0.1632
(4,15) 6.5E-4 47 0.0391 | 1E-3 13 0.0113 | 2E-5 9 0.0087 | 125  0.2653
(4,50) 2E-5 74 0.2419 | 1.5E-4 13 0.0480 | 1.5E-7 7 0.0278 | 203  1.2598

Volume 31, Issue 1: March 2023





