
Forbidden Values for Wiener Indices of Chain /
Threshold Graphs

K ARATHI BHAT and SHAHISTHA HANIF∗

Abstract—Chain graphs and threshold graphs have received
considerable attention of researchers in the field of spectral
graph theory, due to extremity in the spectral radius among all
the bipartite graphs (former one) and all the connected graphs
(latter one). Wiener index of chain graphs have been studied
in the literature and an algorithm returning a chain graph
with the given Wiener index has been given. In this article, we
give a list of integers which are forbidden values for Wiener
indices of chain graphs, hence contributing further knowledge
to the existing theory of inverse Wiener index problem. We
further derive results on Wiener index of threshold graphs
giving the bounds and carry out the similar study. We conclude
the article with an algorithm for inverse Wiener index problem
for threshold graphs.

Index Terms—Chain, Bipartite graph, Bi-star graph, Wiener
index.

I. INTRODUCTION

FROM the contemporary literature, one can conclude the
importance of Wiener index in chemical graph theory.

Wiener index is one of the oldest topological indices enabling
the study of three basic structural features of molecules
namely branching, cyclicity, centricity (or centrality) and
their specific patterns. The wide majority of previous and
ongoing studies related to Wiener index focus on inverse
Wiener index problem. The Wiener index W (G) of a graph
G is the sum of all distances between all pairs of vertices in
G.

W (G) =
∑

{u,v}∈V (G)

d(u, v).

The term inverse Wiener index problem refers to the
problem of constructing the graph of order n with the given
Wiener index W (G) = k. It turned out that every positive
integer, except for two and five, is the Wiener index of
some connected graph. A great deal of knowledge on the
Wiener index is accumulated in the literature ( [13] and [14]).

Throughout the article, we denote a bipartite graph with
bipartition V (G) = V1 ∪ V2 by G(V1 ∪ V2, E) and a bi-star
graph (a graph obtained by making the central vertices of
two star graphs K1,p−1 and K1,q−1 adjacent) by B(p, q).
The adjacency and the non adjacency between two vertices
vi and vj are symbolically represented respectively, by
vi ∼ vj and vi ≁ vj .
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A chain graph is a bipartite graph with the property
that neighborhood of vertices of each partite set form a
chain with respect to set inclusion. Each of Vi (i = 1, 2)
in a chain graph G(V1 ∪ V2, E) can be partitioned into h
non-empty cells V1,1, V1,2, . . . , V1,h and V2,1, V2,2, . . . , V2,h

such that NG(u) = V2,1 ∪ ... ∪ V2,h−i+1, for any u ∈ V1,i,
1 ≤ i ≤ h. If mi = |V1,i| and ni = |V2,i|, then we write
G = DNG(m1,m2, ...,mh;n1, n2, ..., nh). Due to this
nesting property, the chain graphs are also called Double
Nested Graphs (DNGs). The interesting facts concerned
with chain graphs are available in the literature [2], [4], [6],
[8], [9], [15] and [16].

A split graph is a graph which admits a partition of its
vertex set into two parts, say W1 and W2 such that W1

induce a co-clique and W2 induce a clique. All other cross
edges, join a vertex of W1 with a vertex of W2 ( [10]).
A threshold graph is a split graph with the split partition
V (G) = {W1,W2} such that each of Wi (i = 1, 2) can be
further partitioned into h cells W1 = W1,1∪W1,2∪· · ·∪W1,h

and W2 = W2,1 ∪ W2,2 ∪ · · · ∪ W2,h satisfying the
following nesting property: For each vertex u ∈ W1,i,
1 ≤ i ≤ h, NG(u) = W2,1 ∪ ... ∪ W2,h−i+1.
If |W1,i| = mi and |W2,i| = ni, then we write
G = NSG(m1,m2, ...,mh;n1, n2, ..., nh). The readers are
referred to [1], [3], [5], [7], [11] and [12] for more results
on threshold graphs.

The chain graphs and threshold graphs are often referred
as extremal graphs due to the fact that, they have the largest
spectral radius among all the bipartite graphs (former one)
and all the connected graphs (latter one) with prescribed
order and size. Further, any threshold graph can be obtained
from a chain graph G by replacing one color class of G by
a clique, keeping all other edges unchanged. The schematic
representation of both DNGs, as well as NSGs, are given in
Figure 1.
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Fig. 1. Schematic diagram of chain and threshold graphs
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Authors of [1] have derived bounds for Wiener index and
other variants of chain graphs. The highlight of the article
is a quadratic time algorithm for the inverse Wiener index
problem. We extend the study further and give a set of
integers except which every other integer is the Wiener index
of some chain graph.

II. WIENER INDEX OF CHAIN GRAPHS

We summarize the frame work to be used in this article,
done by authors of [1], which are essential to derive our main
results.

Theorem 2.1: Let G(V1 ∪V2, E) be a chain graph of size
m where |V1| = p, |V2| = q. Then the Wiener index W (G)
of G is given by

W (G) = p2 + q2 + 3pq − p− q − 2m.

Theorem 2.2: Let G(V1 ∪ V2, E) be a chain graph with
|V1| = p and |V2| = q (p, q > 1). Let W (G) be the Wiener
index of G. Then

p2+q2+pq−p−q ≤ W (G) ≤ p2+q2+3 (pq − p− q)+2.

The upper and the lower bound in the above theorem is
attained by the complete bipartite graph Kp,q and the bi-star
graph B(p, q), respectively. Further, the upper bound and the
lower bound for W (G) given by Theorem 2.2 are either both
even or both odd.

Remark 2.1: Let G(U ∪U ′, E) and H(V ∪V ′, F ) be any
two chain graphs such that |U | = |V | = p and |U ′| = |V ′| =
q. Then the Wiener indices W (G) and W (H) are either both
even or both odd.
That is, Wiener index of a chain graph being even or odd just
depends on the cardinalities of the partite sets, irrespective
of the structure and the number of edges. We also note
that W (G) is odd if and only if both p, q are odd and
is even otherwise. The following theorem ( [16]) gives the
conditions for addition of edges to a chain graph G such that
the resultant graph is also a chain graph.

Theorem 2.3: Let G =
DNG(m1,m2, . . . ,mh;n1, n2, . . . , nh) be a chain graph
where mi = |Ui| and ni = |Vi| for 1 ≤ i ≤ h. The graph
G + e obtained by adding an edge e = (u, v) to G is a
chain graph if and only if u ∈ Ui and v ∈ Vh−i+2 for some
2 ≤ i ≤ h.
From Theorem 2.1, we note that, Wiener index on addition
(removal) of an edge to a chain graph decreases (increases)
by two. We now proceed to our results.

Lemma 2.4: Let a = p2+q2+pq−p−q and b = p2+q2+
3 (pq − p− q) + 2 where p, q ≥ 1. If either of p, q is even,
then for every even integer k ∈ [a, b], there exists at least
one chain graph G(V1 ∪ V2, E) (|V1| = p, |V2| = q) with
the Wiener index k. If not, for every odd integer k ∈ [a, b],
there exists at least one chain graph G(V1∪V2, E) (|V1| = p,
|V2| = q) with the Wiener index k.

Proof: We note that a and b, respectively, are the lower
and upper bounds for Wiener index of a chain graph G(V1∪
V2, E) with |V1| = p and |V2| = q. Both the bounds a and b
are odd if and only if both p, q are odd and even otherwise.
Further, the proof follows directly from the fact that removal
(addition) of an edge increases (decreases) the Wiener index
by two. Starting from the bi-star graph B(p, q), which has

the Wiener index b, adding the edges sequentially decreases
the Wiener index by two and attains the minimum value a
when the graph is a complete bipartite graph Kp,q .
We observe that, for a chain graph on n vertices, the
lower bound decreases and the upper bound increases as the
difference |p− q| decreases.

Theorem 2.5: Let A = 3n2 − 2n and B = 5n2 − 6n+ 2
where n ≥ 2. Then for every integer k ∈ [A,B], there exists
at least one chain graph on 2n vertices with the Wiener index
k.

Proof: We note that A ≤ W (G) ≤ B for Wiener index
W (G) of a chain graph on 2n vertices i.e., for a chain graph
G(V1 ∪ V2, E) on 2n vertices with |V1| = p, |V2| = q, the
lower and the upper bounds are attained when p = q = n (for
the graphs Kn,n and B(n, n), respectively). We note that the
bounds when p = n−1 and q = n+1 differ from the bounds
when p = q = n exactly by 1. Thus, suppose all the chain
graphs on 2n vertices with p = q = n have Wiener indices
even, then all the chain graphs with p = n − 1, q = n + 1
have Wiener indices odd and vice versa. Suppose A,B are
even and k is an even integer such that k ∈ [A,B]. Then
by Lemma 2.4, there exists at least one chain graph on 2n
vertices with p = q = n having Wiener index k. Suppose k
is an odd integer such that k ∈ [A,B], then we know that
the bounds for Wiener index when p = n− 1 and q = n+1
is [A+ 1, B − 1] and k ∈ [A+ 1, B − 1]. Again by Lemma
2.4, there exists at least one chain graph on 2n vertices with
p = n− 1 and q = n+ 1 having Wiener index k. Similarly,
we can prove the same when both A,B are odd.
When k is odd, then there exists no chain graph G on odd
number of vertices with W (G) = k. Similar to the above
theorem about the existence of chain graphs of even order
with the given Wiener index, we have the following theorem
for odd order.

Theorem 2.6: Let A
′
= 3n2 + n and B

′
= 5n2 − n for

some n ≥ 1. Then for every even integer k ∈ [A′, B′], there
exists at least one chain graph G on 2n+1 vertices with the
Wiener index k.
For the sake of simplicity to address, we define realizability
of a positive integer in the above said context. An integer
k ∈ Z+ is said to be realizable Wiener index for a chain
graph if there exists at least one chain graph G with Wiener
index k. If not, we say k is forbidden. Authors of [6] have
given the bounds for Wiener index of chain graphs, but in
this article, for every integer k within the respective bounds,
we guarantee the existence of at least one chain graph with
Wiener index k.

Theorem 2.7: An integer k ∈ Z+ is realizable Wiener
index for a chain graph if and only if at least one of the
following conditions is true:

i. k ∈ [3n2 − 2, 5n2 − 6n+ 2] for some n ∈ Z+.
ii. k is an even integer such that k ∈ [3n2 + n, 5n2 − n]

for some n ∈ Z+.
The above theorem is a direct consequence of all the
previous theorems and lemmas. We now investigate the
set of integers satisfying the condition (1) in Theorem
2.7. In the interval [3n2 − 2, 5n2 − 6n + 2], for all
consecutive integers n and n + 1 whenever n ≥ 5, it is
true that the upper bound for n is less than the lower
bound for n + 1. For an instance, when n = 5, 6, we get
the bounds [65, 75] and [96, 146], respectively. Thus, all
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the integers k ≥ 65 are realizable Wiener indices as they
satisfy (1) of Theorem 2.7. Further, for n = 1, 2, 3, 4,
the bounds in (1) turn out to be [1, 1], [8, 10], [21, 29]
and [40, 58], respectively and all the integers in these
intervals are realizable. Thus, all the integers except
2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 59, 60, 61, 62, 63, 64 satisfy the
condition (1) of Theorem 2.7.
Since we characterize the integers which are forbidden
to be Wiener indices of any chain graph, we examine
the above listed integers if they satisfy condition
(2) of Theorem 2.7. One can easily note that the
integers 4, 14, 16, 18, 30, 32, 34, 36, 38, 60, 62, 64 ∈
[3n2 +n, 5n2 −n]. With all this theory and conclusions, we
now propose the main theorem of the article.

Theorem 2.8: Every integer except
2, 3, 5, 6, 7, 11, 12, 13, 15, 17, 19, 20, 31, 33, 35, 37, 39, 59, 61,
63 is the Wiener index of some chain graph G.
Thus, the above set of integers are forbidden to be the Wiener
indices of any chain graph.

III. WIENER INDEX OF THRESHOLD GRAPHS

Threshold graphs are another class of graphs playing
similar role as that of chain graphs in the field of spectral
graph theory. Recently, some of the articles have been
published on comparative studies on chain and threshold
graphs. We specify the split partition V (G) = {W1,W2} of
a threshold graph G where ⟨W1⟩ is a co-clique and ⟨W2⟩ is a
clique by denoting it as G(W1∪W2, E) (just like a bipartite
graph where both the partite sets induce co-clique). Before
moving into the Wiener index, we derive some preliminary
results which are necessary in the further part of the article.

Remark 3.1: Suppose G is connected threshold graph on
n vertices, then G has at least one vertex of degree n− 1.

Remark 3.2: Let G(W1 ∪ W2, E) be a threshold graph
with |W1| = p, |W2| = q and |E| = m. Then(

q

2

)
+ p+ q − 1 ≤ m ≤

(
q

2

)
+ pq

The lower bound is attained by the graph NSG(1, p −
1; 1, q − 1) and the upper bound is attained by NSG(p; q).
For all m ∈ [

(
q
2

)
+ p,

(
q
2

)
+ pq], it is possible to construct

threshold graphs with |W1| = p, |W2| = q on n = p + q
vertices and m edges by successively adding edges to the
graph NSG(1, p− 1; 1, q− 1) until we get NSG(p; q). But
adding an edge e to a threshold graph G such that G+ e is
also threshold graph is done not at random, but according to
the condition given in the following theorem.

Theorem 3.1: Let G =
NSG(m1,m2, . . . ,mh;n1, n2, . . . , nh) be a threshold
graph with mi = |W1,i| and ni = |W2,i| for 1 ≤ i ≤ h.
Then the graph H = G + e obtained from G by adding an
edge e = (x, y) is also a threshold graph if and only if either
both x, y ∈ W1,1 or y ∈ W2,h−i+2 whenever x ∈ W1,i for
2 ≤ i ≤ h.

Proof: Let H(W
′

1 ∪ W
′

2, E
′
) be a threshold graph

obtained from G by adding an edge e = (x, y) and
E

′
= E ∪ (x, y). Then either both x, y ∈ W1 or x ∈ W1

and y ∈ W2 in G.
Let x, y ∈ W1 in G. Since ⟨W ′

1⟩ is a co-clique, the vertices

x, y belong to the different partite sets W
′

1 and W
′

2 of H .
Thus, W

′

1 = W1 \ {y} and W
′

2 = W2 ∪ {y}. Further, since
⟨W ′

2⟩ is a clique, y is adjacent with every other vertex of
W2 in G, i.e y ∈ W1,1 in G. Now, suppose x ∈ W1,j in G
for j > 1, then there exists at least one vertex z ∈ W

′

1,1 in
H such that NH(x) ⊈ NH(z) as y is in NH(x), but not in
NH(z). Thus, j = 1 and x ∈ W1,1 in G.
Let x ∈ W1 and y ∈ W2 in G, in which case
W

′

1 = W1 and W
′

2 = W2. Without loss of generality,
let x ∈ W1,i and y ∈ W2,j for 2 ≤ i, j ≤ h. Since
NG(x) = W2,1∪W2,2∪· · ·∪W2,h−i+1 and x is not adjacent
to y in G, it is clear that y ∈ W2,j where j > h− i+1, say
j = h−i+k for k ≥ 2. For all the vertices z ∈ W1,i−1, then
NH(z) = W2,1 ∪ W2,2 ∪ · · · ∪ W2,h−i+1 ∪ W2,h−i+2. But
when k > 2, neither NH(x) ⊆ NH(z) nor NH(z) ⊆ NH(x).
Thus k = 2.
Conversely, let H be a graph obtained by
adding an edge e = (x, y) to a threshold graph
G = NSG(m1,m2, . . . ,mh;n1, n2, . . . , nh). If both
x, y ∈ W1,1 in G, then H = NSG(1,m1 −
2,m2, . . . ,mh;n1, n2, . . . , nh, 1). If x ∈ W1,i and
y ∈ W2,h−i+2 for some 2 ≤ i ≤ h, then V (H) = W1 ∪W2

such that ⟨W1⟩, ⟨W2⟩ are co-clique and clique, respectively.
Further, NH(x) = W2,1∪W2,2∪· · ·∪W2,h−i+1∪{y} where
y ∈ W2,h−i+2. Clearly, NH(W1,h) ⊆ NH(W1,h−1) ⊆ · · · ⊆
NH(W1,i+1) ⊆ NH(x) ⊆ NH(W1,i) ⊆ · · · ⊆ NH(W1,2) ⊆
NH(W1,1).
We now move into the main part, the Wiener index.

Theorem 3.2: Let G be a threshold graph of order n and
size m. Let W (G) be the Wiener index of G. Then

W (G) = n2 − n−m.

Proof: Let {W1,W2} be the split partition of V (G) such
that ⟨W1⟩ is a co-clique and ⟨W2⟩ is a clique. Further, let
|W1| = p and |W2| = q and v ∈ W2 be a dominating vertex
(a vertex of degree n − 1) in G. For any pair of vertices
(ui, vj) such that ui ≁ vj , then either ui, vj ∈ W1 or ui ∈
W1 and vj ∈ W2. In both the cases, d(ui, vj) = 2 as there
is a path ui − v − vj of length two in G. Thus

d(ui, vj) =

{
1, if ui ∼ vj

2, else
.

Also, the number of edges in any threshold graph is at most
pq +

(
q
2

)
. Since G has m edges in it, there are m −

(
q
2

)
edges having end vertices in different partite sets. Thus G
has

(
p
2

)
+ pq −m +

(
q
2

)
pairs of vertices (ui, vj) such that

ui ≁ vj . Thus the Wiener index is

W (G) = m+ 2

((
p

2

)
+ pq −m+

(
q

2

))
= n2 − n−m

We surprisingly note that the Wiener index of a threshold
graph of order n is neither depending on cardinality of the
partite sets nor on the structure. It just depends on the number
of edges. For example, all the three threshold graphs having
7 vertices and 11 edges have the Wiener index 37 (Figure
2).

We know that every threshold graph H =
NSG(m1,m2, . . . ,mh;n1, n2, . . . , nh) can be obtained
from the chain graph G = DNG(m1,m2, . . . ,mh;n1,
n2, . . . , nh) by making any one of the partite sets complete.
In the next theorem, we give the relation between the
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Fig. 2. Threshold graphs having Wiener index 37

Wiener index of a threshold graph and the corresponding
chain graph from which it is obtained.

Theorem 3.3: Let G =
DNG(m1,m2, . . . ,mh;n1, n2, . . . , nh) be a chain graph,

where |U | = p =
h∑

i=1

mi and |V | = q =
h∑

i=1

ni with m

edges. Let H = NSG(m1,m2, . . . ,mh;n1, n2, . . . , nh) be
the threshold graph obtained from G by making V complete.
Suppose W (G),W (H) are the Wiener indices of the graphs
G and H , respectively, then W (H) = W (G)−

(
q
2

)
−pq+m.

Proof: Proof follows from noting that, the
(
q
2

)
pairs of

vertices from V which are at distance two in G are at distance
one in H and (pq−m) pairs of vertices which are at distance
three in G are at distance two in H .
For the graph DNG(1, 1, 1; 1, 2, 1) in Figure 3,
W (DNG(1, 1, 1; 1, 2, 1)) = 38. The Wiener index
of corresponding threshold graph is given by
W (NSG(1, 1, 1; 1, 2, 1)) = W (DNG(1, 1, 1; 1, 2, 1)) −(
4
2

)
− 12 + 8 = 28.

Fig. 3. DNG(1,1,1;1,2,1) and NSG(1,1,1;1,2,1)

In the next theorem, among all the threshold graphs with
split partition {W1,W2} such that |W1| = p and |W2| =
q, the graphs having extreme values of Wiener indices are
given.

Theorem 3.4: Let G be a threshold graph with split parti-
tion {W1,W2} such that |W1| = p and |W2| = q. Let W (G)
be the Wiener index of G. Then
2n2 − 2n− 2pq − q2 + q

2
≤ W (G) ≤ 2n2 − 4n+ 2− q2 + q

2
.

Proof: From Theorem 3.2, W (G) is at the maximum
when the total number of edges is at the minimum and vice
versa. That is the graph NSG(1, p−1; 1, q−1) with n = p+q
and m =

(
q
2

)
+ p + q − 1 has the maximum Wiener index

and is given by

W (NSG(1, p− 1; 1, q − 1)) = n2 − n−
(
q

2

)
− p− q + 1

=
2n2 − 4n+ 2− q2 + q

2

Similarly, the graph NSG(p; q) with the total number of
edges m =

(
q
2

)
+ pq has the minimum Wiener index given

by

W (NSG(p; q)) = n2 − n−
(
q

2

)
− pq

=
2n2 − 2n− 2pq − q2 + q

2

We also guarantee the existence of a threshold graph on n
vertices and m edges for every m in the bounds given in
Remark 3.2. We can further improvise the bounds for m in
Remark 3.2 by taking appropriate values for p, q for which
m takes extreme values. A threshold graph of order n has at
least n−1(p = n−1, q = 1) edges and at most n(n−1)

2 (p =
1, q = n− 1) edges.

Remark 3.3: Let n be an integer. For every m ∈ [n −
1, n(n−1)

2 ], there exists at least one threshold graph G on n
vertices and m edges and is obtained from NSG(n− 1; 1)
(having n − 1 edges) by successively adding edges using
Theorem 3.1 until we get NSG(1;n − 1) (having n(n−1)

2
edges).
From Theorem 3.2, the Wiener index of threshold graph is
inversely proportional to the number of edges. Using the
extreme values for m given in the above remark, we give
the bounds for the Wiener index of a threshold graph G on
n vertices:

n(n− 1)

2
≤ W (G) ≤ (n− 1)2 (1)

Since addition of an edge to a threshold graph increases
the Wiener index by 1, Remark 3.3, which guarantees the
existence of at least one threshold graph on n vertices and
m edges for every m ∈ [n−1, n(n−1)

2 ], in turn guarantees the
existence of at least one threshold graph G on n vertices with
the Wiener index W (G) = k for every k ∈ [n(n−1)

2 , (n−1)2].
Remark 3.4: Let A = n(n−1)

2 and B = (n−1)2 for some
n ≥ 1. Then for every integer k ∈ [A,B], there exists at
least one threshold graph G on n vertices with the Wiener
index k.
An integer k is a realizable Wiener index for a threshold
graph, if there exists at least one threshold graph on n
vertices and n2 − n− k edges for some n ≥ 2.
Thus, an integer k ∈ Z+ is realizable Wiener index for
threshold graph if k ∈ [n(n−1)

2 , (n− 1)2] for some n. Also,
on addition of an edge to a threshold graph increases the
Wiener index by one. As in the case of chain graphs, in the
interval [A,B], for every consecutive integers n, n+ 1, it is
true that the upper bound for n is less than the lower bound
of Wiener index for n + 1 whenever n ≥ 5. For n = 5, 6,
we have the bounds [10, 16] and [15, 25]. Thus, we have the
following lemma.

Lemma 3.5: All the integers k ≥ 10 are realizable Wiener
indices for threshold graph.
Further, for n = 2, 3, 4, the bounds [A,B] turns out to be
[1, 1], [3, 4] and [6, 9], respectively. With all the remarks and
lemma, we now propose the main theorem characterizing the
forbidden integers for Wiener indices of threshold graphs.

Theorem 3.6: Every integer except 2 and 5 is the Wiener
index of some threshold graph G.
We now focus on the inverse Wiener index problem for
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threshold graphs. We generate a procedure, which takes the
inputs n, k and presents a threshold graph G on n vertices
with the Wiener index k.

IV. INVERSE WIENER INDEX PROBLEM FOR THRESHOLD
GRAPHS

The inputs for this algorithm are the number of
vertices n and a positive integer k. The task is to check
for the existence of a threshold graph on n vertices having
k as its Wiener index. Once the existence of a threshold
graph G on n vertices with W (G) = k is guaranteed,
the graph G is returned. The algorithm first checks if
the given input integer k ∈ [n(n−1)

2 , n2 − 2n + 1]. If yes,
we partition the vertex set such that V = W1 ∪ W2 with
|W1| = p, |W2| = q and p+ q = n starting from q = 2. For
given p, q, again the algorithm checks if k ∈ [A,B], where
A = 2n2−2n−2pq−q2+q

2 , B = 2n2−4n+2−q2+q
2 are the lower

and upper bounds for Wiener index of a threshold graph
G(W1 ∪ W1, E) with |W1| = p, |W2| = q. If k ∈ [A,B],
then we start from a graph G = NSG(1, p−1; 1, q−1) and
evaluate the number of edges to be added to G, keeping in
mind that an edge added to any threshold graph increases
the Wiener index by one. We then add the edges according
to one of the ways mentioned in Theorem 3.1.

The graph G = NSG(1, p − 1; 1, q − 1) which we use
in the algorithm has the split partition V (G) = W1 ∪ W2

such that |W1| = p, |W2| = q (p + q = n) with ⟨W1⟩,
⟨W2⟩ as co-clique and clique respectively. The vertices
of G are labeled as follows: W1 = {0, 1, . . . , p − 1} and
W2 = {0, 1, . . . , q − 1}.

Algorithm:

Algorithm 1 function Wiener (k, n)

Input: k, n
Output: A threshold graph G if exists with given Wiener

index
1: if k /∈ [n(n−1)

2 , n2 − 2n+ 1] then
2: print “There is no threshold graph G on n vertices

with W (G) = k.”
3: else if k == n(n−1)

2 then
4: G = NSG(1;n− 1)
5: return G
6: else if k == n2 − 2n+ 1 then
7: G = NSG(n− 1; 1)
8: return G
9: else

10: for q = 2 : n− 2 do
11: p = n− q

12: A =
2n2 − 2n− 2pq − q2 + q

2

13: B =
2n2 − 4n+ 2− q2 + q

2
14: if k /∈ [A,B] then
15: continue
16: else if k == A then
17: G = NSG(p; q)

18: return G
19: else if k == B then
20: G = NSG(1, p− 1; 1, q − 1)
21: return G
22: end if
23: c = B − k
24: G = NSG(1, p− 1; 1, q − 1)
25: for i = 1 : p− 1 do
26: for j = 1 : q − 1 do
27: if c ̸= 0 then
28: E(G) = E(G) ∪ (i, j)
29: c = c− 1
30: end if
31: end for
32: end for
33: end for
34: return G
35: end if

The concept of Wiener index has noteworthy applications,
not only in the field of molecular studies, but also in
communication, cryptography and facility location. This
article extends the study of Wiener index of structured
graphs, namely chain and threshold graphs. For an integer
k, there may be more than one threshold graphs on n
vertices having Wiener index k. But the above algorithm do
not generate all the threshold graphs with the given Wiener
index k, but outputs any one graph.
The working procedure of the algorithm is illustrated with
an example as follows.

Example 4.1: For the inputs k = 36 and n = 8, the
algorithm intends to return a threshold graph G on 8 vertices
with W (G) = 36.
— As k ∈ [28, 49], there exist such a graph (Step 1).
— Since k ̸= 28 (Step 3) and k ̸= 49 (Step 6), directly go

to Step 10 and start the for loop: for q = 2 to 6.
– When q= 2:

p = 6 (Step 11), A = 43 (Step 12), B = 48 (Step 13).
Further k /∈ [43, 48], go back to Step 10 and q = 2+1
(Step 14).

– When q = 3
p = 5, A = 38, B = 46.
Furtherk /∈ [38, 46], go back to step 10 and q = 4.

– When q = 4.
p = 4, A = 34, B = 42.
Since k ∈ [34, 42] (Step 14) and k ̸= 34 (Step 17),
k ̸= 42 (Step 19), go to Step 23.

— c = B − k = 42− 36 = 6 (Step 23).
— Take G = NSG(1, 3; 1, 3) with W1 = 0, 1, 2, 3 and

W2 = 0, 1, 2, 3 (step 24) and add 6 edges to G.
— The consecutive Steps 25-29 add the edges

(1,1),(1,2),(1,3),(2,1),(2,2),(2,3) sequentially to G
until c=0.

The resultant output graph G = NSG(3, 1; 1, 3) is shown in
Figure 4.
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Fig. 4. DNG(3,1;1,3)

V. CONCLUSION

The highlight of the article is the list of integers which
would never be the Wiener indices of any chain/threshold
graphs. The strategies used to derive these main results are
also proved in the article. Analogous to the algorithm for
inverse Wiener index problem for chain graphs, we carry
out a similar study and present an algorithm for threshold
graphs.
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