
 

  

Abstract—Two-dimensional single-error correcting and 

double-error detecting (2D SEC-DED) codes are types of 

product codes. Product codes are well known to have very 

promising correction potential and the ability to deal with burst 

errors, i.e., multiple errors that consecutively appear, and they 

can also correct some error patterns in which the number of 

errors is above half the minimum distance. Product codes can 

be decoded with a hard-decision iterative method, which is easy 

to implement and has low computational complexity. However, 

the error correcting capability of the existing hard-decision 

iterative decoding methods for 2D SEC-DED is much less than 

half the minimum distance of the code. In this paper, we 

propose an improved hard-decision iterative decoding method 

for 2D SEC-DED codes to overcome this defect. Experiments 

prove that this decoding method outperforms other decoding 

methods in terms of its correction capability; it can correct 

nearly all errors up to half the minimum distance of the 2D 

SEC-DED code and can correct more error patterns in which 

the number of errors is beyond half the minimum distance of 

the code. 

 
Index Terms— 2D SEC-DED codes, iterative decoding, 

hard-decision, stall pattern, correction capability of code 

 

I. INTRODUCTION 

wo-dimensional code, also named product code in some 

literature, was initially developed by Elias [1] in 1954 by 

using simple error-correcting and detecting codes. Product 

code is a powerful type of code that has many valuable 

properties [2]. The most important of these properties is that 

it can correct burst errors; notably, the product code 

construction procedure includes interleaving as an inherent 

feature. Another important property is that the coverage 

radius of a two-dimensional code is larger than half the 

minimum distance of the code, which means that when a 

proper decoding method is adopted, it has the potential to 

correct error patterns in which the number of errors is greater 

than half the minimum distance of the code [3,4]. As a result, 

two-dimensional codes have been applied in many fields to 

mitigate the effects of errors, such as correcting the errors in 
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wireless sensor networks [5-7], correcting on-chip 

interconnection errors to improve the reliability of on-chip 

communication [8] and maintaining steady satellite 

communication [9]. 

There are two major types of decoding methods for 

two-dimensional codes: hard-decision decoding and 

soft-decision decoding. The former decoding methods 

usually adopt an iterative approach, as first introduced by 

Elias [1] and then comprehensively presented in [10]. 

Iterative decoding methods are easy to implement and have 

low computational complexity. The maximum correction 

capability of iterative decoding methods is up to half the 

minimum distance of the code. However, the limitation of 

iterative decoding is that it is unable to correct certain special 

error patterns, named stall patterns, for which the weight is 

within half the minimum distance [11]. In the past decade, 

many efforts have been made and many improved methods 

have been proposed [11-17] to improve the performance of 

hard-decision iterative decoding. In comparison, decoding 

methods based on the soft-decision approach perform better 

in terms of correctness capability than hard-decision 

decoding, but they also have high complexity and require 

extra information to indicate the reliability of each piece of 

input data. Methods following this concept were proposed in 

[11,18,19]. 

Two-dimensional single-error correcting and double-error 

detecting (2D SEC-DED) codes are widely adopted in many 

applications since they are constructed from SEC-DED codes, 

and the corresponding encoding and decoding procedures are 

relatively simple [5]. One SEC-DED code is the extended 

Hamming code [20], which can be obtained by adding one 

extra parity bit to the original Hamming code. As a result, 2D 

SEC-DED codes based on extended Hamming codes are 

attractive options, and the decoding of these codes with 

hard-decision iterative methods has become popular. Many 

distinct methods have been proposed in the past. However, 

the error correction capabilities of most of them are 

insufficient to correct error patterns with a number of errors 

up to half the minimum distance of the code. 

In our previous work [21], we designed an iterative 

decoding method for standard Hamming product codes that 

can correct all stall patterns with four errors and thus has the 

ability to correct all errors up to half the minimum distance. 

However, this method is not suitable for 2D SEC-DED codes 

because the component codes are different, and the minimum 

distance correspondingly increases from the original value of 

four to seven. To overcome this challenge, in this paper, we 

follow the idea of our previous work and design an improved 

hard-decision iterative decoding method for 2D SEC-DED 

codes based on extended Hamming codes; this approach can 

be used to correct errors up to half the minimum distance of 
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the code. 

The remainder of this paper is organized as follows. Some 

basic terms and some existing related works are reviewed in 

section 2. Next, in section 3, our improved iterative 

hard-decision method is presented. Then, in section 4, we 

discuss the results of the conducted decoding experiments. 

Finally, the conclusions and future work are presented in 

section 5. 

II. BASIC TERMS AND RELATED WORKS 

A. Basic Terms 

A linear block code C is denoted by ( ), ,n k d , where n, k, 

and d are the number of bits of the codeword, the number of 

bits of the message and the minimum Hamming distance, 

respectively. The minimum Hamming distance of a code can 

be obtained by using the following formula: 

 

( ) , , ) 1, , ,H i jd min d C C i j k i j= =           (1) 

( ) ( )( ), ,2  H i j im jmd C C sum mod C C= +          (2) 

 

For a given linear block code C, the minimum Hamming 

distance directly influences the code’s correction and 

detection capabilities. The relationship between these 

capabilities is described in formulas (3) and (4): 

 

1dt d= −                        (3) 

( )( )1 / 2rt floor d= −              (4) 

 

where dt  is the maximum number of error bits that can be 

detected and rt  is the maximum number of error bits that can 

be corrected. 

For an extended Hamming code with a minimum 

Hamming distance of 4, it is easy to find that its dt  and rt  are 

3 and 1, respectively. Accordingly, a decoder can reliably 

detect 3-bit errors when it does not try to correct any errors, 

but when the decoder does attempt to correct errors, some 

triple errors will be mistakenly regarded as single errors, and 

the decoder will consequently introduce new errors. The 

decoder can also detect double errors and will consider them 

uncorrectable. This is why the extended Hamming code is 

considered an SEC-DED code. 

A 2D SEC-DED code based on two extended Hamming 

codes ( )1 1 1, , 4C n k  and ( )2 2 2, , 4C n k  can be constructed by 

performing the following two steps. Suppose that k bits of the 

message can be resized to a rectangular array with 1k  rows 

and 2k  columns. We first encode the message in the row 

direction by using the encoding rule of extended Hamming 

code 2C  and obtain a 1k  row and n2 column code midC . Then, 

we encode midC  in the column direction by using the 

encoding rule of the extended Hamming code 1C  and obtain 

the final two-dimensional code 2dC , with parameters 

( )1 2 1 2, ,16n n k k . This construction procedure is illustrated in 

Fig. 1. 

According to formulas (3) and (4), we know that the 

maximum correction capability of a 2D SEC-DED code 

based on extended Hamming codes is seven. Therefore, a 

proper iterative hard-decision decoding method for 2D 

SEC-DED codes should satisfy the following two 

requirements. First, it should be able to correct all error 

patterns in which the number of error bits is less than or equal 

to seven. Second, the iterative hard-decision decoding 

method should correct as many error patterns as possible in 

which the number of error bits is greater than seven. 

 

Information

bits

Column parity check bits

 Row parity 

check bits

1 2 2( )n n k −

1  bitsn
1  bitsk

2
 b

it
s

k
2

 b
it

s
n

1 2k k 1 1 2( )n k k− 

 
Fig. 1. Construction of a two-dimensional code 

 

B. Related Works 

The simplest iterative hard-decision decoding method is 

the two-step row–column method [22]. In the first step, the 

syndromes of all columns of the received code are computed 

in accordance with the decoding method corresponding to the 

encoding method, based on which the decoder locates all 

possible positions of single errors (correctable errors) and 

rectifies them in place. The decoder will not attempt to fix 

any double errors (uncorrectable errors). Then, the decoding 

result of the first step is passed to the second step. In the 

second step, a similar decoding operation is performed again 

but in the other direction. The two-step decoding method is 

very efficient and can correct many error patterns with a 

number of errors above half the minimum distance of the 

code. However, it fails to correct some stall patterns, such as 

2-by-2 error patterns, since the decoder takes no action for 

double errors. 

To overcome the drawbacks mentioned above, Kreshchuk 

proposed a new iterative method based on the two-step 

decoding method [12], in which erasures are added. To 

determine the regions that require an erasure operation, the 

decoder records the row and column of each mistake into two 

registers during the row decoding procedure and the column 

decoding procedure, respectively, when the errors can be 

detected by the decoder. This decoding method can also be 

regarded as a postprocessing technique [11]. However, this 

decoding method can only properly correct all error patterns 

with a number of errors below 4, which is far from the 

minimum distance of the code. 

Another interesting method to overcome the problem of 

stall patterns, as proposed by Bao [15], is a three-step 

(row–column–row) decoding method. In his method, similar 

to Kreshchuk’s method, the erasure operation is adopted, and 

the position information for erasure steps is saved in two 

status vectors. The difference between Bao’s method and 

Kreshchuk’s method is that the region selection rules for 

erasures are different, as briefly described below. 

During the first stage, if the decoder detects errors in the 
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i-th row, then the i-th position in the row status vector is set to 

1; otherwise, it is set to 0. 

During the second stage, the j-th position in the column 

status vector is set to 1 if a corresponding error is detectable 

but not correctable (meaning that it is a double error) or if this 

error is correctable but the corresponding element in the row 

vector where the error occurs has a status value of 0; 

otherwise, it will be set to 0. 

Bao’s method can correct all error patterns with up to five 

errors, which is better than the capability of Kreshchuk’s 

method, but there is still room for improvement. 

Therefore, we design an improved hard-decision iterative 

decoding method that can correct nearly all error patterns 

with up to seven errors. 

III. PROPOSED METHOD 

The proposed method consists of two procedures: a 

preprocessing procedure and a decoding procedure. 

 

A. Preprocessing Procedure 

 

In the preprocessing procedure, in addition to the registers 

for the received code, four additional registers are required to 

record the error status: the row existing-error register (REER), 

the row double-error register (RDER), the column 

existing-error register (CEER) and the column double-error 

register (CDER). The i-th bit of the REER/CEER will be set 

to one when errors are detected in the i-th row/column on the 

basis of the syndrome. Otherwise, this bit should be set to 0. 

Similarly, the i-th bit of the RDER/CDER will be set to one 

only when a double error is detected in the i-th row/column 

according to the syndrome. Otherwise, this bit should be set 

to 0. In Fig. 2, a real example of the calculation of these 

registers based on a (64, 16, 16) 2D SEC-DED code is 

provided. 
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Fig. 2. Example of generating four registers from code. 

 

The preprocessing procedure has two functions: 

determining the initial decoding direction and applying a 

pre-erasure process to reduce the number of errors when 

necessary. The initial direction of decoding is determined by 

comparing the estimated numbers of errors from rows 

( errorRN ) with the estimated numbers of errors from columns 

( errorCN ), which can be computed according to formulas (5) 

and (6), respectively. If errorRN  is greater than errorCN , then 

the initial decoding direction remains the row direction (the 

default direction); in contrast, if errorRN  is less than errorCN , 

then the initial decoding direction is changed to the column 

direction by transposing the received code (a flag will be set 

to indicate whether transposition is conducted; if the flag is 

true, then at the end of the decoding procedure, another 

transposition is conducted after the whole decoding process 

is complete). The reason for this is that we contend that 

decoding from the side from which more errors are estimated 

initially will introduce fewer errors during the decoding 

procedure. 
2 2

error

1 1

n n

i i

i i

R REER RDERN
= =

+=                                        (5) 

1 1

error

1 1

n n

i i

i i

C CEER CDERN
= =

+=                                        (6) 

The pre-erasure process is implemented when the 

following three conditions are satisfied: errorRN  is equal to 

errorCN ; the numbers of instances of 1 in both the REER and 

CEER are equal; and the product of the numbers of instances 

of 1 in the REER and CEER is less than the sum of errorRN  

and errorCN . The positions for erasure are determined by the 

values of 1 in the REER and in CEER. The idea behind this is 

intuitive: performing the erasure process on a small region in 

which the number of error bits is greater than the number of 

correct bits can reduce the number of error bits. 

The flow chart of the preprocessing procedure is presented in 

Fig. 3. 

B. Decoding Procedure 

The four registers introduced in the previous procedure are 

also used in this procedure. However, since the proposed 

decoding procedure is a modified version of Bao’s three-step 

iterative decoding method [15], the usage of the CDER and 

REER is changed to that of the row status vector and column 

status vector used in Bao’s method. 

The proposed iterative decoding procedure is a three-step 

decoding method. 

In the first step, the row syndromes for each row are 

calculated, and on this basis, the REER and RCDR are 

updated; then, row decoding is conducted. All the correctable 

single errors are flipped in accordance with the syndromes. 

In the second step, the column syndromes for each column 

are calculated, and the CEER and CDER are updated. If the 

number of 1 values in the RDER is equal to 3 and the number 

of 1 values in the CEER is equal to 2, then erasure is 

conducted at the coordinates indicated by the RDER and 

CEER. Otherwise, column decoding is conducted based on 

the column syndromes, followed by row decoding, in which 

the syndromes for each row are recalculated. Then, single 

errors are corrected based on these updated row syndromes, 

and double errors are flipped based on the CDER. 

In the last step, the column decoding process is repeated to 

correct the remaining single errors. Then, the corrected code 

may be transposed in accordance with the flag generated in 

the previous procedure. The flow chart of the decoding 

procedure is presented in Fig. 4. 
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Fig. 3. Flow chart of the preprocessing procedure. 
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Fig. 4. Flow chart of the decoding procedure. 

 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Platform 

All experiments were conducted on a standard PC laptop 

with an Intel i7-4720HQ (2.6 GHz) processor and 16 GB of 

DDR3 memory. The simulation software used was 

MATLAB R2021b. 

B. Brief Description of the Experiments 

The decoding object was a two-dimensional code with 

parameters (64, 16, 16) that was constructed from two 
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extended Hamming product codes. For experimental 

comparisons, in addition to the proposed method, several 

well-known iterative decoding methods were implemented in 

MATLAB, including the two-step method [22], Kreshchuk’s 

method [11] and Bao's method [15]. Three different decoding 

experiments were performed to evaluate the performance of 

all implemented decoding methods. The first experiment was 

conducted on a Gaussian channel with additive white 

Gaussian noise (AWGN). The second experiment was 

performed on a binary symmetric channel (BSC) with 

manually set error probabilities. In the third experiment, the 

number of errors was manually set, based on which the error 

correction capabilities of the different decoding methods 

were explored. 

In the first two experiments, the bit error rate (BER) [23,24] 

and word error rate (WER) were used to evaluate the 

correction capabilities of the different decoding methods 

under different levels of noise. The level of noise is described 

by the signal-to-noise ratio (SNR) in the Gaussian channel 

and by the error probabilities in the BSC. However, in the 

third experiment, we conducted a statistical analysis of the 

numbers of instances of decoding failure when each decoding 

method was used for different given numbers of errors, and 

comparisons were performed. 

C. Experiments based on the Gaussian Channel 

In these experiments, we performed a total of 5 million 

independent encoding–decoding experiments under ten 

different SNRs with values from one to ten. Accordingly, 

under each SNR, 500 thousand repeated experiments were 

conducted. 

In each independent encoding–decoding experiment based 

on the Gaussian channel, a 16-bit binary message was first 

randomly generated, which was then encoded into the 

original two-dimensional code using the method introduced 

in section two, yielding an 8×8 matrix. Afterward, binary 

phase-shift keying (BPSK) modulation [25] was applied, and 

the generated signal obtained from the original code was sent 

to the Gaussian channel, where AWGN with a certain SNR 

was added to the signal to obtain the received signal. The 

received code was then obtained by performing BPSK 

demodulation on the received signal. Then, the received code 

was decoded, and the bit errors were corrected using each 

implemented iterative decoding method separately. By 

comparing the decoded code against the original code, we 

could easily determine whether each decoding process had 

failed. We counted the failures in the experiments and 

calculated the corresponding statistics, based on which we 

could obtain the BER and WER. The pseudocode of the 

experiments with the Gaussian channel is presented in Fig. 5, 

and the experimental results obtained for the Gaussian 

channel are presented in Fig. 6 and Fig. 7. 

 

 
 

Fig. 5. Pseudocode for the experiments based on the Gaussian channel. 

 

 
 

 

Fig. 6. BERs for the (64, 16, 16) code and the Gaussian channel. Fig. 7. WERs for the (64, 16, 16) code and the Gaussian channel. 

 

Engineering Letters, 31:1, EL_31_1_39

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

Fig. 6 and Fig. 7 show that the proposed decoding method 

outperforms other decoding methods. To achieve a 10-4 BER, 

the proposed decoding method requires a 7 dB SNR; in 

contrast, Bao’s decoding method, Kreshchuk’s decoding 

method and the two-step decoding method require SNRs of 

approximately 7.3 dB, 8.4 dB and 9 dB, respectively. 

Moreover, when the SNR is 8 dB, the WER of the proposed 

method can reach 5.6×10-5, lower than those of Bao’s method, 

Kreshchuk’s method and the two-step method, with values of 

2.3×10-4, 1.7×10-3 and 1.5×10-2, respectively. Another 

interesting finding is that, as shown in Fig. 6, the BER of 

Kreshchuk’s method is initially larger than that of the 

two-step method, but with increasing SNR, the BER of 

Kreshchuk’s method decreases faster than that of the 

two-step method. When the SNR is seven, the BERs of these 

methods are equal, and when the SNR further increases, the 

BER of Kreshchuk’s method is less than that of the two-step 

method. However, as shown in Fig. 7, the WER of 

Kreshchuk’s method is always less than that of the two-step 

method. The reason for this phenomenon is that although 

Kreshchuk’s method introduces erasure to properly address 

stall patterns with four errors and can therefore correct more 

error patterns than the two-step method (which is why its 

WER is always better than that of the two-step method), 

when it is faced with patterns that it is unable to correct, the 

erasure operation may introduce more error bits (which is 

why its BER may be higher than that of the two-step method). 

D. Experiments based on the BSC 

Based on the BSC, 7.5 million encoding–decoding 

experiments were independently repeated under 15 different 

levels of noise (with the error probability increasing from 

0.01 to 0.15). Accordingly, for each specified level of noise, 

500 thousand experiments were again conducted. 

In each independent encoding–decoding experiment based 

on the BSC, the message and two-dimensional code were 

generated using a method similar to that introduced in the 

Gaussian channel experiments. Then, rather than applying 

modulation, the code was directly sent to the channel, and 

some bits were probabilistically flipped in accordance with 

the given error probability to obtain the received code. Next, 

all of the implemented decoding methods were used 

separately to decode the received code and correct error bits. 

After comparing the decoded code with the original code, the 

numbers of instances of decoding failure was counted, and 

the BER and WER were computed. The pseudocode for these 

experiments is shown in Fig. 8, and the results of the 

experiments are presented in Fig. 9 and Fig. 10. 

 

 

 
 

Fig. 8. Pseudocode for the experiments based on the BSC. 
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Two-step

Proposed

  
Fig. 9. BERs for the (64, 16, 16) code and the BSC. Fig. 10. WERs for the (64, 16, 16) code and the BSC. 
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Fig. 9 and Fig. 10 show that the proposed method has more 

powerful correction capabilities than the other three decoding 

methods. For example, when the error probability is 0.1, the 

BER and WER of the proposed method are approximately 

3.9×10-3 and 3.05×10-2, respectively. By comparison, the 

BER and WER of Bao's method, which are approximately 

6.3×10-3 and 6.5×10-2, respectively, are nearly double those 

of the proposed method. For the Kreshchuk and two-step 

methods, the BERs are 1.9×10-2 and 4×10-2, respectively, and 

the WERs are 3.3×10-1 and 1.1×10-1, respectively. 

E. Experiments based on Error Patterns 

To explore the potential of all implemented decoding 

methods, experiments based on error patterns were 

conducted. The number of error bits was manually set, but the 

error positions among the error patterns were randomly 

generated. It is noted that the size of the error patterns was 

kept the same as the size of the original (64, 16, 16) code 

obtained by encoding a random 16-bit binary message. The 

number of error bits in the error patterns was gradually 

increased from one error to twelve errors. For the error 

patterns with no more than 5 errors, we generated all possible 

error patterns and then added them to the codeword 

separately and attempted to correct these errors using each 

implemented decoding method. For the error patterns with 

more than 5 errors, since generating all the error patterns 

would be very difficult and time consuming, we randomly 

selected one million samples from all error patterns with a 

given number of errors for the decoding experiments. Table I 

shows the numbers of error patterns used in the current 

experiments for different given numbers of error bits. Table 

II and Table III summarize the numbers of word errors and bit 

errors made with the different decoding methods under 

various numbers of error bits. Table IV and Table V were 

obtained by normalizing the data shown in Table II and Table 

III, respectively. Fig. 11 and Fig. 12 are visualizations of 

Table IV and Table V, respectively. 
TABLE I 

NUMBERS OF ERROR PATTERNS AND ERROR BITS. 

Number of Error Bits Number of Error Patterns 

1 64 

2 2016 

3 41664 
4 635376 

5 7624512 

6~12 1000000 

 
TABLE II 

NUMBERS OF WORD DECODING ERRORS UNDER A GIVEN NUMBER OF 

ERROR BITS. 

Given 

Number 

of Error 

Bits 

Decoding Method 

Two-Step 

Method 

Kreshchuk’s 

Method 

Bao’s 

Method 

Proposed 

Method 

1 0 0 0 0 
2 0 0 0 0 

3 0 0 0 0 
4 10192 0 0 0 

5 58208 18816 0 0 

6 191112 24974 383 0 

7 369766 63753 5569 0 

8 578553 138496 32585 3229 

9 770939 254869 116425 25084 

10 904245 409110 292349 95403 

11 971570 590287 546901 263837 

12 994317 762954 789497 532980 
 

TABLE III 

NUMBERS OF BIT DECODING ERRORS UNDER A GIVEN NUMBER OF ERROR BITS. 

Given 

Number 

of Error 

Bits 

Decoding Method 

Two-Step 
Method 

Kreshchuk’s 
Method 

Bao’s 
Method 

Proposed 
Method 

1 0 0 0 0 

2 0 0 0 0 
3 0 0 0 0 

4 21952 0 0 0 

5 1229312 75264 0 0 

6 445510 159180 1655 0 

7 949792 745824 23714 0 

8 1714958 2171274 140275 17828 

9 2765042 5035850 524295 141308 

10 4082410 10131348 1445489 593974 

11 5646670 17847788 3153695 1867220 

12 7389060 26818870 5661903 4366654 
 

 

 
TABLE IV 

NORMALIZATION OF THE WORD ERRORS PRODUCED BY THE DECODING 

METHODS UNDER A GIVEN NUMBER OF ERROR BITS. 

Given 
Number 

of Error 

Bits 

Decoding Method 

Two-Step 

Method 

Kreshchuk’s 

Method 

Bao’s 

Method 

Proposed 

Method 

1 0 0 0 0 
2 0 0 0 0 

3 0 0 0 0 
4 0.01604 0 0 0 

5 0.00763 0.00246 0 0 

6 0.19111 0.02497 0.00038 0 

7 0.36976 0.06375 0.00556 0 

8 0.57855 0.13849 0.03258 0.00322 

9 0.77093 0.25486 0.11642 0.02508 

10 0.90424 0.40911 0.29234 0.09540 

11 0.97157 0.59028 0.54690 0.26383 

12 0.99431 0.76295 0.78949 0.53298 
 

 

 
TABLE V 

NORMALIZATION OF THE BIT ERRORS PRODUCED BY THE DECODING METHODS 

UNDER A GIVEN NUMBER OF ERROR BITS. 

Given 
Number 

of Error 

Bits 

Decoding Method 

Two-Step 

Method 

Kreshchuk’s 

Method 

Bao’s 

Method 

Proposed 

Method 

1 0 0 0 0 
2 0 0 0 0 

3 0 0 0 0 
4 0.00053 0 0 0 

5 0.00251 0.00015 0 0 

6 0.00696 0.00248 0.00002 0 

7 0.01484 0.01165 0.00037 0 

8 0.02679 0.03392 0.00219 0.00027 

9 0.04320 0.07868 0.00819 0.00221 

10 0.06378 0.15830 0.02258 0.00928 

11 0.08822 0.27887 0.04927 0.02917 

12 0.11545 0.41904 0.08846 0.06822 
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FIG. 11. HISTOGRAMS OF THE NORMALIZED WORD ERRORS PRODUCED BY THE DIFFERENT DECODING METHODS. 

 

 
FIG. 12. HISTOGRAMS OF THE NORMALIZED BIT ERRORS PRODUCED BY THE DIFFERENT DECODING METHODS. 

 

From the above tables, it is clear that the proposed method 

displays the best performance in terms of the error correction 

capability within the range of half the minimum distance of 

the code, and it can properly correct more error patterns than 

the other three decoding methods. Exhaustive experiments 

have proven that the proposed method can correct all error 

patterns with a number of errors below 5. For error patterns 

with 6 or 7 errors, the proposed method properly decodes all 

sampled error patterns and corrects all of the error bits; 

therefore, there is a high probability that the proposed method 

also has the ability to correct all error patterns in which the 

number of errors is not above seven, i.e., half the minimum 

distance of the current code. In contrast, the two-step method, 

Kreshchuk’s method, and Bao’s method begin to produce 

decoding errors when the given number of errors is four, five 

and six, respectively. 

Moreover, when the given number of errors is greater than 

half the minimum distance of the code, the proposed method 

still provides more powerful rectification ability than the 

other methods. For example, when the given number of errors 

is 9, the proposed method produces errors for only 

approximately 2.5% of words and 0.02% of bits. In contrast, 

the two-step method generates a 77% word error and a 4.3% 

bit error, Kreshchuk’s method generates a 25% word error 

and a 7.8% bit error, and Bao’s method generates an 11% 

word error and a 0.8% bit error. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed an improved hard-decision 

iterative decoding method for 2D SEC-DED codes. The error 

correction capability of the proposed method is very close to 

half the minimum distance of the code. Three sets of 

decoding experiments performed based on a Gaussian 

channel, for a BSC and for a given number of errors indicated 

that the proposed method achieves better performance than 

the other decoding methods in the sense that it can correct 

more error patterns. 

In the future, we would like to use the proposed method in 

various fields to mitigate the effects of errors, such as 

correcting errors in wireless sensor networks and correcting 

on-chip interconnection errors to improve the reliability of 

on-chip communication. 
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