

Abstract—Two-dimensional single-error correcting and

double-error detecting (2D SEC-DED) codes are types of

product codes. Product codes are well known to have very

promising correction potential and the ability to deal with burst

errors, i.e., multiple errors that consecutively appear, and they

can also correct some error patterns in which the number of

errors is above half the minimum distance. Product codes can

be decoded with a hard-decision iterative method, which is easy

to implement and has low computational complexity. However,

the error correcting capability of the existing hard-decision

iterative decoding methods for 2D SEC-DED is much less than

half the minimum distance of the code. In this paper, we

propose an improved hard-decision iterative decoding method

for 2D SEC-DED codes to overcome this defect. Experiments

prove that this decoding method outperforms other decoding

methods in terms of its correction capability; it can correct

nearly all errors up to half the minimum distance of the 2D

SEC-DED code and can correct more error patterns in which

the number of errors is beyond half the minimum distance of

the code.

Index Terms— 2D SEC-DED codes, iterative decoding,

hard-decision, stall pattern, correction capability of code

I. INTRODUCTION

wo-dimensional code, also named product code in some

literature, was initially developed by Elias [1] in 1954 by

using simple error-correcting and detecting codes. Product

code is a powerful type of code that has many valuable

properties [2]. The most important of these properties is that

it can correct burst errors; notably, the product code

construction procedure includes interleaving as an inherent

feature. Another important property is that the coverage

radius of a two-dimensional code is larger than half the

minimum distance of the code, which means that when a

proper decoding method is adopted, it has the potential to

correct error patterns in which the number of errors is greater

than half the minimum distance of the code [3,4]. As a result,

two-dimensional codes have been applied in many fields to

mitigate the effects of errors, such as correcting the errors in

Manuscript received Sep. 03, 2022; revised Jan. 13, 2023.

Xunhuan Ren is a postgraduate student at Belarusian State University of

Informatics and Electronics, Minsk, Belarus. e-mail:
rxh1549417024@gmail.com).

Jun Ma is a postgraduate student at Belarusian State University of
Informatics and Electronics, Minsk, Belarus. (e-mail:

majun1313@hotmail.com).

Viktar Yurevich Tsviatkou is a Professor in the Department of
Info-communication Technology, Belarusian State University of Informatics

and Electronics, Minsk, Belarus. (e-mail: vtsvet@bsuir.by).
Valery Kanstantinavich Kanapelka is a Professor in the Department of

Info-communication Technology, Belarusian State University of Informatics

and Electronics, Minsk, Belarus. (e-mail: volos@bsuir.by).

wireless sensor networks [5-7], correcting on-chip

interconnection errors to improve the reliability of on-chip

communication [8] and maintaining steady satellite

communication [9].

There are two major types of decoding methods for

two-dimensional codes: hard-decision decoding and

soft-decision decoding. The former decoding methods

usually adopt an iterative approach, as first introduced by

Elias [1] and then comprehensively presented in [10].

Iterative decoding methods are easy to implement and have

low computational complexity. The maximum correction

capability of iterative decoding methods is up to half the

minimum distance of the code. However, the limitation of

iterative decoding is that it is unable to correct certain special

error patterns, named stall patterns, for which the weight is

within half the minimum distance [11]. In the past decade,

many efforts have been made and many improved methods

have been proposed [11-17] to improve the performance of

hard-decision iterative decoding. In comparison, decoding

methods based on the soft-decision approach perform better

in terms of correctness capability than hard-decision

decoding, but they also have high complexity and require

extra information to indicate the reliability of each piece of

input data. Methods following this concept were proposed in

[11,18,19].

Two-dimensional single-error correcting and double-error

detecting (2D SEC-DED) codes are widely adopted in many

applications since they are constructed from SEC-DED codes,

and the corresponding encoding and decoding procedures are

relatively simple [5]. One SEC-DED code is the extended

Hamming code [20], which can be obtained by adding one

extra parity bit to the original Hamming code. As a result, 2D

SEC-DED codes based on extended Hamming codes are

attractive options, and the decoding of these codes with

hard-decision iterative methods has become popular. Many

distinct methods have been proposed in the past. However,

the error correction capabilities of most of them are

insufficient to correct error patterns with a number of errors

up to half the minimum distance of the code.

In our previous work [21], we designed an iterative

decoding method for standard Hamming product codes that

can correct all stall patterns with four errors and thus has the

ability to correct all errors up to half the minimum distance.

However, this method is not suitable for 2D SEC-DED codes

because the component codes are different, and the minimum

distance correspondingly increases from the original value of

four to seven. To overcome this challenge, in this paper, we

follow the idea of our previous work and design an improved

hard-decision iterative decoding method for 2D SEC-DED

codes based on extended Hamming codes; this approach can

be used to correct errors up to half the minimum distance of

Improved Hard-Decision Iterative Decoding

Method for 2D SEC-DED Codes

Xunhuan Ren, Jun Ma, Viktar Yurevich Tsviatkou, Valery Kanstantinavich Kanapelka

T

Engineering Letters, 31:1, EL_31_1_39

Volume 31, Issue 1: March 2023

__

the code.

The remainder of this paper is organized as follows. Some

basic terms and some existing related works are reviewed in

section 2. Next, in section 3, our improved iterative

hard-decision method is presented. Then, in section 4, we

discuss the results of the conducted decoding experiments.

Finally, the conclusions and future work are presented in

section 5.

II. BASIC TERMS AND RELATED WORKS

A. Basic Terms

A linear block code C is denoted by (), ,n k d , where n, k,

and d are the number of bits of the codeword, the number of

bits of the message and the minimum Hamming distance,

respectively. The minimum Hamming distance of a code can

be obtained by using the following formula:

() , ,) 1, , ,H i jd min d C C i j k i j= =   (1)

() ()(), ,2 H i j im jmd C C sum mod C C= + (2)

For a given linear block code C, the minimum Hamming

distance directly influences the code’s correction and

detection capabilities. The relationship between these

capabilities is described in formulas (3) and (4):

1dt d= − (3)

()()1 / 2rt floor d= − (4)

where dt is the maximum number of error bits that can be

detected and rt is the maximum number of error bits that can

be corrected.

For an extended Hamming code with a minimum

Hamming distance of 4, it is easy to find that its dt and rt are

3 and 1, respectively. Accordingly, a decoder can reliably

detect 3-bit errors when it does not try to correct any errors,

but when the decoder does attempt to correct errors, some

triple errors will be mistakenly regarded as single errors, and

the decoder will consequently introduce new errors. The

decoder can also detect double errors and will consider them

uncorrectable. This is why the extended Hamming code is

considered an SEC-DED code.

A 2D SEC-DED code based on two extended Hamming

codes ()1 1 1, , 4C n k and ()2 2 2, , 4C n k can be constructed by

performing the following two steps. Suppose that k bits of the

message can be resized to a rectangular array with 1k rows

and 2k columns. We first encode the message in the row

direction by using the encoding rule of extended Hamming

code 2C and obtain a 1k row and n2 column code midC . Then,

we encode midC in the column direction by using the

encoding rule of the extended Hamming code 1C and obtain

the final two-dimensional code 2dC , with parameters

()1 2 1 2, ,16n n k k . This construction procedure is illustrated in

Fig. 1.

According to formulas (3) and (4), we know that the

maximum correction capability of a 2D SEC-DED code

based on extended Hamming codes is seven. Therefore, a

proper iterative hard-decision decoding method for 2D

SEC-DED codes should satisfy the following two

requirements. First, it should be able to correct all error

patterns in which the number of error bits is less than or equal

to seven. Second, the iterative hard-decision decoding

method should correct as many error patterns as possible in

which the number of error bits is greater than seven.

Information

bits

Column parity check bits

 Row parity

check bits

1 2 2()n n k −

1 bitsn
1 bitsk

2
 b

it
s

k
2

 b
it

s
n

1 2k k 1 1 2()n k k− 

Fig. 1. Construction of a two-dimensional code

B. Related Works

The simplest iterative hard-decision decoding method is

the two-step row–column method [22]. In the first step, the

syndromes of all columns of the received code are computed

in accordance with the decoding method corresponding to the

encoding method, based on which the decoder locates all

possible positions of single errors (correctable errors) and

rectifies them in place. The decoder will not attempt to fix

any double errors (uncorrectable errors). Then, the decoding

result of the first step is passed to the second step. In the

second step, a similar decoding operation is performed again

but in the other direction. The two-step decoding method is

very efficient and can correct many error patterns with a

number of errors above half the minimum distance of the

code. However, it fails to correct some stall patterns, such as

2-by-2 error patterns, since the decoder takes no action for

double errors.

To overcome the drawbacks mentioned above, Kreshchuk

proposed a new iterative method based on the two-step

decoding method [12], in which erasures are added. To

determine the regions that require an erasure operation, the

decoder records the row and column of each mistake into two

registers during the row decoding procedure and the column

decoding procedure, respectively, when the errors can be

detected by the decoder. This decoding method can also be

regarded as a postprocessing technique [11]. However, this

decoding method can only properly correct all error patterns

with a number of errors below 4, which is far from the

minimum distance of the code.

Another interesting method to overcome the problem of

stall patterns, as proposed by Bao [15], is a three-step

(row–column–row) decoding method. In his method, similar

to Kreshchuk’s method, the erasure operation is adopted, and

the position information for erasure steps is saved in two

status vectors. The difference between Bao’s method and

Kreshchuk’s method is that the region selection rules for

erasures are different, as briefly described below.

During the first stage, if the decoder detects errors in the

Engineering Letters, 31:1, EL_31_1_39

Volume 31, Issue 1: March 2023

__

i-th row, then the i-th position in the row status vector is set to

1; otherwise, it is set to 0.

During the second stage, the j-th position in the column

status vector is set to 1 if a corresponding error is detectable

but not correctable (meaning that it is a double error) or if this

error is correctable but the corresponding element in the row

vector where the error occurs has a status value of 0;

otherwise, it will be set to 0.

Bao’s method can correct all error patterns with up to five

errors, which is better than the capability of Kreshchuk’s

method, but there is still room for improvement.

Therefore, we design an improved hard-decision iterative

decoding method that can correct nearly all error patterns

with up to seven errors.

III. PROPOSED METHOD

The proposed method consists of two procedures: a

preprocessing procedure and a decoding procedure.

A. Preprocessing Procedure

In the preprocessing procedure, in addition to the registers

for the received code, four additional registers are required to

record the error status: the row existing-error register (REER),

the row double-error register (RDER), the column

existing-error register (CEER) and the column double-error

register (CDER). The i-th bit of the REER/CEER will be set

to one when errors are detected in the i-th row/column on the

basis of the syndrome. Otherwise, this bit should be set to 0.

Similarly, the i-th bit of the RDER/CDER will be set to one

only when a double error is detected in the i-th row/column

according to the syndrome. Otherwise, this bit should be set

to 0. In Fig. 2, a real example of the calculation of these

registers based on a (64, 16, 16) 2D SEC-DED code is

provided.

01

00

00

10

1 X11

X 00X

11

11

0 X0X

1 110

X 001

X 10X

1

1

1

1

1

1

1

0

1

1

1

1

1

0 011 0X 1

1 101 01 0

R
o

w
 E

rr
o

r-
ex

is
ti

n
g

 R
eg

is
te

r

X - Errors

1

0

1

0

1

0

0

0 010 10 1 1 0

1

0

0

1

0

0

1

R
o

w
 D

ou
b

le
-E

rr
o

r
R

eg
is

te
r

0

0

Column Error-existing Register

Column Double-Error Register

0 100 00 0 0

Fig. 2. Example of generating four registers from code.

The preprocessing procedure has two functions:

determining the initial decoding direction and applying a

pre-erasure process to reduce the number of errors when

necessary. The initial direction of decoding is determined by

comparing the estimated numbers of errors from rows

(errorRN) with the estimated numbers of errors from columns

(errorCN), which can be computed according to formulas (5)

and (6), respectively. If errorRN is greater than errorCN , then

the initial decoding direction remains the row direction (the

default direction); in contrast, if errorRN is less than errorCN ,

then the initial decoding direction is changed to the column

direction by transposing the received code (a flag will be set

to indicate whether transposition is conducted; if the flag is

true, then at the end of the decoding procedure, another

transposition is conducted after the whole decoding process

is complete). The reason for this is that we contend that

decoding from the side from which more errors are estimated

initially will introduce fewer errors during the decoding

procedure.
2 2

error

1 1

n n

i i

i i

R REER RDERN
= =

+=   (5)

1 1

error

1 1

n n

i i

i i

C CEER CDERN
= =

+=   (6)

The pre-erasure process is implemented when the

following three conditions are satisfied: errorRN is equal to

errorCN ; the numbers of instances of 1 in both the REER and

CEER are equal; and the product of the numbers of instances

of 1 in the REER and CEER is less than the sum of errorRN

and errorCN . The positions for erasure are determined by the

values of 1 in the REER and in CEER. The idea behind this is

intuitive: performing the erasure process on a small region in

which the number of error bits is greater than the number of

correct bits can reduce the number of error bits.

The flow chart of the preprocessing procedure is presented in

Fig. 3.

B. Decoding Procedure

The four registers introduced in the previous procedure are

also used in this procedure. However, since the proposed

decoding procedure is a modified version of Bao’s three-step

iterative decoding method [15], the usage of the CDER and

REER is changed to that of the row status vector and column

status vector used in Bao’s method.

The proposed iterative decoding procedure is a three-step

decoding method.

In the first step, the row syndromes for each row are

calculated, and on this basis, the REER and RCDR are

updated; then, row decoding is conducted. All the correctable

single errors are flipped in accordance with the syndromes.

In the second step, the column syndromes for each column

are calculated, and the CEER and CDER are updated. If the

number of 1 values in the RDER is equal to 3 and the number

of 1 values in the CEER is equal to 2, then erasure is

conducted at the coordinates indicated by the RDER and

CEER. Otherwise, column decoding is conducted based on

the column syndromes, followed by row decoding, in which

the syndromes for each row are recalculated. Then, single

errors are corrected based on these updated row syndromes,

and double errors are flipped based on the CDER.

In the last step, the column decoding process is repeated to

correct the remaining single errors. Then, the corrected code

may be transposed in accordance with the flag generated in

the previous procedure. The flow chart of the decoding

procedure is presented in Fig. 4.

Engineering Letters, 31:1, EL_31_1_39

Volume 31, Issue 1: March 2023

__

Start

Receive 2d SEC-DED

code C

Calculate Row syndromes

for each row and compute

REER and RDER

Calculate Column

syndromes for each row

and compute CEER and

CDER
Rerror == Cerror

And Cn == Rn

 Rn =

sum(REER)+sum(RDER)

Cn =

sum(CEER)+sum(CDER)

Rerror×Cerror < Cn+Rn
 Rerror = sum(REER)

Cerror = sum(CEER)

New_C = CT

Flag = 1

Flip the region in C that

indicated by Reer and

Ceer and Obtain New_C
New_C = C

Return New_C, FlagFlag = 0

Yes

Yes

No

Rerror < Cerror Rerror > Cerror

Fig. 3. Flow chart of the preprocessing procedure.

Code C, Flag from

the pre-processing

procedure

Computer Row Syndromes for

each row code and update the

REER and RDER according new

rules

Using Row Syndromes to correct

the single-error in each row code

Computer Column Syndromes for

each column code and update the

CEER and CDER according new

rules

Rn==3 and Cerror==2

Rn = sum(RDER)

Cerror = sum(CEER)

Erasure the region

that indicated by Rn

and Cerror Computer Row Syndromes

for each row code and

update the REER and

RDER according new rules

Using Column Syndromes

to correct single-error in

each column code

Using Row Syndromes to

correct single-error in each

row code and use Bao

erasure to correct double

errors

Computer Column Syndromes for each column code

and correct single-error and obtain result code R

Return R

Flag == True

R = RT

No

Yes

Yes

No

Fig. 4. Flow chart of the decoding procedure.

IV. EXPERIMENTS AND RESULTS

A. Experimental Platform

All experiments were conducted on a standard PC laptop

with an Intel i7-4720HQ (2.6 GHz) processor and 16 GB of

DDR3 memory. The simulation software used was

MATLAB R2021b.

B. Brief Description of the Experiments

The decoding object was a two-dimensional code with

parameters (64, 16, 16) that was constructed from two

Engineering Letters, 31:1, EL_31_1_39

Volume 31, Issue 1: March 2023

__

extended Hamming product codes. For experimental

comparisons, in addition to the proposed method, several

well-known iterative decoding methods were implemented in

MATLAB, including the two-step method [22], Kreshchuk’s

method [11] and Bao's method [15]. Three different decoding

experiments were performed to evaluate the performance of

all implemented decoding methods. The first experiment was

conducted on a Gaussian channel with additive white

Gaussian noise (AWGN). The second experiment was

performed on a binary symmetric channel (BSC) with

manually set error probabilities. In the third experiment, the

number of errors was manually set, based on which the error

correction capabilities of the different decoding methods

were explored.

In the first two experiments, the bit error rate (BER) [23,24]

and word error rate (WER) were used to evaluate the

correction capabilities of the different decoding methods

under different levels of noise. The level of noise is described

by the signal-to-noise ratio (SNR) in the Gaussian channel

and by the error probabilities in the BSC. However, in the

third experiment, we conducted a statistical analysis of the

numbers of instances of decoding failure when each decoding

method was used for different given numbers of errors, and

comparisons were performed.

C. Experiments based on the Gaussian Channel

In these experiments, we performed a total of 5 million

independent encoding–decoding experiments under ten

different SNRs with values from one to ten. Accordingly,

under each SNR, 500 thousand repeated experiments were

conducted.

In each independent encoding–decoding experiment based

on the Gaussian channel, a 16-bit binary message was first

randomly generated, which was then encoded into the

original two-dimensional code using the method introduced

in section two, yielding an 8×8 matrix. Afterward, binary

phase-shift keying (BPSK) modulation [25] was applied, and

the generated signal obtained from the original code was sent

to the Gaussian channel, where AWGN with a certain SNR

was added to the signal to obtain the received signal. The

received code was then obtained by performing BPSK

demodulation on the received signal. Then, the received code

was decoded, and the bit errors were corrected using each

implemented iterative decoding method separately. By

comparing the decoded code against the original code, we

could easily determine whether each decoding process had

failed. We counted the failures in the experiments and

calculated the corresponding statistics, based on which we

could obtain the BER and WER. The pseudocode of the

experiments with the Gaussian channel is presented in Fig. 5,

and the experimental results obtained for the Gaussian

channel are presented in Fig. 6 and Fig. 7.

Fig. 5. Pseudocode for the experiments based on the Gaussian channel.

Fig. 6. BERs for the (64, 16, 16) code and the Gaussian channel. Fig. 7. WERs for the (64, 16, 16) code and the Gaussian channel.

Engineering Letters, 31:1, EL_31_1_39

Volume 31, Issue 1: March 2023

__

Fig. 6 and Fig. 7 show that the proposed decoding method

outperforms other decoding methods. To achieve a 10-4 BER,

the proposed decoding method requires a 7 dB SNR; in

contrast, Bao’s decoding method, Kreshchuk’s decoding

method and the two-step decoding method require SNRs of

approximately 7.3 dB, 8.4 dB and 9 dB, respectively.

Moreover, when the SNR is 8 dB, the WER of the proposed

method can reach 5.6×10-5, lower than those of Bao’s method,

Kreshchuk’s method and the two-step method, with values of

2.3×10-4, 1.7×10-3 and 1.5×10-2, respectively. Another

interesting finding is that, as shown in Fig. 6, the BER of

Kreshchuk’s method is initially larger than that of the

two-step method, but with increasing SNR, the BER of

Kreshchuk’s method decreases faster than that of the

two-step method. When the SNR is seven, the BERs of these

methods are equal, and when the SNR further increases, the

BER of Kreshchuk’s method is less than that of the two-step

method. However, as shown in Fig. 7, the WER of

Kreshchuk’s method is always less than that of the two-step

method. The reason for this phenomenon is that although

Kreshchuk’s method introduces erasure to properly address

stall patterns with four errors and can therefore correct more

error patterns than the two-step method (which is why its

WER is always better than that of the two-step method),

when it is faced with patterns that it is unable to correct, the

erasure operation may introduce more error bits (which is

why its BER may be higher than that of the two-step method).

D. Experiments based on the BSC

Based on the BSC, 7.5 million encoding–decoding

experiments were independently repeated under 15 different

levels of noise (with the error probability increasing from

0.01 to 0.15). Accordingly, for each specified level of noise,

500 thousand experiments were again conducted.

In each independent encoding–decoding experiment based

on the BSC, the message and two-dimensional code were

generated using a method similar to that introduced in the

Gaussian channel experiments. Then, rather than applying

modulation, the code was directly sent to the channel, and

some bits were probabilistically flipped in accordance with

the given error probability to obtain the received code. Next,

all of the implemented decoding methods were used

separately to decode the received code and correct error bits.

After comparing the decoded code with the original code, the

numbers of instances of decoding failure was counted, and

the BER and WER were computed. The pseudocode for these

experiments is shown in Fig. 8, and the results of the

experiments are presented in Fig. 9 and Fig. 10.

Fig. 8. Pseudocode for the experiments based on the BSC.

Kreshchuk
Two-step

Proposed

Fig. 9. BERs for the (64, 16, 16) code and the BSC. Fig. 10. WERs for the (64, 16, 16) code and the BSC.

Engineering Letters, 31:1, EL_31_1_39

Volume 31, Issue 1: March 2023

__

Fig. 9 and Fig. 10 show that the proposed method has more

powerful correction capabilities than the other three decoding

methods. For example, when the error probability is 0.1, the

BER and WER of the proposed method are approximately

3.9×10-3 and 3.05×10-2, respectively. By comparison, the

BER and WER of Bao's method, which are approximately

6.3×10-3 and 6.5×10-2, respectively, are nearly double those

of the proposed method. For the Kreshchuk and two-step

methods, the BERs are 1.9×10-2 and 4×10-2, respectively, and

the WERs are 3.3×10-1 and 1.1×10-1, respectively.

E. Experiments based on Error Patterns

To explore the potential of all implemented decoding

methods, experiments based on error patterns were

conducted. The number of error bits was manually set, but the

error positions among the error patterns were randomly

generated. It is noted that the size of the error patterns was

kept the same as the size of the original (64, 16, 16) code

obtained by encoding a random 16-bit binary message. The

number of error bits in the error patterns was gradually

increased from one error to twelve errors. For the error

patterns with no more than 5 errors, we generated all possible

error patterns and then added them to the codeword

separately and attempted to correct these errors using each

implemented decoding method. For the error patterns with

more than 5 errors, since generating all the error patterns

would be very difficult and time consuming, we randomly

selected one million samples from all error patterns with a

given number of errors for the decoding experiments. Table I

shows the numbers of error patterns used in the current

experiments for different given numbers of error bits. Table

II and Table III summarize the numbers of word errors and bit

errors made with the different decoding methods under

various numbers of error bits. Table IV and Table V were

obtained by normalizing the data shown in Table II and Table

III, respectively. Fig. 11 and Fig. 12 are visualizations of

Table IV and Table V, respectively.
TABLE I

NUMBERS OF ERROR PATTERNS AND ERROR BITS.

Number of Error Bits Number of Error Patterns

1 64

2 2016

3 41664
4 635376

5 7624512

6~12 1000000

TABLE II

NUMBERS OF WORD DECODING ERRORS UNDER A GIVEN NUMBER OF

ERROR BITS.

Given

Number

of Error

Bits

Decoding Method

Two-Step

Method

Kreshchuk’s

Method

Bao’s

Method

Proposed

Method

1 0 0 0 0
2 0 0 0 0

3 0 0 0 0
4 10192 0 0 0

5 58208 18816 0 0

6 191112 24974 383 0

7 369766 63753 5569 0

8 578553 138496 32585 3229

9 770939 254869 116425 25084

10 904245 409110 292349 95403

11 971570 590287 546901 263837

12 994317 762954 789497 532980

TABLE III

NUMBERS OF BIT DECODING ERRORS UNDER A GIVEN NUMBER OF ERROR BITS.

Given

Number

of Error

Bits

Decoding Method

Two-Step
Method

Kreshchuk’s
Method

Bao’s
Method

Proposed
Method

1 0 0 0 0

2 0 0 0 0
3 0 0 0 0

4 21952 0 0 0

5 1229312 75264 0 0

6 445510 159180 1655 0

7 949792 745824 23714 0

8 1714958 2171274 140275 17828

9 2765042 5035850 524295 141308

10 4082410 10131348 1445489 593974

11 5646670 17847788 3153695 1867220

12 7389060 26818870 5661903 4366654

TABLE IV

NORMALIZATION OF THE WORD ERRORS PRODUCED BY THE DECODING

METHODS UNDER A GIVEN NUMBER OF ERROR BITS.

Given
Number

of Error

Bits

Decoding Method

Two-Step

Method

Kreshchuk’s

Method

Bao’s

Method

Proposed

Method

1 0 0 0 0
2 0 0 0 0

3 0 0 0 0
4 0.01604 0 0 0

5 0.00763 0.00246 0 0

6 0.19111 0.02497 0.00038 0

7 0.36976 0.06375 0.00556 0

8 0.57855 0.13849 0.03258 0.00322

9 0.77093 0.25486 0.11642 0.02508

10 0.90424 0.40911 0.29234 0.09540

11 0.97157 0.59028 0.54690 0.26383

12 0.99431 0.76295 0.78949 0.53298

TABLE V

NORMALIZATION OF THE BIT ERRORS PRODUCED BY THE DECODING METHODS

UNDER A GIVEN NUMBER OF ERROR BITS.

Given
Number

of Error

Bits

Decoding Method

Two-Step

Method

Kreshchuk’s

Method

Bao’s

Method

Proposed

Method

1 0 0 0 0
2 0 0 0 0

3 0 0 0 0
4 0.00053 0 0 0

5 0.00251 0.00015 0 0

6 0.00696 0.00248 0.00002 0

7 0.01484 0.01165 0.00037 0

8 0.02679 0.03392 0.00219 0.00027

9 0.04320 0.07868 0.00819 0.00221

10 0.06378 0.15830 0.02258 0.00928

11 0.08822 0.27887 0.04927 0.02917

12 0.11545 0.41904 0.08846 0.06822

Engineering Letters, 31:1, EL_31_1_39

Volume 31, Issue 1: March 2023

__

FIG. 11. HISTOGRAMS OF THE NORMALIZED WORD ERRORS PRODUCED BY THE DIFFERENT DECODING METHODS.

FIG. 12. HISTOGRAMS OF THE NORMALIZED BIT ERRORS PRODUCED BY THE DIFFERENT DECODING METHODS.

From the above tables, it is clear that the proposed method

displays the best performance in terms of the error correction

capability within the range of half the minimum distance of

the code, and it can properly correct more error patterns than

the other three decoding methods. Exhaustive experiments

have proven that the proposed method can correct all error

patterns with a number of errors below 5. For error patterns

with 6 or 7 errors, the proposed method properly decodes all

sampled error patterns and corrects all of the error bits;

therefore, there is a high probability that the proposed method

also has the ability to correct all error patterns in which the

number of errors is not above seven, i.e., half the minimum

distance of the current code. In contrast, the two-step method,

Kreshchuk’s method, and Bao’s method begin to produce

decoding errors when the given number of errors is four, five

and six, respectively.

Moreover, when the given number of errors is greater than

half the minimum distance of the code, the proposed method

still provides more powerful rectification ability than the

other methods. For example, when the given number of errors

is 9, the proposed method produces errors for only

approximately 2.5% of words and 0.02% of bits. In contrast,

the two-step method generates a 77% word error and a 4.3%

bit error, Kreshchuk’s method generates a 25% word error

and a 7.8% bit error, and Bao’s method generates an 11%

word error and a 0.8% bit error.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an improved hard-decision

iterative decoding method for 2D SEC-DED codes. The error

correction capability of the proposed method is very close to

half the minimum distance of the code. Three sets of

decoding experiments performed based on a Gaussian

channel, for a BSC and for a given number of errors indicated

that the proposed method achieves better performance than

the other decoding methods in the sense that it can correct

more error patterns.

In the future, we would like to use the proposed method in

various fields to mitigate the effects of errors, such as

correcting errors in wireless sensor networks and correcting

on-chip interconnection errors to improve the reliability of

on-chip communication.

REFERENCES

[1] P. Elias, “Error-free Coding,” IEEE Transactions on Information
Theory, vol. 4, no. 4, pp. 29-37, Sep. 1954.

[2] O. Al-Askary, “Iterative decoding of product codes,” in Signaler,
sensorer och system, 2003.

[3] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, “Covering codes,” in

North-Holland Mathmatical Library Elsevier, 1997.
[4] G. Cohen, M. Karpovsky, H. Mattson Jr., and J. Schatz, “Covering

radius–survey and recent results,” IEEE Transactions on Information
Theory, vol. 31, May. 1985.

[5] G. S. Nikolic, M. K. Stojcev, T. R. Nikolic, B. D. Petrovic, and G. S.

Jovanovic, “Reliable data transfer Rendezvous protocol in wireless
sensor networks using 2D-SEC-DED encoding technique,”

Microelectronics Reliability, vol. 65, pp. 289–309, 2016, doi:
10.1016/j.microrel.2016.08.017.

[6] G. S. Nikolic, M. K. Stojcev, T. R. Nikolic, B. D. Petrovic, G. S.

Jovanovic, and B. R. Dimitrijevic, “Implementation and evaluation of
2D SEC-DED forward error correction scheme in wireless sensor

networks,” Microelectronics Reliability, vol. 78, pp. 161–180, 2017,
doi: 10.1016/j.microrel.2017.08.010.

[7] P. Chandrasekaran and R. Balasubramanyam, “An MCS with Iterative

Multi-dimensional Hamming Product Codes,” IETE Journal Research,
vol. 66, no. 5, pp. 711–719, 2020, doi:

10.1080/03772063.2018.1527257.

Engineering Letters, 31:1, EL_31_1_39

Volume 31, Issue 1: March 2023

__

[8] A. Kadum, W. N. Flayyih, and F. Z. Rokhani, “Reliability Analysis of
Multibit Error Correcting Coding and Comparison to Hamming

Product Code for On-Chip Interconnect,” Journal of Engineering, vol.

26, no. 6, pp. 94–106, 2020, doi: 10.31026/j.eng.2020.06.08.

[9] T. Hatamori and M. Kasahara, “Generalized product codes and their

performance,” Electronics and Communications in Japan (Part I
Communications), vol. 77, no. 12, pp. 1–9, 1994, doi:

10.1002/ecja.4410771201.
[10] N. Abramson, “Cascade Decoding of Cyclic Product Codes,” IEEE

Transactions on Communication Technology, vol. 16, no. 3, pp.

398-402, Jun. 1968.
[11] F. Blomqvist, “On hard–decision decoding of product codes,”

Applicable Algebra in Engineering, Communication and Computing,
pp. 1-18, 2021.

[12] K. Alexey, Z. Victor, and R. Eygene, “A new iterative decoder for

product codes,” Proceedings of the International Workshop on
Algebraic and Combinational Coding Theory, pp. 211-214, 2014.

[13] Fu Bo and P. Ampadu, “A multi-wire error correction scheme for
reliable and energy efficient SoC links using Hamming product codes,”

in SOC Conference, IEEE, pp. 59-62, 2008.

[14] Fu Bo and P. Ampadu, “An energy-efficient multiwire error control

scheme for reliable on-chip interconnects using Hamming product

codes,” VLSI Design, pp. 1-14, Dec. 2008.
[15] Fu Bo and P. Ampadu, “On hamming product codes with type-II

hybrid ARQ for on-chip interconnects,” IEEE Transactions on Circuits

and Systems I: Regular Papers, vol. 56, no. 9, pp. 2042-2054, Sep.
2009.

[16] J. Kim and Y. Jee, “Hamming product code with iterative process for
NAND flash memory controller,” in 2010 2nd International

Conference on Computer Technology and Development, IEEE, pp.

611-615, Nov. 2010.
[17] A. K. Chlaab, W. N. Flayyih, and F. Z. Rokhani, “Lightweight

hamming product code based multiple bit error correction coding
scheme using shared resources for on chip interconnects,” Bulletin of

Electrical Engineering and Informatics, vol. 9, no. 5, pp.1979-1989,

Oct. 2020.
[18] G. Forney, “Generalized Minimum Distance decoding,” IEEE

Transactions on Information Theory, vol. 12, no. 2, pp. 125-131, Apr.
1966.

[19] S. Reddy and J. Robinson, “Random error and burst correction by

iterated codes,” IEEE Transactions on Information Theory, vol. 18, no.
1, pp. 182-185, Jan. 1972.

[20] A. Sánchez-Macián, P. Reviriego and J. A. Maestro, "Hamming
SEC-DAED and Extended Hamming SEC-DED-TAED Codes

Through Selective Shortening and Bit Placement," in IEEE

Transactions on Device and Materials Reliability, vol. 14, no. 1, pp.
574-576, March 2014, doi: 10.1109/TDMR.2012.2204753.

[21] X.H. Ren, J. Ma, V.Y. Tsviatkou and V. K. Kanapelka, "A New
Hard-decision Iterative Decoding Method for Hamming Product

Codes," Engineering Letters, vol. 30, no.3, pp 948-954, 2022.

[22] S. Lin and D. J. Costello, “Error control coding,” in Scarborough:
Prentice hall, 2001.

[23] M. M. Karbassian and Ghafouri-Shiraz. Hooshang,
"Phase-Modulations Analyses in Coherent Homodyne Optical CDMA

Network Using a Novel Prime Code Family," Lecture Notes in

Engineering and Computer Science: Proceedings of The World
Congress on Engineering 2007, WCE 2007, 2-4 July, 2007, London,

U.K., pp 358-362.

[24] A. Idris, D. Kaharudin, and S. Y. SK, Idris, A. K. Dimyati, and S. S.

Yusof, "Performance of Linear Maximum Likelihood Alamouti

Decoder with Diversity Techniques," Lecture Notes in Engineering
and Computer Science: Proceedings of The World Congress on

Engineering 2011, WCE 2011, 6-8 July, 2011, London, U.K., pp
1728-1731.

[25] H. Sandhu and D. Chadha, "Terrestrial free space LDPC coded MIMO

optical link," Lecture Notes in Engineering and Computer Science:
Proceedings of The World Congress on Engineering and Computer

Science 2009, WCECS 2009, 20-22 October, 2009, San Francisco,
USA, pp 372-375.

Engineering Letters, 31:1, EL_31_1_39

Volume 31, Issue 1: March 2023

__

