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Third Derivative Generalized Enright-Type
Methods for Stiff Systems

Grace Chinyere Nwachukwu, Ikenna Theophilus Amaefuna

Abstract—A class of third derivative generalized Enright-
type methods (TDGEMs) is derived. This class of methods is
an extension of the GSDLMME from Ogunfeyitimi and
Ikhile and a generalization of the method from Longe and
Adeniran. The proposed TDGEMs which incorporate third
derivative terms have the advantage of better accuracy and
stability properties compared with the GSDLMME. The new
class of methods is implemented as boundary value methods
(BVMs) for the numerical solution of stiff ordinary differen-
tial equations (ODEs). The numerical results obtained show
that the methods developed can compete with the existing
ones in the literature.

Index Terms—Linear Multistep Formulae, Boundary Value
Methods, 0.,,—+-stable and A, ;_.-stable

AMS Subject classification: 65L04, 65L.05

I. INTRODUCTION

N the past decades, considerable attention has been given

to the development of methods with good stability proper-
ties for the numerical solutions of stiff initial value problems
(IVPs) in ordinary differential equations (ODEs)

y/($) = f(I,y(I)), T e ($05X)7

ey

For a method to be suitable for problems in (1), the concept
of A-stability of a numerical method is required and for high
accuracy, higher order methods are preferable. However, the
use of high order linear multistep methods (LMMs) for (1)
is restricted by the Second Dahlquist Barrier Theorem see
[1] which stated that the order of A-stable LMMSs cannot
exceed 2. Hence, there is a need to obtain methods with a
higher degree of accuracy. Bickart and Rubin [2] stated that;
to circumvent Dahlquist’s Barrier, the conventional LMM
should be modified into another class of methods. Several
authors have introduced methods to overcome the Dahlquist
Barrier Theorem, for example, second derivative methods
were introduced (see Cash [3], Enright [4], Jia-Xiang and
Jiao-Xun [5], Gupta [6], Hairer and Wanner [7] and Hojjati
et al [8]). Again, exponentially fitted methods are considered
(see Jackson and Kenue [9], Cash [10], Okunuga [11]). Also
considered are Hybrid methods (see Gragg and Stetter [12],
Gear [13], Butcher [14], Kohfeld and Thompson [15] and
Lambert [16]) and many others. Recently, boundary value
methods (BVMs) were proposed by Amodio et al [17],
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y(zo) = yo, y(z) € RY,
f(L’,y(CL)) € Rd7 VS Ra d= 1727'"' .

and Brugnano and Trigiante ( [18], [19]). These methods
approximate IVP (1) by means of a discrete boundary value
problem (BVP) by fixing the initial k;(< k) number of
solution values and the last k(= k — k1) number of solution
values using the main method, which is a k—step linear
multistep formula (LMF), and is of the form,

ko ko
> iynii=h Y Bifaiis

==k j==Fk1 (2)
kl-l-kQ:k, TLZO,].,"',
Y1592, 5 Yk -1, YN, 3 YN+ko—1 (fl$6d)

Here, k; is the number of roots lying inside the unit circle
and ko is the number of roots lying outside the unit circle, of
the stability polynomial of the main method in (2) (see, [17],
[18]). The implementation of these methods as BVMs over-
comes the limitations of the well-known Dahlquist order and
stability barrier for an A—stable LMM and all approxima-
tions of the solution of (1) are simultaneously generated on
the entire interval. Axelsson and Verwer [20], Jator and Sahi
[21], Ehigie et al [22], Nwachukwu et al [23], Nwachukwu
and Okor [24], [25], Nwachukwu and Mokwunyei [26] and
Okor and Nwachukwu [27] also considered boundary value
techniques on the IVP (1).

The second derivative linear multistep method (SDLMM) of
Enright [4] of the form

k
Yntk = Yntk—1+ h25jfn+j + 2k gnsr . (3)

Jj=0
provides 0—stable methods up to k = 7. It is A—stable
for k = 1,2, A(a)—stable for k& = 3(1)7 and becomes
O—unstable when & > 8. Ehigie et al [22] derived the
Enright’s second derivative formula which is A—stable up
to order four using the multistep collocation method. They
improved on the accuracy of the Enright’s scheme [4] by
adopting the boundary value technique. In Ogunfeyitimi
and Ikhile [28], the Adams-type second derivative LMM
of Enright [4] was generalized to a class of BVMs for the
numerical solution of IVPs in ODEs. The class of generalized
second derivative linear multistep methods based on the
methods of Enright (GSDLMME) which is A—stable for all

k > 1 and of order p = k + 2 is given as

k

Yn4+v — Yntv—1 = h Z ﬁjfn+j + h27’u9’n+11 ’ (4)
j=0

where

k2i1; k odd
v =
g; k even

Longe and Adeniran [29] proposed the Enright’s third deriva-

k=1,2,3...
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tive method which is A—stable for step numbers k£ = 2 and
3, and is defined by

k
Ynih = Ynih—1 + 1Y Bjfuts+ W 0kgnir + WP venys
j=0
4)
where Yn+j = y(xn +jh)’ fn+j = f(mn +jhvy(mn +jh))’
T=Tn+k

Y=Ytk Y=Yntk
xn is a discrete point at node point n, 3;,d; and v are
coefficients and h is the chosen step-length. This method was
used to generate the main method and the complementary
methods to solve problems via boundary value techniques.
The aim of this paper is to develop a class of third derivative
generalized Enright-type methods (TDGEMs) which is an
extension of the GSDLMME of Ogunfeyitimi and Ikhile
[28] and a generalization of method of Longe and Adeniran
[29]. The purpose of adding the third derivative function into
the GSDLMME in [28] is to obtain higher order methods
with better stability properties.

This paper is organized as follows: In section II, we present
the properties and the stability of the third derivative
boundary value methods (TDBVMs). The construction of
the TDGEMs where the stability properties are discussed,
is provided in section III. The implementation technique
is shown in section IV. In section V, some numerical
experiments are considered. In section VI, we present the
conclusion of the paper.

gup = e

II. THE THIRD DERIVATIVE BOUNDARY VALUE
METHODS (TDBVMS)

The general k-step third derivative linear multistep method
(TDLMM) can be written in the form

k
E :O‘jynﬂ' =
j=0

k k k
hZijn-l-j + h? Z'ngn—&-j + h? Z¢jm7L+j) kE>1,

§=0 j=0 §=0
(6)

where y,4; is the numerical approximation to the an-
alytical solution y(Znsj)s farj = f(@nsji¥nrs) =
Y'(@nti)s Inti = 9@nisUnas) = Y (@naj)s Mgy =
M(Tntj, Ynti) = ¥ (®nt4), aj,B;,vjand¢; are param-
eters and h is the chosen step-length. A generalization of
this method to a class of third derivative boundary value
methods (TDBVMs) is given in section III. The IVP (1)
can be approximated by the following third derivative k-step
LMF

k2
Z AjYn+j =

Jj=—k1
ko ko ko
h> " Bifari +02 Y Vignts +0° D dimay,
Jj=—k1 j=—k1 j=—k1
ki 4+ ke =k,
Y, Y2, Yk -1, YN, ’yN+k2—1(fi$€d)’

(7

of order p with k; initial conditions and k5 final conditions
at the boundary of interest (see [17], [18]). y,, is the discrete
approximation of the solution y(z,), x, = xo + nh denotes
the uniform point with equal spacing h, f, = f(zn,yn),

T=Tn

d
In = 9(Tnyyn) = f(z(ﬁ(m)) s My = M(Tp,Yn) =
& f(ry(@) "= e
T . aj,[j,v;and ¢; are parameters.
Y=Yyn

In order to implement (7) as a TDBVM and since y is given
in the IVP (1), k1 —1 initial solution values: y1, 2, - - , Yk, -1
and ko final solution values: yn,- - ,YN+k,—1 are needed.
It then follows that the k£; — 1 initial solution values and
ko final solution values can be generated from the following
initial additional formula (8) and final additional formula (9)
respectively.

k k k k
Z oty; = hz B f; + b2 Z v gi + b Z o mi,
i=0 i=0 i=0 i=0

®)

k k k
Za](cj_)infi =h Z B](CJ_)ifoi + h2 Z Vl(cj_)ingi
=0 =0 =0

‘ (9) ®)
+h? Z o7 my_i,
i—0

j=(N—ky)+1(1)N.

The composite scheme ((7),(8) and (9)) is a TDBVM as-
sumed to have uniform order p. Thus, the method (7) which
is assumed to be O, x, —stable, Ay, 1, —stable is used with
(K1, k2)—boundary conditions. To generalize the concept of
zero-stability (0—stability) and A—stability of TDLMM from
the theory of third derivative initial value method IVM) in
(6) to TDBVM (7), we let

k

k k
p2) =D a2, o(x) =Y B2, &(x) =Y 2,
=0 =0

=0

k
w(z) =Y ¢,
3=0
(10)

be first, second, third and fourth characteristics polynomials
associated with (6) respectively. Here,

m(z,q) = p(2) — qo(2) — ¢°¢(2) — PPw(z), q=hA, (11)

is the stability polynomial when (6) is applied on y =
Ay, v = Ny, v = My, Re(\) < 0. We now have
the following definitions.

Definition 2.7/: A polynomial p(z) in (10) of degree k =
k1+ks is an Sk, r, —polynomial, if its roots {z; };_, are such
that |21 < 2] € -+ < [ | < 1< Jeiys1] < o < |2l

Definition 2.2: A polynomial p(z) in (10) of degree
k = ki + ks is an Ny, , —polynomial, if its roots {z;}*_
are such that |21] < |z < -+ < |om| < 1 < |zmn1] <
-+« < |z| with simple zeros of unit modulus.

If ki1 = k, k2 = 0, an Ng, g,-polynomial reduces to a
Von-Neumann polynomial and an Sk, j,-polynomial reduces
to a schur-polynomial.
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Definition 2.3: A TDBVM (7) with (kq, k2)-boundary
conditions, where k = k; + ko is:
(@) O, k,-stable if the corresponding polynomial p(z)
in (10) is an Ny, ,-polynomial.
(b) (k1, ko)-absolute stable for a given ¢ € C, if the
polynomial 7(z, ¢) in (11) is an Sk, x,-polynomial.
(¢c)  Theregion Dy, 1, ={q € C:7(z,q)isan Sk, k,-
polynomial} is said to be the region of (ki,k2)-
absolute stability. Here 7(z, ¢) is a polynomial of
type (k1,0, k2).
(d) Akl,kz-stable if C— C thk,‘,.
For definitions 2.1, 2.2 and 2.3, see [17], [18].

III. THIRD DERIVATIVE GENERALIZED ENRIGHT-TYPE
METHODS (TDGEMS)

The Enright’s third derivative method is based on the
TDLMM (6) and can be defined generally as

Yn+k—Ynt+k—1 =
k

h Z ﬁjfn—&-j + h27k97L+k + h3¢kmn+k .
7=0

Following Brugnano and Trigiante [18], [19], [30], (12) can
be written as

12)

—Yn+i—1 =
k
WY Bifnti + W2 Yignti + hogimn i
§=0

where ¢ = 0(1)k.
For i # k, we can choose the values of ¢ which provide
methods with the best stability properties for all values of
the step number £ > 1. Practically, we get the best stability
properties for the choice of ¢ = v such that

Yn+i
(13)

EtL. for odd k

v = Jk=1,2,3... . (14)
E£2. for even k
Therefore, (13) becomes
Ynt+v—Yntv-1 =
(15)

k
R Bjfats + W gnto + 1 Gy,
j=0
(15) is our main method in this paper. The class of meth-
ods (15) of maximum order p = k + 3 is found to be
0y, k—p—stable and A, j_,—stable for all values of k£ > 1
and must be used with (v, k — v)-boundary conditions (i.e
with v number of roots inside the unit circle and &k — v
number of roots outside the unit circle). The methods (15)
shall be referred to as third derivative generalized Enright-
type methods (TDGEMs). Rewriting (15) in the form

k
y(xn + ’Uh) - y(xn + (U - 1)h) - hZﬂ]y/(xn +Jh’)
=0
— W23y (xn +vh) — B2 duy” (2, +vh) = 0,
(16)

expanding in Taylor’s series and applying the method of
undefined coefficient, we obtained the coefficients of the
methods (15) for & = 1(1)10 as shown in Table I, Table
IT and Table III.

We now consider the order, consistency and stability of our
TDGEMs. In the spirit of Fatunla [31] and Lambert [32], we
define the local truncation error (LTE) associated with (15)
as the linear difference operator .Z[y(z,,); h] such that

Ly(xn); h] = y(zn +vh) —y(zn + (v = 1)h)

—h Y By (wn + jh) = B2y (@ + vh)
j=0

a7

— W3ppy" (x4 vh) .

Assuming that y(z,,) is continuously differentiable, we can
find the Taylor series expansion of the terms in (17) about
the point z,, to obtain the expression,

,,E,ﬂ[y(g;n); h] = Coy(zn) + Clhy/(xn) (18)
+ Coh®y" (zn) + - + Cyhly () + -+,
where
Co = 0
k
Ci = 1= 5
=0
'U2— v— 2 k -
Cy = U B —
=0
k.
C; = "G S Lg vy g, (19
=0
v9— q—2
Cq = Z (q 1) IBJ (Z 2) I’Yv
(q 3)I¢’U7 fOI‘ qg=1,2.
Thus, the TDGEMSs (15) is of order p if
Cj=0, j=01)p, Cpu1#0, (20)

where C), 11 is the error constant of the methods (15) and
its principal LTE is given as

Cp+1hp+1y(p+1)(xn) + (’)(hp+2), Cpy1 # 0,
Cpt1 =
P 1Pt k i p—1 P2
(p+1 ;Jp ’ —o (p—2)!¢”

@n

The TDGEMSs (15) is consistent, if it has an order of p > 1.
The order conditions defined by (19) is equivalent to (27).
The order p and the error constant Cp4q of the TDGEMs
(15) are presented in Table III, for £ = 1(1)10. In Fig.1, we
have the plot of absolute value of error constant against step
number of the TDGEMs (15), the GSDLMME in [28] and
the method of Enright [4]. As it can be observed, our new
methods show a sharp decrease in error constant.

Now, we analyse the stability of the proposed methods (15).
According to Hairer and Wanner [33], the stability analysis is
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carried out through linearisation with the usual test equation

Y =Xy, y'=XNy, y" =Ny, Re(\) <0, (22

which is applied to (15) to yield the characteristic equation

k
76, 2) = ("= =2 ) B¢ = (P (B + 2P) (23)

§=0
z=Mh,z€C.

Letting ¢ = exp®, # € [0,27], we then plot the stability
regions. These are given in Fig.4 and Fig.6, for odd and
even values of k, respectively. The new methods are Oy, ,—,-
stable and A, ;_,-stable with (v, k—v)-boundary conditions
for k > 1. One can see that, as the value of k increases, the
boundary locus plot of the TDGEMs (15) reduces and as a
result the region of absolute stability (exterior of the closed
curve) increases. However, for the GSDLMME in [28], as &
(even) increases, the boundary locus plot increases, that is the
region of absolute stability reduces. Therefore the TDGEMs
have better stability properties than the GSDLMME, see
Fig.2-Fig.6.

The discrete problem generated by the k-step TDGEMs (15)
with (v, k—v)-boundary conditions can be written in compact
form, as follows:

AY — hBF — h®’CG — h3DM =
_ ot }
Yo—1+h Zo Bif;
J:

v—2
h > Bif

=0
hﬁogqu
; (24)

0
hBefn

k—v
h Zl ﬁv-&-ij—l-&-j
]:

where
1 0 0 0 O 07
-1 1 0 0 0
0
A=1190
0
0 0 -1 1 0
0 0o 0 0 -1 1

L U = (N—v)X(N—-v)

[ /gv ! 6k ]
B = ﬁo
Br
L BO e 61} . (N*’U)X(N*U)
— - -
0 0
C =
0 "
L O 0 Yo J (vewyx(v—v)
— (b,u -
0 . 0
D =
0 &
L 0 0 o

4 (N—v)x(N—-v)

The A, B,C and D are Toeplitz matrices (T-matrices) of the
same dimension and

Y:(yva"' 7yN—1)T7F:(f'Ua"'
G:(gv7"' agN—l)TvM:(mv7"'

are the solution, function and derivative function vectors.
The coefficient matrices A, B,C and D in (24) are T-
matrices having lower band with v (number of initial
conditions) and upper band with & — v (number of final
conditions).

et

T
7mN—1)

IV. IMPLEMENTATION TECHNIQUE

The TDGEMs (15) will be implemented using the BVM
technique as discussed in [18], [22]-[27], [30] so that the
numerical solution, (1,2, -- ,yn)T of the IVP (1) is given
simultaneously at all the grid points. The main methods
(15) are to be used with (v,k — v)-boundary conditions
or, equivalently, they are conveniently coupled with the
following set of v—1 initial additional methods (yo is already
provided by the initial value defining the ODE (1)),

k
Yi — Yio1 = h > Bif; + hPvigi + h3¢m

1=1,---v—1
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and k — v final additional methods,

YN+4—YN+3 =
k
- 1fy  47fng1 4fneo | 151fNys
YN+i — YN+i-1 = b > Bifnes + PPvign+i nl— —
= R (26) 26830 © 11340 1680 420
thigimnys  i=vdle R 479833fn1a)  ,22159gN4a | 3 4lmiga
Therefore, for k = 2, the main method, 725760 12096 2016
For k = 5, the main method,
fn 3fn+1 ]-]-3fn+2
n — Yn =h|—-——=
Ynt2 = Ynt1 < 160 T 10 160 sy =
17 T n+3 " Yn+2
_ h2 .g’8+2 + h3 2:8’2 , h 7fn _ 433fn+1 + 2749fn+2
259920 80640 10080
is coupled with the following initial additional method, 271819 fn+s  347fnva 43 fnts
362880 20160 80640
9fo 4f fo 2901 3mM1 2191943 3191my 3
o =h (20 T T2 p2dt s —h h ,
s o ( 0 "5 a0) 7ty 15 864 4032

i 1 ith the followi initial itional meth
For & = 3, the main method, is coupled with the following two initial additional methods,

39291, 2819077f, 1931f, 173
ol fe Afan | 359fuin faes\  wi— o= h( fo | fi 19317 173/
Yoka = Yo = b —5de + T 4 ot S 20160 ' 2903040 10080 ' 5760
Vonss s C8S3fi  139f5 ), 11llgy ,5995m
— h? 4g+ +hP— 476+ : 181440 ' 322560 6912 8064

is coupled with the following initial additional method, 139fy  4763f1  295829f,  H4lfs

vrmin = h<_ 80640 = 20160 362880 10080
19 409 337 7 191 289
ylyOh(fOJr flf2+fg> + fa f5>_h2 92 | p3zoim2

90 480 15 288 80640 25920 864 4032

11 g1 7m1
2 3
+h 48 +h 30 and two final additional methods,

and final additional method,
YN+4—YN+3 =

YN+3—YN42 = h( 43fn | 307 N1 TT N2
. <fN v e, 8813fN+3> 322560 ' 181440 5760
810 480 3 12960 3179fn+s | 2034589 fnya 89fN+5>
,830n4s a4 lTmnys 10080 2903040 20160
Th 432 +h 720 ' 2 1399gN 44 B3 253m N 14
For k = 4, the main method, 6912 8064 ,
Y —Ynt2 = YN+5—YN+4 =
" e 89fn  5TTfni1  821fnyo
< 28fn _ s | ATfnis 65321 /nis h(504000 T 7322560 90720
45360 1120 840 90720 1420 fxss 1099 fyes 46913609 fyss
LY/ 4) _ p284T0nes s 3Tnss 40320 2880 72576000 >
1680 3024 1008 29000 Tl
is coupled with the following two initial additional methods, 172800 40320
For k = 7, the main method,
113fy  82471f, 103fs  43fs 47/,
= h( 560 | 90720 840 ' 3360 45360> _
Yn+d4—Yn+3 =
_ 25991 s 10T 149f,  8959fns1  1583fuin
3024 1008 <48384OO 16329600 241920
47 fo 3131  219f,  37fs 6673 fn13 19599451 f, 14 _ 12697 fr45
Y2~y = h<—20160 +t 9960 T 220 1260 24192 26127360 604800
2314 211g2 39M1 + 437 n o — 163fn+7>
+ 20160) ey 403200 3265920
52497 Gn1a 5 249TMy 4y
and one final additional method, —h 11520 51840 )

Volume 31, Issue 1: March 2023



Engineering Letters, 31:1, EL._31 1 41

is coupled with the following three initial additional methods,

12437 f,
—un = h
o ( 67200

23141 f5
241920
4001 f~
32659200>

3620781881f; 220919,
3265920000 604800
20267f,  39901fs 21941 fg

653184 = 4838400

15120000
219269791 540187,
2592000 259200

3628800

42929f;  13409f, 241fs

362880 | 725760 67200

__wmﬁ>_2mwm+ﬁ
45360000 32000

79963 f1
362830

11876503 f»
13440000
307 fs

580608
2687me

28800

(1807, 3T43fi | 150137
Y37¥2 = 1"\ 16320600 ~ 1209600 ' 604800
208823415  653fs  5483fs  T967fs

26127360 13440 = 1209600 16329600
149f7 ) h3 3391m3

_ h2 249793
4838400 11520 51840

and three final additional methods,

163fx  3707fwyr 1177 x1s
9072000 14515200 604800
22301 fnra 17226557 fnss
72576 24192000
n 673fN+7> _,211833gn 45
3628800 57600

YN+5 — YN+4 = h(

~ 9313fN+43
725760
15271 n

1814400
3 41mN+5
1152 ’

+h

 6T3fx
32659200
21431 fy+s 1249 fn 14

3265920 48384
2201987399 fn 46

3265920000

6533mN+6
R
* 259200 ’

143fn41 7517 N2
560000 4838400
210967 15
604800
_ 1501fN+7)

YN+6 — YN+5 = h(

604800 2592000

1501 fn _ 3737 fN+1
29635200 6531840
84473 fn+a 73253 fNn+s

3265920 1209600
50599 fn+6 99876260699fN+7)

120960 160030080000
2 195688379 N7
127008000

45889 fn 12
15120000

YN+T — YN+6 = h(

_ 367fn4s3
35840

3 2TT19muy 47
1814400

2481337946

V. NUMERICAL EXPERIMENTS
We consider some standard linear and non-linear stiff prob-
lems. We intend to experimentally examine the accuracy of
the TDGEMs (15). The numerical computations were carried
out in this paper using MATLAB Programme.

Problem 1: Consider the mildly stiff linear problem solved
by [25], [34]

998y,
—999y,

+1998ys,
—1999ys,

= yi(0) = 1

Yo = y2(0) = 1.
and the exact solution is given by the sum of two decaying
exponential components

-z _

Y1 = de 36710001

Yo = —9¢7% + 36710001

with stiffness ratio 1:1000.

Problem 1 was solved using TDGEM of order p = 5 in
the interval [0,100] using step-length h = 0.1 and the
absolute errors |y; — y(z;)| are presented in Table IV. From
Table IV, it is interesting to note that our TDGEM with
order p = 5 has superior accuracy when comapred with
the methods of Yakubu and Markus [34] and the extended
generalized Adams-type second derivative boundary value
method (EGASDBVM) of Nwachukwu and Okor [25] which
are both of order p =8 .

Problem 2: we consider the stiff system

y= —yi— 15+ 15t 5 pi(0) = 1

Yo = 15y1 —y2 —15e™" 5 32(0) = 1.
Its exact solution is y(t) = y2(t) = e *.
This system has eigenvalues of large modulus lying
close to the imaginary axis —1 4 15¢. The 2-step TDGEM
was applied to this problem and the absolute errors
ly; — y(x;)| were compared with that of the 2-step second
derivative multistep method (SDMM) in Hojjatti et al [8]
and the 2-step continuous third derivative block method
(CTDBM) of Akinfenwa et al [35]. Clearly, from Table
V, it is observed that the newly derived method performs
better than the SDMM and the CTDBM for the same step
number, k£ = 2.

Problem 3 Consider the non-linear system proposed by [36]
and solved by [22], [28], [29]

vy = —1002y; + 100053 , 3(0) = 1
Yo = y1—y2(1+y2) , y2(0) L.

0 <t < T, the smaller ¢ is, the more serious the stiffness of
the system. The exact solution is vy (t) = y3(t), va(t) =
e t.

We solved this problem with the 2-step and 3-step TDGEMs
for h = 0.008,0.01,0.02 on the range of 0 <t < 5 and the
maximum errors max||y; —y(t;)|| were presented in Table VI.
We found from Table VI that the 2-step TDGEM is superior
to the 2-step boundary value method (BVM2) of Ehigie et
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al [22] and the 2-step third derivative continuous multistep
method (TCM2) of Longe and Adeniran [29]. Also, from
Table VI we can observe that the 3-step TDGEM shows
superiority over the 3-step GSDLMMEs3 of Ogunfeyitimi
and Ikhile [28], the 3-step TCM3 of Longe and Adeniran
[29] and the 3-step BVM3 of Ehigie et al [22] (where N is
the number of integration steps given as N = b’Ta).

In Table VII, we made a comparison of the absolute errors
of the TDGEMs for different orders. Table VII shows that as
the order increases, the new class of methods (15) performs
better as expected.

Problem 4 We consider the stiffly nonlinear system

=~y n0) =
Yo = Y1 — Y2 — Y3, y2(0) =
It's exact solution is given by y; = %3, 9o = e ..

According to [35] and [37], the smaller the Value € is, the
more serious the stiffness of the system.

In Table VIII and Table IX, we present absolute errors
vi = |lyi —y(t)],i = 1,2 for e = 1073 and ¢ = 1074
respectively. From Table VIII, using ¢ = 1073 we see that
the TDGEM of order 5 performs better than the CTDBM of
Akinfenwa et al [35] and the SDMM of Hojjati et al [8].
Also, we observe that in Table IX using ¢ = 10~ the
TDGEM of order 6 is superior to the EGASDBVM of
Nwachukwu and Okor [25] and the second derivative gener-
alised Adams-type method (SDGAM) of Nwachukwu and
Mokwunyei [26] both of order 10. The TDGEM shows
superiority despite its lower order when compared to the
EGASDBVM and the SDGAM.

Problem S The following problem was suggested by [38],

y; = —0.013y, — 1000y1y2 — 2500y1y3; y1(0) =0
vy = —0.013y2 — 1000y1y2; y2(0) =1
yh = —2500y1ys; y3(0)=1.

Problem 5 was solved using the TDGEM of order 6 and the
results were compared with the solution from the OdelS5s in
MATLARB. It is observed from Fig.8 that the new method is
very comparable with the Odel5s in MATLAB.

Problem 6 The linear stiff test solved by Brugnano and
Trigiante [18], [39]

y1 = —2ly1 +19y2 —20y3; 41(0) =1
yp» = 1991 —2lyz +20y3; y2(0) =0
ys = 40y1 —40y2 —40y3; y3(0) = —1.
The theoretical solution is given by:
y(t) = %(e*% + €740 (cos(40t) + sin(40t)))
ya(t) = 5(e7% — e *(cos(40t) + sin(40t)))
ys(t) = —1(2e 1% (sin(40t) + cos(40t))) .

The TDGEMs of order 6, 8,and 10 were applied to problem
6 and the numerical results were reported in Table X. From
Table X, we have the following observations. The TDGEM of
order 6 is more accurate than the top order method (TOM) of
order 6 and the high order extended boundary value method
(HEBVM) of order 7 for the same step number, k£ = 3. The
TDGEM of order 8 is of higher accuracy than the TOM

of order 10 and the HEBVM of order 9 for the same step
number, £ = 5. The TDGEM of order 10 performs better
when compared with the TOM of order 14 and the HEBVM
of order 11 for the same step number, k& = 7. Furthermore,
in Fig.9, we have the numerical results for Problem 6 using
the Tenth order TDGEM. We notice that the graphs of the
exact and numerical solutions in Fig.9 coincide. Hence, our
method is very accurate.

Problem 7 Robertson’s Equation (nonlinear problem), see

[6]

T —0.04y1 + 10%yoy3; y1(0) =1
Yy = 0.04y; —10%y2y3 — 3 x 107y5; 42(0) =0
vy = 3x107y5; ys(0)=0.

The numerical results for Robertson’s equation using the
sixth order and eighth order TDGEMs are given in Fig.10
and Fig.11 respectively. From the figures, it is obvious that
the new methods are very comparable with the Odel5s in
MATLAB, Higham and Higham [40].

Problem 8 Van der Pol Equation (nonlinear problem), see

[6]

nio= Y2 y1(0) =2

yo = —y1+10y2(1 —yf); 32(0)=0.
The numerical results for Van der Pol equations in Fig.12
and Fig.13 show that our methods coincide with the Odel5s
in MATLAB, Higham and Higham [40].

VI. CONCLUSION

This paper presents a class of TDGEMs for solving stiff
IVPs. The proposed class of methods is an extension of
the GSDLMME of Ogunfeyitimi and Ikhile [28] and a
generalization of the method of Longe and Adeniran [29]
which is A-stable for £ = 2 and 3. The new methods are
0y k—o-stable and A, _,-stable with (v,k — v)-boundary
conditions and of order p = k + 3 for values of step-
number &£ > 1. In the new class of methods, there is
no limit concerning the maximum order attainable. It was
shown that this class of methods is of higher order and has
superior accuracy and stability properties when compared
with the GSDLMME of [28], see Fig.1 - Fig.6. The linear
and non-linear stiff problems considered, show that our class
of methods is more accurate than some existing methods and
also very comparable with Odel5s of MATLAB, these are
shown in Table IV - Table X and Fig.8-Fig.13.
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Table I: The coefficients, Error Constants C),1; and order p of TDGEMs (15).

k Bo b Ba B3 P Bs
1 3
1 4 4
2 L 3 113
160 10 160
3 —_L 4 359 1
288 15 480 90
4 23 __9 247 65321 _ .1
45360 1120 840 90720 1680
13
5 _T_ 433 2749 271819 _ 347 80640
25920 80640 10080 362880 20160
137
6 L1709 611 _ 4307 2645 12676459 37800
29030400 630400 483840 9072 17418240
12697
7 —__149 8959 1583 19599451 — 12697 604800
4838400 16329600 24192 26127360 604800
BT71922613
8 4093 _ 21289 _T71051 _ 375799 1158347 11975040000
498960000 159667200 59875200 39916800 3991680
TI5113679
9 — 37 _ 198563 _ 2707 _ 1171697 22172443 153280512
8709120 2554675200 3421440 159667200 79833600
07241247
10 | — 742823 _ 12342923 _ 96305309 7653601 _16196893 370656000
581188608000 544864320000 464950886400 5448643200 1660538880

Table II: The coefficients, Error Constants C),,; and order p of TDGEMs (15) (continuation).

k Be Br Bs B Bro
1
2
3
4
5
6 2161
7257600
7 437 163
103200 3265920
3 304397 26891 29
19958400 39916800 1069200
9 104477 49927 60349 47357
4435200 31933440 479001600 7664025600
23038649
10 | 1833901084727 3639469 121565617 326329 6974263296000
2490808320000 201801600 116237721600 1358914560
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Table III: The coefficients, Error Constants C,,; and order p of TDGEMs (15) (continuation).

k v Yov ¢’U C(p-l-l p
4
1 1 1
1 1 —1 31 80
_r T 1 5
2 2 80 240 1800
11 11 23 6
3 2 48 240 151200
4 3 _ 647 37 _ 43 7
3024 1008 846720
5 3 _ 191 191 1709 8
864 4032 101606400
6 4 44131 1393 163 9
207360 34560 26127360
7 4 2497 2497 4093 10
11520 51840 1796256000
8 5 670303 40321 47357 11
3168000 950400 52690176000
9 5 _ 14797 14797 742823 12
69120 304128 2131024896000
132424231 5512813 4867481 13
10 6 FOrErtr Ty TSET0R100 33999533568000
628992000 125798400 33999533568000
0.006F
]
[ ]
0.005F
L]
— — TDGEMs
= 0.004F
% —_— GSLMME
&)
= - ==== Enright
m
A7)
2 0.003F
(@]
O
|-
(]
=
I}
— 0002}
0.001F
0.000F

2 4 4] 8 10
Step number (k)

Figure 1: The plot of |error constant} against step number k£ of the TDGEMs (15), the GSDLMME

[28] and the method of Enright [4].
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-4
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a(q — 1)(g — 2)vta=? ]

Figure 2: Stability region (exterior of closed curve) of GSDLMME in [28], k = 1(2)29. The curves are
for k=1,3,5,7,---,29. However, the curves for k = 7,9,11,--- ,29 are so close to one another that

they are indistinguishable.
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Figure 3: Stability region (exterior of closed curve) of GSDLMME in [28], k& = 2(2)30. The curves are
for k =2,4,6,8,---,30. However, the curves for £k = 6,8, 10, --- ,30 are so close to one another that
they are indistinguishable.

Table IV: Absolute errors in the numerical solution of Problem 1, h = 0.1.

¢ - | TDGEM((15) EGASDBV M [25] Yakubu — Markus [34]
lp=5 p=38 p=38

5 y1 | 2.559605895291472 x 1010 3.2024170123130 x 102 1.96006208591687 x 102
ya | 1.279802947645736 x 10~ 10 3.2602729149065 x 1072 9.80025491509760 x 107!

40 Y1 1.102792804033894 x 10— 2% 7.1981394073653299 x 10~ 3.81292881577727 x 10~7
y2 | 5.513964020169468 x 10~2° 7.198139407651458 x 10~1° 1.90646440788863 x 10~

70 Y1 1.787044718505958 x 1037 8.848025628743198 x 10~26 8.90990527186305 x 10~ 12
Yo | 8.935223588150732 X 10—38 8.848025628742016 x 1026 4.45495263593152 x 10~12

100 | 91 2.378834730098595 x 10~°0 1.087608242814579 x 1038 2.08203236381127 x 10~ ®
ya | 1.189417365547139 x 10~°° 1.087608242814395 x 1036 1.04101618190563 x 1018

Table V: Absolute errors in the numerical intergration of Problem 2, A = 0.01.

¢ | u TDGEM(15) CTDBM [35] SDMM [8]
v k=2 k=2 k=2
s | | 78X 10-18 3.73 x 10717 6.09 x 10~ 14
Y2 | 3.73 x 10717 9.54 x 10718 2.24 x 10714
0 |0 2.71 x 1020 4.68 x 10719 7.17 x 10~16
Yo | 8.13x 10720 2.71 x 10719 1.12 x 10716
15 |y | 6:35x 1022 3.92 x 1021 6.64 x 10-18
yo | 7.41 x 10722 2.44 x 1072 2.86 x 10719
a0 | U1 | 910 % 10~ 4.30 x 10723 5.32 x 10=20
Yo | 8.27x 10725 4.14 x 10724 1.31 x 1020
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Figure 5: Stability region (exterior of closed curve) of TDGEMs (15), k = 3(2)29 zoomed in for clarity
for Figure 4.
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Figure 6: Stability region (exterior of closed curve) of TDGEMs (15), k& = 2(2)30.
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Figure 7: Stability region (exterior of closed curve) of TDGEMs (15), k = 4(2)30 zoomed in for clarity

for Figure 6.
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Table VI: Maximum Errors, max ||y; — y(x;)|| for Problem 3 .

Y1 Y2
Method N b mazly -yl | masllys — y(t2)]
TDGEM(15) 125 0.008 1 4.163 x 10~ 1° 5.773 x 10~ 1°
(k=2)
50 0.008 0.4 1.798 x 10~ ™ 1.332 x 10714
3 0.008 0.24 | 1.268 x 10710 8.982 x 1014
500 0.01 5 1.68 x 10~17 1.31 x 10715
25 0.02 0.5 4.458 x 10~ 14 3.575 x 10~
3 0.02 0.06 | 3.624 x 1010 3.33x 10713
TDGEM(15) 125 0.008 1 5.551 x 1017 5.551 x 1017
(k = 3)
50 0.008 0.4 1.11 x 10~ 16 1.665 x 10~ 16
3 0.008 0.24 | 0.00 0.00
500 0.01 5 7.x 10719 4.25 x 10717
25 0.02 0.5 1.81 x 10~ 1.488 x 10~
3 0.02 0.06 | 1.221 x 10~ ™# 6.328 x 10~
GSDLMMEs3 [28] 125 0.008 1 6.88 x 10~ 1° 3.33 x 10715
(k = 3)
50 0.008 0.4 1.02 x 10~ 1.67 x 10~
3 0.008 024 | 5.61 x107° 1.66 x 1079
25 0.02 0.5 1.46 x 10~ 12 1.46 x 10~ 12
3 0.02 0.06 | 834x10°% 1.73 x 108
TCM2 [29] (k = 2) 500 0.01 5 422 x 10713 9.80 x 1013
TCM3 [29] (k = 3) 500 0.01 5 2.245 x 10~ 1° 5.00 x 10~ 14
BVM2 [22] (k = 2) 125 0.008 1 6.61 x 10712 6.74 x 10712
50 0.02 1 2.49 x 1010 2.64 x 1079
BVM3 [22] (k = 3) 125 0.008 1 3.88 x 10714 3.10 x 10714
50 0.02 1 3.20 x 1012 3.02 x 10712
Table VII: Absolute Errors in the Numerical Solution of Problem 3.
W]y TDGEDM(15) TDGEM(15) TDGEM(15)
¢ k=3;p=6 k=4;p="7 k=5p=38
0001 | ¥ | 2312 10722 4.136 x 10~ 4.136 x 10~
: Yo | 2.582 x 10718 4.066 x 10~20 6.776 x 102!
y1 | 8.479 x 10722 3.722 x 10~%3 3.309 x 10~%4
0.01 —19 —19 —20
ya | 1.220 x 10 5.014 x 10 4.066 x 10
oq | ¥ | 2953 x 10719 9.607 x 1021 2.503 x 10~ 2
‘ ya | 1.319 x 10714 5.241 x 1016 1.727 x 10717
05 | v | 8208 1020 2.718 x 10~ 21 7.470 x 10~
: y2 | 9.913 x 10713 8.922 x 10~ 6.665 x 10~ 1°

Table VIIT: Numerical Solutions of Problem 4, h = 0.01 ¢ = 1073,

¢ u TDGEM(15) CTDBM [35] SDMM [8]
* | k=2,p=5 k=2,p=5 k=3,p=5
s | 1.50 x 10~17 1.00 x 1016 3.92 x 1016
y2 | 1.25 x 1071 7.49 x 10715 3.72 x 10714
0 | v | L4dx 1021 9.11 x 1021 4.56 x 10=20
yo | 1.72 x 10717 1.00 x 1016 5.00 x 10~16
0 | Y1 | 526 10739 3.74 x 10729 1.28 x 10~ %8
y2 | 1.38 x 1072 9.08 x 102! 4.56 x 10720
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Table IX: Numerical Solutions of Problem 4, h = 0.01 ¢ = 10~

. [ TDGEM(15) EGASDBV M [251SDGAM [26]
il p=6 p=10 p=10
5 | w1 | 1.388x 10~17 1.735 x 10~ 17 2.038 x 10~ 13
ya | 6.939 x 10~17 8.327 x 1017 7.087 x 10713
4 | v | 6:505x 1071 1.247 x 10718 3.518 x 10~ 1°
yo | 2.082 x 10717 3.469 x 10717 9.594 x 10714
6 | v | 6776 x 10721 6.268 x 10=20 6.428 x 10~17
y2 | 1.735 x 10718 1.388 x 10717 1.297 x 10~ 14
g | Y 5.294 x 1023 2.475 x 10~21 1.176 x 10~ 18
Y2 | 1.084 x 10717 4.066 x 10718 1.752 x 10718
10 | Y1 | 2068 x 102 6.969 x 102 2.150 x 10~20
yo | 0.000 8.403 x 10719 2.368 x 1016
1.2 . . . . .
y3(TDGEM)
~a e et
1 b= T
0.8 r
y2(TDGEM) *  yl(ode15s)
ﬁgﬂ y2(ode15s)
s 06 +  y3(ode15s)
5 y1(TDGEM)
B y2(TDGEM)
E 0.4 | y3(TDGEM)
y1(TDGEM)
0.2r
0 -tk + ¥ + ¥ ¥ + Ao
'0.2 1 1 1 1 1
0 1 2 3 4 5
X-axis

Figure 8: Numerical results for Problem 5 using the sixth order TDGEM, h = 0.0001.
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Table X: A comparison of methods for problem 6, Error = Maz|y(t) — y|, Rate = log, (f—f)

e is the maximum absolute error for 7, N = =12 and 0 < ¢ < 1.
TOMs [18] TOMs [18] TOMs [18]

h N k=3 p—6 Rate k=5p=10 Rate k=7p=14 Rate
2x 1072 [ 50 | 1.552x 1073 — 1.523 x 1074 — 4.780 x 1075 —
1x1072 | 100 | 9.775 x 107° 7.31 | 2.504 x 10~7 9.25 | 1.213 x 1078 11.94
5x 1073 [ 200 | 1.197 x 10~ 7 6.35 | 7.490 x 10~ 1T 11.70 | 2.472 x 10~ 13 15.58
2.5%x1073 | 400 | 1.853 x 1079 6.01 | 3.009 x 10~14 11.28 | 1.654 x 10~ # 3.90

HEBV M3 [27] HEBV M5 [27] HEBV MT [27]

h N k=3p=1 Rate k=5p=09 Rate k=7p=11 Rate
2x10°T |5 9.091 x 10~° — 1.596 x 103 — 4132 x 1073 —
1x107! [ 10 | 2.171 x10°8 12.03 | 3.204 x 107 12.28 | 2.049 x 107~ 14.30
5x 1072 [ 20 | 5.856 x 1012 11.86 | 6.150 x 10~ 12 15.67 | 1.315 x 10~ 13 20.57
25%x1072 | 40 | 5.934 x 10~ ¢ 6.62 | 1.110 x 10~16 15.76 | 5.551 x 10717 11.21

TDGEM(15) TDGEM(15) TDGEM(15)

h N k=3p=6 Rate k=5p=8 Rate k=7p=10 Rate
2x1071 |5 2.938 x 1079 — 1.211 x 10710 — 1.215 x 1079 —
1x10~F | 10 | 5.409 x 10~ 11 5.76 | 2.430 x 1012 5.64 | 1.554 x 10~14 16.25
5x 1072 [ 20 | 7.163 x 10713 6.24 | 1.608 x 10~ 14 723 | 4.510 x 1017 8.43
25%x1072 | 40 | 5.163 x 10~ 1° 712 | 9.714 x 10~17 7.37 ]6.939 x 10~18 2.70

1 T T T T T
* y1(TDGEM)
y1(exact) WV y2(TDGEM)| |
0.8
< O  y3(TDGEM)
y1(exact)
0.6 y2(exact) y2(exact) |7
y3(exact)
n 04 1
=
fP
G 02 :
B
j
3 !
D 4
0.2 B 1
- y3(exact)
-04 i
M
—0.6 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2
X-axis
Figure 9: Numerical results for Problem 1 using the tenth order TDGEM, N = 150.
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Figure 10: Numerical results for Robertson’s Equation using the sixth order TDGEM.
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Figure 11: Numerical results for Robertson’s Equation using the eighth order TDGEM.
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Figure 12: Numerical results for Van der Pol equation using the sixth order TDGEM.
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Figure 13: Numerical results for Van der Pol equation using the eighth order TDGEM.
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