
Abstract—A class of third derivative generalized Enright-
type methods (TDGEMs) is derived. This class of methods is 
an extension of the GSDLMME from Ogunfeyitimi and 
Ikhile and a generalization of the method from Longe and 
Adeniran. The proposed TDGEMs which incorporate third 
derivative terms have the advantage of better accuracy and 
stability properties compared with the GSDLMME. The new 
class of methods is implemented as boundary value methods 
(BVMs) for the numerical solution of stiff ordinary differen-
tial equations (ODEs). The numerical results obtained show 
that the methods developed can compete with the existing 
ones in the literature.
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tive method which is A−stable for step numbers k = 2 and
3, and is defined by

yn+k = yn+k−1 + h
k∑
j=0

βjfn+j + h2δkgn+k + h3γken+k ,

(5)

where yn+j ≈ y(xn+ jh), fn+j ≡ f(xn+ jh, y(xn+ jh)),

gn+k ≡ df(x,y(x))
dx

∣∣∣x=xn+k

y=yn+k

, en+k ≡ dg(x,y(x))
dx

∣∣∣x=xn+k

y=yn+k

,

xn is a discrete point at node point n, βj , δk and γk are
coefficients and h is the chosen step-length. This method was
used to generate the main method and the complementary
methods to solve problems via boundary value techniques.
The aim of this paper is to develop a class of third derivative
generalized Enright-type methods (TDGEMs) which is an
extension of the GSDLMME of Ogunfeyitimi and Ikhile
[28] and a generalization of method of Longe and Adeniran
[29]. The purpose of adding the third derivative function into
the GSDLMME in [28] is to obtain higher order methods
with better stability properties.
This paper is organized as follows: In section II, we present
the properties and the stability of the third derivative
boundary value methods (TDBVMs). The construction of
the TDGEMs where the stability properties are discussed,
is provided in section III. The implementation technique
is shown in section IV. In section V, some numerical
experiments are considered. In section VI, we present the
conclusion of the paper.

II. THE THIRD DERIVATIVE BOUNDARY VALUE
METHODS (TDBVMS)

The general k-step third derivative linear multistep method
(TDLMM) can be written in the form
k∑
j=0

αjyn+j =

h
k∑
j=0

βjfn+j + h2
k∑
j=0

γjgn+j + h3
k∑
j=0

φjmn+j , k ≥ 1 ,

(6)

where yn+j is the numerical approximation to the an-
alytical solution y(xn+j), fn+j = f(xn+j , yn+j) =
y′(xn+j), gn+j = g(xn+j , yn+j) = y′′(xn+j), mn+j =
m(xn+j , yn+j) = y′′′(xn+j), αj , βj , γj andφj are param-
eters and h is the chosen step-length. A generalization of
this method to a class of third derivative boundary value
methods (TDBVMs) is given in section III. The IVP (1)
can be approximated by the following third derivative k-step
LMF

k2∑
j=−k1

αjyn+j =

h

k2∑
j=−k1

βjfn+j + h2
k2∑

j=−k1

γjgn+j + h3
k2∑

j=−k1

φjmn+j ,

k1 + k2 = k,

y1, y2, · · · , yk1−1, yN , · · · , yN+k2−1(fixed),
(7)

of order p with k1 initial conditions and k2 final conditions
at the boundary of interest (see [17], [18]). yn is the discrete
approximation of the solution y(xn), xn = x0 + nh denotes
the uniform point with equal spacing h, fn = f(xn, yn),
gn = g(xn, yn) = df(x,y(x))

dx

∣∣∣x=xn

y=yn
, mn = m(xn, yn) =

d2f(x,y(x))
dx2

∣∣∣x=xn

y=yn
, αj , βj , γj andφj are parameters.

In order to implement (7) as a TDBVM and since y0 is given
in the IVP (1), k1−1 initial solution values: y1, y2, · · · , yk1−1
and k2 final solution values: yN , · · · , yN+k2−1 are needed.
It then follows that the k1 − 1 initial solution values and
k2 final solution values can be generated from the following
initial additional formula (8) and final additional formula (9)
respectively.
k∑
i=0

α
(j)
i yi = h

k∑
i=0

β
(j)
i fi + h2

k∑
i=0

γ
(j)
i gi + h3

k∑
i=0

φ
(j)
i mi,

j = 1(1)k1 − 1,
(8)

k∑
i=0

α
(j)
k−iyN−i = h

k∑
i=0

β
(j)
k−ifN−i + h2

k∑
i=0

γ
(j)
k−igN−i

+ h3
k∑
i=0

φ
(j)
k−imN−i,

j = (N − k2) + 1(1)N.

(9)

The composite scheme ((7),(8) and (9)) is a TDBVM as-
sumed to have uniform order p. Thus, the method (7) which
is assumed to be 0k1k2−stable, Ak1k2−stable is used with
(k1, k2)−boundary conditions. To generalize the concept of
zero-stability (0−stability) and A−stability of TDLMM from
the theory of third derivative initial value method (IVM) in
(6) to TDBVM (7), we let

ρ(z) =
k∑
j=0

αjz
j , σ(z) =

k∑
j=0

βjz
j , ξ(z) =

k∑
j=0

γjz
j ,

ω(z) =
k∑
j=0

φjz
j ,

(10)

be first, second, third and fourth characteristics polynomials
associated with (6) respectively. Here,

π(z, q) = ρ(z)− qσ(z)− q2ξ(z)− q3ω(z), q = hλ, (11)

is the stability polynomial when (6) is applied on y′ =
λy, y′′ = λ2y, y′′′ = λ3y, Re(λ) < 0. We now have
the following definitions.

Definition 2.1: A polynomial ρ(z) in (10) of degree k =
k1+k2 is an Sk1,k2−polynomial, if its roots {zj}kj=1 are such
that |z1| ≤ |z2| ≤ · · · ≤ |zk1 | < 1 < |zk1+1| ≤ · · · ≤ |zk|.

Definition 2.2: A polynomial ρ(z) in (10) of degree
k = k1 + k2 is an Nk1,k2−polynomial, if its roots {zj}kj=1

are such that |z1| ≤ |z2| ≤ · · · ≤ |zk1 | ≤ 1 < |zk1+1| ≤
· · · ≤ |zk| with simple zeros of unit modulus.
If k1 = k, k2 = 0, an Nk1,k2 -polynomial reduces to a
Von-Neumann polynomial and an Sk1,k2 -polynomial reduces
to a schur-polynomial.
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Definition 2.3: A TDBVM (7) with (k1, k2)-boundary
conditions, where k = k1 + k2 is:

(a) 0k1,k2 -stable if the corresponding polynomial ρ(z)
in (10) is an Nk1,k2 -polynomial.

(b) (k1, k2)-absolute stable for a given q ∈ C, if the
polynomial π(z, q) in (11) is an Sk1,k2 -polynomial.

(c) The region Dk1,k2 = {q ∈ C : π(z, q) is an Sk1,k2 -
polynomial} is said to be the region of (k1, k2)-
absolute stability. Here π(z, q) is a polynomial of
type (k1, 0, k2).

(d) Ak1,k2 -stable if C− ⊆ Dk1,k2 .
For definitions 2.1, 2.2 and 2.3, see [17], [18].

III. THIRD DERIVATIVE GENERALIZED ENRIGHT-TYPE
METHODS (TDGEMS)

The Enright’s third derivative method is based on the
TDLMM (6) and can be defined generally as

yn+k−yn+k−1 =

h
k∑
j=0

βjfn+j + h2γkgn+k + h3φkmn+k .
(12)

Following Brugnano and Trigiante [18], [19], [30], (12) can
be written as

yn+i−yn+i−1 =

h

k∑
j=0

βjfn+j + h2γign+i + h3φimn+i ,
(13)

where i = 0(1)k.
For i 6= k, we can choose the values of i which provide
methods with the best stability properties for all values of
the step number k ≥ 1. Practically, we get the best stability
properties for the choice of i = v such that

v =


k+1
2 ; for odd k

k+2
2 ; for even k

, k = 1, 2, 3 . . . . (14)

Therefore, (13) becomes

yn+v−yn+v−1 =

h

k∑
j=0

βjfn+j + h2γvgn+v + h3φvmn+v,
(15)

(15) is our main method in this paper. The class of meth-
ods (15) of maximum order p = k + 3 is found to be
0v,k−v−stable and Av,k−v−stable for all values of k ≥ 1
and must be used with (v, k − v)-boundary conditions (i.e
with v number of roots inside the unit circle and k − v
number of roots outside the unit circle). The methods (15)
shall be referred to as third derivative generalized Enright-
type methods (TDGEMs). Rewriting (15) in the form

y(xn + vh)− y(xn + (v − 1)h)− h
k∑
j=0

βjy
′(xn + jh)

− h2γvy′′(xn + vh)− h3φvy′′′(xn + vh) = 0,
(16)

expanding in Taylor’s series and applying the method of
undefined coefficient, we obtained the coefficients of the
methods (15) for k = 1(1)10 as shown in Table I, Table
II and Table III.
We now consider the order, consistency and stability of our
TDGEMs. In the spirit of Fatunla [31] and Lambert [32], we
define the local truncation error (LTE) associated with (15)
as the linear difference operator L [y(xn);h] such that

L [y(xn);h] = y(xn + vh)− y(xn + (v − 1)h)

−h
k∑
j=0

βjy
′(xn + jh)− h2γvy′′(xn + vh)

− h3φvy′′′(xn + vh) .

(17)

Assuming that y(xn) is continuously differentiable, we can
find the Taylor series expansion of the terms in (17) about
the point xn to obtain the expression,

L [y(xn);h] = C0y(xn) + C1hy
′(xn)

+ C2h
2y′′(xn) + · · ·+ Cqh

qyq(xn) + · · · ,
(18)

where

C0 = 0

C1 = 1−
k∑
j=0

βj

C2 = v2−(v−1)2
2! −

k∑
j=0

jβj − γv

C3 = v3−(v−1)3
3! −

k∑
j=0

j2

2! βj − vγv − φv
...

Cq = vq−(v−1)q
q! −

k∑
j=0

jq−1

(q−1)!βj −
vq−2

(q−2)!γv

− vq−3

(q−3)!φv, for q = 1, 2 . . . .

(19)

Thus, the TDGEMs (15) is of order p if

Cj = 0, j = 0(1)p, Cp+1 6= 0, (20)

where Cp+1 is the error constant of the methods (15) and
its principal LTE is given as

Cp+1h
p+1y(p+1)(xn) +O(hp+2), Cp+1 6= 0,

Cp+1 =

vp+1 − (v − 1)p+1

(p+ 1)!
−

k∑
j=0

jp

p!
βj −

vp−1

(p− 1)!
γv − vp−2

(p− 2)!
φv .

(21)

The TDGEMs (15) is consistent, if it has an order of p ≥ 1.
The order conditions defined by (19) is equivalent to (27).
The order p and the error constant Cp+1 of the TDGEMs
(15) are presented in Table III, for k = 1(1)10. In Fig.1, we
have the plot of absolute value of error constant against step
number of the TDGEMs (15), the GSDLMME in [28] and
the method of Enright [4]. As it can be observed, our new
methods show a sharp decrease in error constant.
Now, we analyse the stability of the proposed methods (15).
According to Hairer and Wanner [33], the stability analysis is
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carried out through linearisation with the usual test equation

y′ = λy, y′′ = λ2y, y′′′ = λ3y, Re(λ) < 0, (22)

which is applied to (15) to yield the characteristic equation

π(ζ, z) = ζv− ζv−1− z
k∑
j=0

βjζ
j − ζv

(
z2γv + z3φv

)
(23)

z = λh, z ∈ C.

Letting ζ = expiθ, θ ∈ [0, 2π], we then plot the stability
regions. These are given in Fig.4 and Fig.6, for odd and
even values of k, respectively. The new methods are 0v,k−v-
stable and Av,k−v-stable with (v, k−v)-boundary conditions
for k ≥ 1. One can see that, as the value of k increases, the
boundary locus plot of the TDGEMs (15) reduces and as a
result the region of absolute stability (exterior of the closed
curve) increases. However, for the GSDLMME in [28], as k
(even) increases, the boundary locus plot increases, that is the
region of absolute stability reduces. Therefore the TDGEMs
have better stability properties than the GSDLMME, see
Fig.2-Fig.6.
The discrete problem generated by the k-step TDGEMs (15)
with (v, k−v)-boundary conditions can be written in compact
form, as follows:

AY − hBF − h2CG− h3DM =

yv−1 + h
v−1∑
j=0

βjfj

h
v−2∑
j=0

βjfj

...
hβ0fv−1

0
...
0

hβkfN
...

h
k−v∑
j=1

βv+jfN−1+j



(24)

where

A =



1 0 0 0 0 · · · 0

-1 1 0
. . . 0 · · · 0

0
. . . . . . . . . . . . · · ·

...

0
. . . . . . . . . . . . · · ·

...
... · · ·

. . . . . . . . . . . . 0

0 · · · 0
. . . -1 1 0

0 · · · 0 0 0 -1 1


(N−v)×(N−v)

B =



βv · · · βk
...

. . . . . .

β0
. . . . . .

. . . . . . βk
. . . . . .

...
β0 · · · βv


(N−v)×(N−v)

C =



γv

0
. . . 0

...
. . . . . .

... 0 γv
. . . . . .

0 0 γv


(N−v)×(N−v)

D =



φv

0
. . . 0

...
. . . . . .

... 0 φv
. . . . . .

0 0 φv


(N−v)×(N−v)

The A,B,C and D are Toeplitz matrices (T-matrices) of the
same dimension and

Y = (yv, · · · , yN−1)T , F = (fv, · · · , fN−1)T ,

G = (gv, · · · , gN−1)T , M = (mv, · · · ,mN−1)
T

are the solution, function and derivative function vectors.
The coefficient matrices A,B,C and D in (24) are T-
matrices having lower band with v (number of initial
conditions) and upper band with k − v (number of final
conditions).

IV. IMPLEMENTATION TECHNIQUE

The TDGEMs (15) will be implemented using the BVM
technique as discussed in [18], [22]–[27], [30] so that the
numerical solution, (y1, y2, · · · , yN )T of the IVP (1) is given
simultaneously at all the grid points. The main methods
(15) are to be used with (v, k − v)-boundary conditions
or, equivalently, they are conveniently coupled with the
following set of v−1 initial additional methods (y0 is already
provided by the initial value defining the ODE (1)),

yi − yi−1 = h
k∑
j=0

βjfj + h2γigi + h3φimi

i = 1, · · · v − 1

(25)
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and k − v final additional methods,

yN+i − yN+i−1 = h
k∑
j=0

βjfN+j + h2γigN+i

+h3φimN+i i = v + 1, · · · , k
(26)

Therefore, for k = 2, the main method,

yn+2 − yn+1 = h

(
− fn
160

+
3fn+1

10
+

113fn+2

160

)
− h2 17gn+2

80
+ h3

7mn+2

240
,

is coupled with the following initial additional method,

y1 − y0 = h

(
9f0
40

+
4f1
5
− f2

40

)
+ h2

g1
4
− h3m1

15
.

For k = 3, the main method,

yn+2 − yn+1 = h

(
− fn
288

+
4fn+1

15
+

359fn+2

480
− fn+3

90

)
− h2 11gn+2

48
+ h3

11mn+2

240
,

is coupled with the following initial additional method,

y1 − y0 = h

(
19f0
90

+
409f1
480

− f2
15

+
f3
288

)
+ h2

11g1
48

+ h3
7m1

80

and final additional method,

yN+3−yN+2 =

h

(
fN
810
− 7fN+1

480
+
fN+2

3
+

8813fN+3

12960

)
+ h2

83gN+3

432
+ h3

17mN+3

720
.

For k = 4, the main method,

yn+3−yn+2 =

h

(
23fn
45360

− 9fn+1

1120
+

247fn+2

840
− 65321fn+3

90720

− 11fn+4

1680

)
− h2 647gn+3

3024
+ h3

37mn+3

1008
,

is coupled with the following two initial additional methods,

y1 − y0 = h

(
113f0
560

+
82471f1
90720

− 103f2
840

+
43f3
3360

− 47f4
45360

)
− h2 599g1

3024
+ h3

107m1

1008
,

y2 − y1 = h

(
− 47f0
20160

+
313f1
1260

+
219f2
280

− 37f3
1260

+
23f4
20160

)
− h2 11g2

48
+ h3

5m1

84

and one final additional method,

yN+4−yN+3 =

h

(
− 11fN
26880

+
47fN+1

11340
− 41fN+2

1680
+

151fN+3

420

+
479833fN+4

725760

)
− h2 2159gN+4

12096
+ h3

41mN+4

2016
.

For k = 5, the main method,

yn+3−yn+2 =

h

(
7fn

259920
− 433fn+1

80640
+

2749fn+2

10080

+
271819fn+3

362880
− 347fn+4

20160
+

43fn+5

80640

)
− h2 191gn+3

864
+ h3

191mn+3

4032
,

is coupled with the following two initial additional methods,

y1 − y0 = h

(
3929f0
20160

+
2819077f1
2903040

− 1931f2
10080

+
173f3
5760

− 883f4
181440

+
139f5
322560

)
− h2 1111g1

6912
+ h3

995m1

8064
,

y2 − y1 = h

(
− 139f0
80640

+
4763f1
20160

+
295829f2
362880

− 541f3
10080

+
337f4
80640

− 7f5
25920

)
− h2 191g2

864
+ h3

289m2

4032

and two final additional methods,

yN+4−yN+3 =

h

(
− 43fN
322560

+
307fN+1

181440
− 77fN+2

5760

+
3179fN+3

10080
+

2034589fN+4

2903040
− 89fN+5

20160

)
− h2 1399gN+4

6912
+ h3

253mN+4

8064
,

yN+5−yN+4 =

h

(
89fN
504000

− 577fN+1

322560
+

821fN+2

90720

− 1429fN+3

40320
+

1099fN+4

2880
− 46913609fN+5

72576000

)
− h2 29101gN+5

172800
+ h3

731mN+5

40320
.

For k = 7, the main method,

yn+4−yn+3 =

h

(
− 149fn
4838400

+
8959fn+1

16329600
− 1583fn+2

241920

+
6673fn+3

24192
+

19599451fn+4

26127360
− 12697fn+5

604800

+
437fn+6

403200
− 163fn+7

3265920

)
− h2 2497gn+4

11520
+ h3

2497mn+4

51840
,
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is coupled with the following three initial additional methods,

y1−y0 = h

(
12437f0
67200

+
3620781881f1
3265920000

− 220919f2
604800

+
23141f3
241920

− 20267f4
653184

+
39901f5
4838400

− 21941f6
15120000

+
4001f7

32659200

)
− h2 192697g1

2592000
+ h3

40187m1

259200
,

y2−y1 = h

(
− 4001f0
3628800

+
79963f1
362880

+
11876503f2
13440000

− 42929f3
362880

+
13409f4
725760

− 241f5
67200

+
307f6
580608

− 1807f7
45360000

)
− h2 6133g2

32000
+ h3

2687m2

28800
,

y3−y2 = h

(
1807fn
16329600

− 3743f1
1209600

+
150137f2
604800

+
20882341f3
26127360

− 653f4
13440

+
5483f5
1209600

− 7967f6
16329600

+
149f7

4838400

)
− h2 2497g3

11520
+ h3

3391m3

51840

and three final additional methods,

yN+5 − yN+4 = h

(
163fN
9072000

− 3707fN+1

14515200
+

1177fN+2

604800

− 9313fN+3

725760
+

22301fN+4

72576
+

17226557fN+5

24192000

− 15271fN+6

1814400
+

673fN+7

3628800

)
− h2 11833gN+5

57600

+ h3
41mN+5

1152
,

yN+6 − yN+5 = h

(
− 673fN
32659200

+
143fN+1

560000
− 7517fN+2

4838400

+
21431fN+3

3265920
− 1249fN+4

48384
+

210967fN+5

604800

+
2201987399fN+6

3265920000
− 1501fN+7

604800

)
− h2 481337gN+6

2592000

+ h3
6533mN+6

259200
,

yN+7 − yN+6 = h

(
1501fN
29635200

− 3737fN+1

6531840
+

45889fN+2

15120000

− 367fN+3

35840
+

84473fN+4

3265920
− 73253fN+5

1209600

+
50599fN+6

120960
+

99876260699fN+7

160030080000

)
− h2 19568837gN+7

127008000
+ h3

27719mN+7

1814400
.

V. NUMERICAL EXPERIMENTS

We consider some standard linear and non-linear stiff prob-
lems. We intend to experimentally examine the accuracy of
the TDGEMs (15). The numerical computations were carried
out in this paper using MATLAB Programme.

Problem 1: Consider the mildly stiff linear problem solved
by [25], [34]

y
′

1 = 998y1 +1998y2, y1(0) = 1

y
′

2 = −999y1 −1999y2, y2(0) = 1 .

and the exact solution is given by the sum of two decaying
exponential components

y1 = 4e−x − 3e−1000x

y2 = −2e−x + 3e−1000x

with stiffness ratio 1:1000.
Problem 1 was solved using TDGEM of order p = 5 in
the interval [0, 100] using step-length h = 0.1 and the
absolute errors |yi − y(xi)| are presented in Table IV. From
Table IV, it is interesting to note that our TDGEM with
order p = 5 has superior accuracy when comapred with
the methods of Yakubu and Markus [34] and the extended
generalized Adams-type second derivative boundary value
method (EGASDBVM) of Nwachukwu and Okor [25] which
are both of order p = 8 .

Problem 2: we consider the stiff system

y
′

1 = −y1 − 15y2 + 15e−t ; y1(0) = 1

y
′

2 = 15y1 − y2 − 15e−t ; y2(0) = 1 .

Its exact solution is y1(t) = y2(t) = e−t.

This system has eigenvalues of large modulus lying
close to the imaginary axis −1 ± 15i. The 2-step TDGEM
was applied to this problem and the absolute errors
|yi − y(xi)| were compared with that of the 2-step second
derivative multistep method (SDMM) in Hojjatti et al [8]
and the 2-step continuous third derivative block method
(CTDBM) of Akinfenwa et al [35]. Clearly, from Table
V, it is observed that the newly derived method performs
better than the SDMM and the CTDBM for the same step
number, k = 2.

Problem 3 Consider the non-linear system proposed by [36]
and solved by [22], [28], [29]

y
′

1 = −1002y1 + 1000y22 , y1(0) = 1

y
′

2 = y1 − y2(1 + y2) , y2(0) = 1 .

0 ≤ t ≤ T , the smaller t is, the more serious the stiffness of
the system. The exact solution is y1(t) = y22(t), y2(t) =
e−t.
We solved this problem with the 2-step and 3-step TDGEMs
for h = 0.008, 0.01, 0.02 on the range of 0 ≤ t ≤ 5 and the
maximum errors max‖yi−y(ti)‖ were presented in Table VI.
We found from Table VI that the 2-step TDGEM is superior
to the 2-step boundary value method (BVM2) of Ehigie et
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al [22] and the 2-step third derivative continuous multistep
method (TCM2) of Longe and Adeniran [29]. Also, from
Table VI we can observe that the 3-step TDGEM shows
superiority over the 3-step GSDLMMEs3 of Ogunfeyitimi
and Ikhile [28], the 3-step TCM3 of Longe and Adeniran
[29] and the 3-step BVM3 of Ehigie et al [22] (where N is
the number of integration steps given as N = b−a

h ).
In Table VII, we made a comparison of the absolute errors
of the TDGEMs for different orders. Table VII shows that as
the order increases, the new class of methods (15) performs
better as expected.

Problem 4 We consider the stiffly nonlinear system

y
′

1 = −(ε−1 + 2)y1 + ε−1y22 , y1(0) = 1

y
′

2 = y1 − y2 − y22 , y2(0) = 1 .

It’s exact solution is given by y1 = y22 , y2 = e−t.
According to [35] and [37], the smaller the value ε is, the
more serious the stiffness of the system.
In Table VIII and Table IX, we present absolute errors
yi = |yi − y(ti)|, i = 1, 2 for ε = 10−3 and ε = 10−4

respectively. From Table VIII, using ε = 10−3 we see that
the TDGEM of order 5 performs better than the CTDBM of
Akinfenwa et al [35] and the SDMM of Hojjati et al [8].
Also, we observe that in Table IX using ε = 10−4 the
TDGEM of order 6 is superior to the EGASDBVM of
Nwachukwu and Okor [25] and the second derivative gener-
alised Adams-type method (SDGAM) of Nwachukwu and
Mokwunyei [26] both of order 10. The TDGEM shows
superiority despite its lower order when compared to the
EGASDBVM and the SDGAM.

Problem 5 The following problem was suggested by [38],

y′1 = −0.013y2 − 1000y1y2 − 2500y1y3; y1(0) = 0
y′2 = −0.013y2 − 1000y1y2; y2(0) = 1
y′3 = −2500y1y3; y3(0) = 1 .

Problem 5 was solved using the TDGEM of order 6 and the
results were compared with the solution from the Ode15s in
MATLAB. It is observed from Fig.8 that the new method is
very comparable with the Ode15s in MATLAB.

Problem 6 The linear stiff test solved by Brugnano and
Trigiante [18], [39]

y′1 = −21y1 + 19y2 − 20y3; y1(0) = 1
y′2 = 19y1 − 21y2 + 20y3; y2(0) = 0
y′3 = 40y1 − 40y2 − 40y3; y3(0) = −1 .

The theoretical solution is given by:

y1(t) = 1
2 (e
−2t + e−40t(cos(40t) + sin(40t)))

y2(t) = 1
2 (e
−2t − e−40t(cos(40t) + sin(40t)))

y3(t) = − 1
2 (2e

−40t(sin(40t) + cos(40t))) .

The TDGEMs of order 6, 8, and 10 were applied to problem
6 and the numerical results were reported in Table X. From
Table X, we have the following observations. The TDGEM of
order 6 is more accurate than the top order method (TOM) of
order 6 and the high order extended boundary value method
(HEBVM) of order 7 for the same step number, k = 3. The
TDGEM of order 8 is of higher accuracy than the TOM

of order 10 and the HEBVM of order 9 for the same step
number, k = 5. The TDGEM of order 10 performs better
when compared with the TOM of order 14 and the HEBVM
of order 11 for the same step number, k = 7. Furthermore,
in Fig.9, we have the numerical results for Problem 6 using
the Tenth order TDGEM. We notice that the graphs of the
exact and numerical solutions in Fig.9 coincide. Hence, our
method is very accurate.

Problem 7 Robertson’s Equation (nonlinear problem), see
[6]

y′1 = −0.04y1 + 104y2y3; y1(0) = 1
y′2 = 0.04y1 − 104y2y3 − 3× 107y22 ; y2(0) = 0
y′3 = 3× 107y22 ; y3(0) = 0 .

The numerical results for Robertson’s equation using the
sixth order and eighth order TDGEMs are given in Fig.10
and Fig.11 respectively. From the figures, it is obvious that
the new methods are very comparable with the Ode15s in
MATLAB, Higham and Higham [40].

Problem 8 Van der Pol Equation (nonlinear problem), see
[6]

y′1 = y2; y1(0) = 2
y′2 = −y1 + 10y2(1− y21); y2(0) = 0 .

The numerical results for Van der Pol equations in Fig.12
and Fig.13 show that our methods coincide with the Ode15s
in MATLAB, Higham and Higham [40].

VI. CONCLUSION

This paper presents a class of TDGEMs for solving stiff
IVPs. The proposed class of methods is an extension of
the GSDLMME of Ogunfeyitimi and Ikhile [28] and a
generalization of the method of Longe and Adeniran [29]
which is A-stable for k = 2 and 3. The new methods are
0v,k−v-stable and Av,k−v-stable with (v, k − v)-boundary
conditions and of order p = k + 3 for values of step-
number k ≥ 1. In the new class of methods, there is
no limit concerning the maximum order attainable. It was
shown that this class of methods is of higher order and has
superior accuracy and stability properties when compared
with the GSDLMME of [28], see Fig.1 - Fig.6. The linear
and non-linear stiff problems considered, show that our class
of methods is more accurate than some existing methods and
also very comparable with Ode15s of MATLAB, these are
shown in Table IV - Table X and Fig.8-Fig.13.
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Table I: The coefficients, Error Constants Cp+1 and order p of TDGEMs (15).

k β0 β1 β2 β3 β4 β5

1 1
4

3
4

2 − 1
160

3
10

113
160

3 − 1
288

4
15

359
480

− 1
90

4 23
45360

− 9
1120

247
840

65321
90720

− 11
1680

5 7
25920

− 433
80640

2749
10080

271819
362880

− 347
20160

43
80640

6 − 1709
29030400

611
680400

− 4307
483840

2645
9072

12676459
17418240

− 437
37800

7 − 149
4838400

8959
16329600

− 1583
24192

19599451
26127360

− 12697
604800

− 12697
604800

8 − 4093
498960000

− 21289
159667200

71051
59875200

− 375799
39916800

1158347
3991680

8774922643
11975040000

9 − 37
8709120

− 198553
2554675200

2707
3421440

− 1171697
159667200

22172443
79833600

115113679
153280512

10 − 742823
581188608000

12342923
544864320000

− 96305309
464950886400

7653601
5448643200

− 16196893
1660538880

107241247
370656000

Table II: The coefficients, Error Constants Cp+1 and order p of TDGEMs (15) (continuation).

k β6 β7 β8 β9 β10

1

2

3

4

5

6 2161
7257600

7 437
403200

− 163
3265920

8 − 304397
19958400

− 26891
39916800

− 29
1069200

9 − 104477
4435200

49927
31933440

− 60349
479001600

47357
7664025600

10 1833901084727
2490808320000

− 3639469
201801600

121565617
116237721600

− 326329
4358914560

23038649
6974263296000
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Table III: The coefficients, Error Constants Cp+1 and order p of TDGEMs (15) (continuation).

k v γv φv Cp+1 p

1 1 − 1
4

1
24

1
480

4

2 2 − 17
80

7
240

1
1800

5

3 2 − 11
48

11
240 − 23

151200

6

4 3 − 647
3024

37
1008 − 43

846720

7

5 3 − 191
864

191
4032

1709
101606400

8

6 4 − 44131
207360

1393
34560 − 163

26127360

9

7 4 − 2497
11520

2497
51840 − 4093

1796256000

10

8 5 − 670303
3168000

40321
950400 − 47357

52690176000

11

9 5 − 14797
69120

14797
304128

742823
2131024896000

12

10 6 − 132424231
628992000

5512813
125798400

4867481
33999533568000

13

Figure 1: The plot of
∣∣error constant

∣∣ against step number k of the TDGEMs (15), the GSDLMME
[28] and the method of Enright [4].
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

1 0 0 0 0 0 · · · 0 0 0
v − 1 1 1 1 1 1 · · · 1 0 0

(v − 1)2 0 2 2 ∗ 2 2 ∗ 3 2 ∗ 4 · · · 2 ∗ k 2 0
(v − 1)3 0 3 3 ∗ 22 3 ∗ 32 3 ∗ 42 · · · 3 ∗ k2 3 ∗ 2 ∗ v 3 ∗ 2
(v − 1)4 0 4 4 ∗ 23 4 ∗ 33 4 ∗ 43 · · · 4 ∗ k3 4 ∗ 3 ∗ v2 4 ∗ 3 ∗ 2 ∗ v
(v − 1)5 0 5 5 ∗ 24 5 ∗ 34 5 ∗ 44 · · · 5 ∗ k4 5 ∗ 4 ∗ v3 5 ∗ 4 ∗ 3 ∗ v2

...
...

...
...

...
... · · ·

...
...

...
(v − 1)q 0 q q ∗ 2(q−1) q ∗ 3(q−1) q ∗ 4(q−1) · · · q ∗ k(q−1) q(q − 1)v(q−2) q(q − 1)(q − 2)v(q−3)





-1
β0
β1
β2
β3
...
βk
γv
φv



=



1
v
v2

v3

v4

v5

...
vq


(27)

Figure 2: Stability region (exterior of closed curve) of GSDLMME in [28], k = 1(2)29. The curves are
for k = 1, 3, 5, 7, · · · , 29. However, the curves for k = 7, 9, 11, · · · , 29 are so close to one another that

they are indistinguishable.
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Figure 3: Stability region (exterior of closed curve) of GSDLMME in [28], k = 2(2)30. The curves are
for k = 2, 4, 6, 8, · · · , 30. However, the curves for k = 6, 8, 10, · · · , 30 are so close to one another that

they are indistinguishable.

Table IV: Absolute errors in the numerical solution of Problem 1, h = 0.1.

t yi
TDGEM (15)
p = 5

EGASDBVM [25]
p = 8

Y akubu−Markus [34]
p = 8

5 y1
y2

2.559605895291472× 10−10

1.279802947645736× 10−10
3.2024170123130× 10−2

3.2602729149065× 10−2
1.96006208591687× 10−2

9.80025491509760× 10−1

40 y1
y2

1.102792804033894× 10−24

5.513964020169468× 10−25
7.1981394073653299× 10−15

7.198139407651458× 10−15
3.81292881577727× 10−7

1.90646440788863× 10−7

70 y1
y2

1.787044718505958× 10−37

8.935223588150732× 10−38
8.848025628743198× 10−26

8.848025628742016× 10−26
8.90990527186305× 10−12

4.45495263593152× 10−12

100 y1
y2

2.378834730098595× 10−50

1.189417365547139× 10−50
1.087608242814579× 10−36

1.087608242814395× 10−36
2.08203236381127× 10−18

1.04101618190563× 10−18

Table V: Absolute errors in the numerical intergration of Problem 2, h = 0.01.

t yi
TDGEM (15)
k=2

CTDBM [35]
k=2

SDMM [8]
k=2

5 y1
y2

7.81× 10−18

3.73× 10−17
3.73× 10−17

9.54× 10−18
6.09× 10−14

2.24× 10−14

10 y1
y2

2.71× 10−20

8.13× 10−20
4.68× 10−19

2.71× 10−19
7.17× 10−16

1.12× 10−16

15 y1
y2

6.35× 10−22

7.41× 10−22
3.92× 10−21

2.44× 10−21
6.64× 10−18

2.86× 10−19

20 y1
y2

9.10× 10−24

8.27× 10−25
4.30× 10−23

4.14× 10−24
5.32× 10−20

1.31× 10−20
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Figure 4: Stability region (exterior of closed curve) of TDGEMs (15), k = 1(2)29.

Figure 5: Stability region (exterior of closed curve) of TDGEMs (15), k = 3(2)29 zoomed in for clarity
for Figure 4.
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Figure 6: Stability region (exterior of closed curve) of TDGEMs (15), k = 2(2)30.

Figure 7: Stability region (exterior of closed curve) of TDGEMs (15), k = 4(2)30 zoomed in for clarity
for Figure 6.
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Table VI: Maximum Errors, max ‖yi − y(xi)‖ for Problem 3 .

Method N h t
y1
max‖y1 − y(t1)‖

y2
max‖y2 − y(t2)‖

TDGEM(15)
(k = 2)

125 0.008 1 4.163× 10−15 5.773× 10−15

50 0.008 0.4 1.798× 10−14 1.332× 10−14

3 0.008 0.24 1.268× 10−10 8.982× 10−14

500 0.01 5 1.68× 10−17 1.31× 10−15

25 0.02 0.5 4.458× 10−14 3.575× 10−14

3 0.02 0.06 3.624× 10−10 3.33× 10−13

TDGEM(15)
(k = 3)

125 0.008 1 5.551× 10−17 5.551× 10−17

50 0.008 0.4 1.11× 10−16 1.665× 10−16

3 0.008 0.24 0.00 0.00
500 0.01 5 7.× 10−19 4.25× 10−17

25 0.02 0.5 1.81× 10−14 1.488× 10−14

3 0.02 0.06 1.221× 10−14 6.328× 10−15

GSDLMMEs3 [28]
(k = 3)

125 0.008 1 6.88× 10−15 3.33× 10−15

50 0.008 0.4 1.02× 10−14 1.67× 10−14

3 0.008 0.24 5.61× 10−9 1.66× 10−9

25 0.02 0.5 1.46× 10−12 1.46× 10−12

3 0.02 0.06 8.34× 10−8 1.73× 10−8

TCM2 [29] (k = 2) 500 0.01 5 4.22× 10−13 9.89× 10−13

TCM3 [29] (k = 3) 500 0.01 5 2.245× 10−15 5.00× 10−14

BVM2 [22] (k = 2) 125 0.008 1 6.61× 10−12 6.74× 10−12

50 0.02 1 2.49× 10−10 2.64× 10−9

BVM3 [22] (k = 3) 125 0.008 1 3.88× 10−14 3.10× 10−14

50 0.02 1 3.20× 10−12 3.02× 10−12

Table VII: Absolute Errors in the Numerical Solution of Problem 3.

h yi
TDGEM (15)
k = 3; p = 6

TDGEM (15)
k = 4; p = 7

TDGEM (15)
k = 5; p = 8

0.001 y1
y2

2.312× 10−22

2.582× 10−18
4.136× 10−24

4.066× 10−20
4.136× 10−25

6.776× 10−21

0.01 y1
y2

8.479× 10−24

1.220× 10−19
3.722× 10−23

5.014× 10−19
3.309× 10−24

4.066× 10−20

0.1 y1
y2

2.953× 10−19

1.319× 10−14
9.607× 10−21

5.241× 10−16
2.593× 10−22

1.727× 10−17

0.5 y1
y2

8.208× 10−20

9.913× 10−13
2.718× 10−21

8.922× 10−14
7.470× 10−23

6.665× 10−15

Table VIII: Numerical Solutions of Problem 4, h = 0.01 ε = 10−3.

t yi
TDGEM (15)
k=2,p=5

CTDBM [35]
k=2,p=5

SDMM [8]
k=3,p=5

5 y1
y2

1.50× 10−17

1.25× 10−15
1.00× 10−16

7.49× 10−15
3.92× 10−16

3.72× 10−14

10 y1
y2

1.44× 10−21

1.72× 10−17
9.11× 10−21

1.00× 10−16
4.56× 10−20

5.00× 10−16

20 y1
y2

5.26× 10−30

1.38× 10−21
3.74× 10−29

9.08× 10−21
1.28× 10−28

4.56× 10−20
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Table IX: Numerical Solutions of Problem 4, h = 0.01 ε = 10−4.

t yi
TDGEM (15)
p = 6

EGASDBVM [25]
p = 10

SDGAM [26]
p = 10

2 y1
y2

1.388× 10−17

6.939× 10−17
1.735× 10−17

8.327× 10−17
2.038× 10−13

7.087× 10−13

4 y1
y2

6.505× 10−19

2.082× 10−17
1.247× 10−18

3.469× 10−17
3.518× 10−15

9.594× 10−14

6 y1
y2

6.776× 10−21

1.735× 10−18
6.268× 10−20

1.388× 10−17
6.428× 10−17

1.297× 10−14

8 y1
y2

5.294× 10−23

1.084× 10−19
2.475× 10−21

4.066× 10−18
1.176× 10−18

1.752× 10−15

10 y1
y2

2.068× 10−25

0.000
6.969× 10−23

8.403× 10−19
2.150× 10−20

2.368× 10−16

Figure 8: Numerical results for Problem 5 using the sixth order TDGEM, h = 0.0001.
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Table X: A comparison of methods for problem 6, Error =Max|y(t)− y|, Rate = log2

(
e2h
eh

)
where

eh is the maximum absolute error for h,N = T−t0
h

and 0 ≤ t ≤ 1.

h N
TOMs [18]
k = 3, p = 6

Rate
TOMs [18]
k = 5, p = 10

Rate
TOMs [18]
k = 7, p = 14

Rate

2× 10−2 50 1.552× 10−3 − 1.523× 10−4 − 4.780× 10−5 −
1× 10−2 100 9.775× 10−6 7.31 2.504× 10−7 9.25 1.213× 10−8 11.94
5× 10−3 200 1.197× 10−7 6.35 7.490× 10−11 11.70 2.472× 10−13 15.58
2.5×10−3 400 1.853× 10−9 6.01 3.009× 10−14 11.28 1.654× 10−14 3.90

h N
HEBVM3 [27]
k = 3, p = 7

Rate
HEBVM5 [27]
k = 5, p = 9

Rate
HEBVM7 [27]
k = 7, p = 11

Rate

2× 10−1 5 9.091× 10−5 − 1.596× 10−3 − 4.132× 10−3 −
1× 10−1 10 2.171× 10−8 12.03 3.204× 10−7 12.28 2.049× 10−7 14.30
5× 10−2 20 5.856× 10−12 11.86 6.150× 10−12 15.67 1.315× 10−13 20.57
2.5×10−2 40 5.934× 10−14 6.62 1.110× 10−16 15.76 5.551× 10−17 11.21

h N
TDGEM (15)
k = 3, p = 6

Rate
TDGEM (15)
k = 5, p = 8

Rate
TDGEM (15)
k = 7, p = 10

Rate

2× 10−1 5 2.938× 10−9 − 1.211× 10−10 − 1.215× 10−9 −
1× 10−1 10 5.409× 10−11 5.76 2.430× 10−12 5.64 1.554× 10−14 16.25
5× 10−2 20 7.163× 10−13 6.24 1.608× 10−14 7.23 4.510× 10−17 8.43
2.5×10−2 40 5.163× 10−15 7.12 9.714× 10−17 7.37 6.939× 10−18 2.70

Figure 9: Numerical results for Problem 1 using the tenth order TDGEM, N = 150.
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Figure 10: Numerical results for Robertson’s Equation using the sixth order TDGEM.

Figure 11: Numerical results for Robertson’s Equation using the eighth order TDGEM.
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Figure 12: Numerical results for Van der Pol equation using the sixth order TDGEM.

Figure 13: Numerical results for Van der Pol equation using the eighth order TDGEM.
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