
 

 
Abstract—The number of voices in commonly used 

pathological voice databases such as Massachusetts Eye and 
Ear Infirmary (MEEI) and Saarbruecken Voice Database 
(SVD) is insufficient and imbalanced. This may make the 
classification results lack credibility and robustness. Our works 
investigate the direct generation of normally pitched vowel /:a/ 
to expand the low-resource pathological voice database. A 
framework for generating vowels of different lengths using 
improved WaveNet and Generative Adversarial Network 
(GAN) is proposed in this work. Long and short vowel 
segments can be generated by an improved WaveNet model 
and a model based on Stationary Wavelet Transform and 
Wasserstein GAN with gradient-penalty (SWT-WGANGP) in 
our framework respectively. The generated voice segments are 
added to the original imbalanced database to improve the 
classification performance. Besides, we propose the accuracy-
score and the diversity-score to evaluate the generated voice. 
By adding our generated data based on the traditional 
classification pipeline, accuracy on the two databases increased 
by 1.81% and 4.38% respectively, and the recall has achieved 
more than 10% improvement. Compared with the other data 
generation method, our method improves the classification 
results the most while using the same feature and classifier. 
Besides, using our proposed framework based on existing 
advanced pathological voice detection methods can further 
improve performance. Our results show that deep generative 
models with optimized structure can be used for direct vowel 
generation in low-resource pathological voice databases to 
expand the raw database, which has been ignored in previous 
research. Our framework can be used as a generic pre-
processing module to improve the detection of pathological 
voice. 

Index Terms—pathological voice, data augmentation, 
improved WaveNet, SWT-WGANGP 

I. INTRODUCTION 

oice is a primitive natural tool for human 
communication. However, around 25% of the world 

population suffers from pathological voice [1]. Hence, many 
researchers [2] have investigated pathological voice 
detection or voice restoration [3], voice production system 
modeling, and so on. Most of the reported breakthroughs 
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[4]-[6] are, however, based on some low-resource 
pathological voice databases, such as Massachusetts Eye 
and Ear Infirmary (MEEI) database, Saabruechen Voice 
Database (SVD), Arabic Voice Pathology Database (AVPD) 
and Voice ICar fEDerico II Database (VOICED). In these 
databases, the number of voice recordings is imbalanced and 
insufficient. For example, SVD, a comparative big database 
of pathological voice, has 687 healthy voice recordings of 
normal pitch vowel /:a/ and 1354 pathological recordings 
with a duration of 1-3 seconds. This is problematic for some 
data-consuming works where more labelled data should be 
involved. 

A natural solution to the problems mentioned above is to 
collect more labelled voice recordings. But the fact is that 
the collection of voice data is constrained by many factors. 
For example, MEEI database is recorded in a professional 
voice recording environment. Besides, the data annotation is 
quite a time, labor, and money-consuming task. Hence, it is 
difficult to collect more voice recordings directly. 

Some works [7], [8] used an indirect method to generate 
more data by over-sampling the features extracted from raw 
data. Since feature extraction is an essential procedure in 
traditional pathological voice detection methods, generating 
extra features is reasonable. Other works [9] used a 
generative model called Generated Adversarial Network 
(GAN) [10] to generate extra data to train classifiers. The 
data augmentation [11] has also been used to create 
synthetic features. However, these methods all have a 
drawback which they can only handle with the features 
extracted from raw voice. Compared with generating more 
synthesised features of raw voice, direct generation of voice 
has more scenes to be used. 

To the best of our knowledge, this is the first attempt to 
directly expand the pathological voice database by 
synthesizing voice, so we refer to methods from much more 
than the pathological voice field. As we know, speech can 
be directly generated by voice conversion methods [12] or 
voice synthesis [13]-[16] methods in other fields such as 
Text-To-Speech Synthesis (TTS). Some previous works [17], 
[18] conversed voice from specific features using voice 
conversion methods. For example, Gaussian Mixture Model 
(GMM) was used to transform healthy vowel /a:/ to 
pathological vowel /a:/ in the work of Amara et al. [17]. The 
Line Spectrum Pair feature was used to repair the vowel of 
pathological voice in the work of Zhang et al. [18]. Due to 
the big development of deep generative models in recent 
years, there also exist some works using deep generative 
models for voice conversion. YiShan Jiao et al. [19] used 
GAN to convert a healthy phrase into a dysarthric phrase to 
overcome the problem of the lack of dysarthric speakers. 
Except for the conversion of vowels and phrases, the 
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conversion of sentence has also aroused the interest of many 
researchers. In TTS field, Berrak Sisman et al. [20] used 
Mel-spectrograms followed by a WaveNet [21] vocoder to 
utilize sequence-to-sequence conversion with different 
speakers. But such works are hard to apply in our 
pathological voice field because they need too many voice 
recordings for training. As for voice synthesis methods 
associated with pathological voice databases, we don't find 
any strongly related works, but there are many similar works 
in other fields such as TTS and pronounce model. TTS 
methods usually use some vocoders to transform acoustic 
features into waveforms. STRAIGHT [13] and WORLD [14] 
are two conventional vocoders. With the development of 
deep learning, many neural vocoders which are used for 
voice generation have demonstrated better performance than 
conventional vocoders. In [15], a neural source-filter 
waveform model was proposed for TTS. The model 
depended on the source-filter model of voice generation, 
using a neural network as a filter to generate voice. Yang et 
al. [16] proposed HiNet vocoder which considers both the 
amplitude spectrum and phase spectrum for better 
naturalness of the voice. Angrick et al. [22] directly 
synthesize speech from electrocorticography. Cataldo et al. 
[23] designed a stochastic model of voice generation. The 
model can generate different voiced sounds by different 
parameters of the stochastic model. 

Inspired by the problems in the pathological voice field 
and the works mentioned above, we investigate the feasible 
method to directly generate voice segments from limited 
pathological voice recordings. The main goal of this work is 
to generate the voice of the vowel /a:/ directly with different 
lengths and to objectively evaluate the generated data. In 
previous works, every vowel recording can be used as a 
whole input or divided into many frames to extract different 
features. For example, the statistical features [24], 
spectrograms, and formants [2] are extracted from a whole 
vowel recording. The zero crossing rate (ZCR) [25], one 
order Mel Frequency Cepstral Coefficient (MFCC) [26], and 
one order Gammatone Frequency Cepstral Coefficient 
(GFCC) [27] are extracted from every frame. This is the 
reason why we want to generate vowel with different 
lengths. 

In this work, we propose a framework in which an 
improved WaveNet model is used for long voice segment 
generation and a GAN-based model is used for short voice 
segment generation. Despite there being little similar work 
for the same purpose of this work, WaveNet has been 
widely used in other fields such as the generation of 
electrocardiograms [28], the emulation of the sound of an 
audio processor reference device [29], and the fast 
simulation of seismic waves [30]. However, we find it 
difficult to train the raw WaveNet model using our database, 
so we improve it by changing the network structure. We 
simplify the residual block in the raw WaveNet model and 
change the skip-connection in different layers. Because the 
voice is usually framed into hundreds of points, and the 
WaveNet model is not suitable for modeling such short 
voice segments, we also investigate the method for short 
voice segment generation. The GAN has been widely used 
in recent works [31], [32] in the field of figure generation. It 
can also be used in voice conversion [19] and emotional 

speech generation [33] by training a GAN which can 
generate the mel-cepstral features of specific emotional 
speech. We propose a Stationary Wavelet Transform and 
Wasserstein GAN with gradient-penalty (SWT-WGANGP) 
model to generate the short voice segments. This model is a 
two-stage model inspired by the voice conversion methods 
we mentioned above. We first transform the waveform to 
SWT coefficients. Then GAN is used to generate new SWT 
coefficients. Inverse Stationary Wavelet Transform (ISWT) 
is used to generate voice segments using the generated new 
SWT coefficients. After the generation of long and short 
voice segments, they are added to the raw imbalanced 
databases to improve the classification results. In addition, 
we propose a quantitative method called accuracy-score and 
diversity-score to evaluate the performance of generated 
data. 

The rest of this paper is structured as follows. In section Ⅱ, 
we detail the proposed framework based on the improved 
WaveNet and SWT-WGANGP. In this section, the 
databases and the evaluation methods we proposed will also 
be presented. In section Ⅲ, the experimental setup will be 
described. The experimental results will be summarized in 
section Ⅳ. In section Ⅴ, we will give a discussion and 
analysis of our methods and experiments compared with 
other methods. In section Ⅵ, we will conclude our work. 

II. MATERIALS AND METHODS 

The whole architecture of the proposed voice 
augmentation method is shown in Fig. 1. Two networks are 
used for direct voice generation with different lengths, 
which is inherited from our previous works. We improve the 
WaveNet model for the generation of long voice segments 
and a GAN-based model for the generation of short voice 
segments. After the generation of long and short voice 
segments, they are both used for imbalance testing and 
evaluation. In the imbalanced test, the generated data are 
added to the raw imbalanced datasets to improve the 
classification results. In the evaluation, the accuracy and 
diversity of the generated data will be presented using two 
scores. In the improved WaveNet, we first transform the 
data and then quantize it into 256 possible values with one-
hot encoding. The one-hot encoding is then sent to the 
improved WaveNet model followed by a decompression 
operation.  In the model of SWT-WGANGP, we first 
enframe the raw waveforms to clip them into a relatively 
short length. Then, we transform the waveforms to get the 
coefficient arrays. The coefficient arrays are then fed into 
GAN for generating new coefficient arrays. The newly 
generated coefficient arrays will finally be inverse-
transformed to new voice segments. 

A. Databases 

The databases used in this work were MEEI database and 
SVD. These two databases are commonly used in voice 
pathology detection. The MEEI database is commercially 
available and SVD is open source. The number of voices in 
MEEI is less than SVD. There are 53 healthy vowel /:a/ and 
657 pathological vowel /:a/ in MEEI. As for SVD, there are 
more than 2000 speakers in it, which contains 687 healthy 
vowel /:a/ and 1354 pathological vowel /:a/ from these 
speakers. The environment for recording SVD is not as 
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Fig. 1.  The architecture of the whole voice generation method. 

strict as MEEI's. Part of the databases is shown in Table Ⅰ, 
which contains the healthy vowel /:a/ and four common 
types of pathological vowel /:a/. Different types of voices in 
the two databases are shown in Fig. 2. 

 
Fig. 2.  different types of vowel /:a/: (a) healthy vowel in MEEI, (b) 
pathological vowel in MEEI, (c) healthy vowel in SVD, (d) pathological 
vowel in SVD. 

TABLE I 
THE NUMBER OF DIFFERENT TYPES OF VOICES IN MEEI AND SVD 

Databases Healthy 
Pathological 
Nodule Polyp Cyst Paralysis 

MEEI 53 19 20 43 67 
SVD 687 17 48 68 64 

We can see that the number of different types of voices is 
quite imbalanced. Hence, there are always obvious 
differences in sensitivity and specificity when some 
traditional features are used for classification experiments 
[26]. This phenomenon implies a problem: Since the number 
of different samples is imbalanced, even if the classifier 
judges all samples as the majority samples, it can obtain an 
accuracy of more than 50%, but this classification result is 
of no value. This will be important when the pathological 
voices are in the minority classes because we do not want to 
classify a pathological voice as a normal voice. Besides, the 
number of samples in the pathological voice database is 

much less than that in other fields because of the difficulty 
in establishing the database. Our works are very meaningful 
since we direct expand the raw database with generated 
vowels. We used 53 healthy voices and 149 pathological 
voices in MEEI. In SVD, we have just selected a random 
part of the data to train the improved WaveNet for the 
generation of long voice segments due to the computational 
complexity when using data with 50 kHz. When we train the 
SWT-WGANGP, 53 healthy voices, 149 pathological voices 
in MEEI, 687 healthy voices, and 1290 pathological voices 
in SVD are used. 

B. Improved WaveNet Model for The Generation of Long 
Vowel Segments 

WaveNet is a raw audio generation model with complex 
architecture. It can extract the long-term correlation of voice 
signals. However, the training of the raw WaveNet is very 
difficult [34] especially using our databases with limited 
data. We improve the raw WaveNet by simplifying the two 
different activation gates in every residual block and only 
using skip-connection inside the residual block for our 
purpose. We improved the network by this way because the 
raw different activation gates are responsible for the shape 
and amplitude of the generated waveform respectively, but 
the amplitude of the waveform is limited to the range of -1 
to 1 in our methods, so the tanh activation gate is s 
redundant for our purpose theoretically. The improved 
WaveNet is also an autoregressive generative model that can 
model complex distributions of raw audio. The model can 
predict the next sample from all the input, which means the 
probability of the next sample can be described as follows: 

 
1

( ) , ,1 1

t

p x p x x xt t
T



  ∣  (1) 

where the p(x) represents the probability value of the next 
sample. The model is an autoregressive model in which each 
sample xt is conditioned on all past samples. 

Before being fed into the network, the data first needs to 
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be preprocessed. µ-law companding and one-hot encoding 
are used for the preprocessing of the input data. The audio 
data in our databases are stored in 16-bit integer values for 
every point. If we predict the value directly, the output 
should have 65536 probabilities. µ-law companding can 
reduce the dynamic range of an audio signal and reduce the 
quantization error. After the µ-law companding, we quantize 
the data into 8-bit integer values and apply one-hot encoding 
to the values. Hence, the network can predict the value of 
the next point by classification task. 

 
Fig. 3. The architecture of residual block and improved WaveNet. 

The residual block is the basic component of the 
improved WaveNet. The architecture of the residual block is 
shown in the upper part of Fig. 3. Every residual block is 
composed of many sub-layers with different dilation rates. 
For example, the first to tenth sub-layers have 1, 2, 4, ..., 
512 dilation rates respectively. The input of every sub-layer 
is the output of the previous sub-layer. Every sub-layer has a 
gated activation unit: 

z = W * x + xf,k  (2) 

where x denotes the input data, k represents the layer 
number, Wf,k denotes the learnable parameters, and * 
represents a convolution operator. The addition of the two 
parts is the residual operation. This is much simpler than in 
the original WaveNet model, and it is more reasonable for 
our task since all data is normalized in the first step. 

The whole architecture of the improved WaveNet is 
shown in the lower part of Fig. 3. The input data is first fed 
into a causal convolution layer. It means the outputs of the 
layer are all conditioned on the previous points. Then, the 
residual block is repeated N times one by one. Every 
residual block has the same architecture. The output of the 
last residual block will be added to the input of the whole 
network. The R represents the relu activation function. The 
symbol 1x1 in the figure represents a one-dimensional 
convolution with a kernel size of 1. The dilated convolution 
and residual operation can speed up the convergence and 
can avoid the vanishing of the gradient. 

The input of the improved WaveNet model is two-
dimensional data, in which the first dimension represents the 

length of the voice segment and the second dimension 
represents the one-hot encoding of every point. The output 
of the improved WaveNet model is the probability of the 
next point of the input. The probability conforms to the 
softmax distribution. 

C. SWT-WGANGP Model for The Generation of Short 
Vowel Segments 

The improved WaveNet is an end-to-end model in our 
experiments. However, in pursuit of product quality and 
length of the vowel /:a/, the time consumption is very high. 
Because the vowel signals have short-term stability, and 
many features are extracted from every frame of the vowels, 
it is reasonable to generate such vowels, especially for our 
investigation purpose. 

GAN can generate waveforms in a one-shot manner. The 
core idea of GAN is an equilibrium of the game theory. 
GAN consists of two parts, a generator G and a 
discriminator D. The purpose of the G is to generate data 
distribution similar to the original data distribution, and the 
D is responsible for distinguishing the data generated by the 
G from the real data. The input of G is random variables z, 
and the input of D is real data X and generated data G(x). 
The loss function of G and D are written as: 

( ) [log ( )] [log(1 ( ))]L x E D x E D xD x P x Pr g
      (3) 

( ) [log(1 ( ))]L x E D xG x Pg
   (4) 

where x~Pr means the x is real data, and x~Pg means the x is 
generated data. The D(x) is the output of the discriminator. 
When training the discriminator, if x conforms to the 
distribution of Pr, the D needs to judge x as a positive 
sample as much as possible, which means the value of D(x) 
should be 0. Correspondingly, when x conforms to the 
distribution of Pg, the value of D(x) should be 1. When 
training the generator, the G should deceive the D as much 
as possible, so the loss of G should be contrary to D. The 
two parts begin to fight with each other and find the 
equilibrium according to G’s ability and D’s ability. The 
loss function of G can also be written as: 

]
g

( ) [log( ( ))L x E D xG x P    (5) 

where all parameters are the same in Equation 4. In this 
formula, if the G is good enough, the value of D(x) should 
be close to 1, which means the loss of G is 0. 

The above GAN model also has some drawbacks. Due to 
the neural networks having strong capabilities of data fitting 
and classification capabilities, the training of D is always 
easier than G. When the D is the optimal D, calculating the 
minimum value of Equation 4 and 5 can be equivalent to 
calculating the minimum value of Equation 6 and 7 
respectively. 

 |( ) 2 2 log| 2L x JS P Pr gG    (6) 

   | |( |) |2L x KL P P JS P Pr g r gG    (7) 

where JS(Pr||Pg) denotes Jensen-Shannon (JS) divergence of 
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Pr and Pg, KL(Pr||Pg) denotes Kullback–Leibler (KL) 
divergence of Pr and Pg. In Equation 6, we can calculate 
JS(Pr||Pg) is log 2 when Pr and Pg are two completely non-
overlapping distributions, which means G can't get any 
gradient to optimize itself, and it is a high probability event 
since the output of G is a high-dimensional data while the 
input is relatively a low-dimensional data. In Equation 7, we 
can find that G is trying to minimize the KL divergence of 
Pr and Pg but to maximize the JS divergence of Pr and Pg, 
which is intuitively unreasonable. Besides, the KL 
divergence is not a symmetrical measure of Pr and Pg, and 
this will make the generated samples lack diversity. So if we 
use Equation 4 or 5 as the loss of G, it needs to balance the 
training level of the D and the G carefully. 

Wasserstein GAN (WGAN) [35] has solved the problem 
of unstable training of GAN by using Wasserstein distance. 
It is no longer necessary to carefully balance the training 
level of the D and the G. The WGAN uses the loss functions 
as follows: 

( ) ( ) ( )L x E f x E f xw wD x P x Pr g
           (8) 

( ) ( )L x E f xwG x Pg
      (9) 

where f is a continuous function with the Lipschitz 
constraint, the w is a parameter, the fw denotes a 
discriminator in which the last layer is not a non-linear 
activation layer. The fw(x) is similar to the D(x) mentioned 
above. The other parameters are the same to the equations 
above. By the operation of fw, all the weights are clipped to 
the range of w. 

However, the weight clipping operation which ensures the 
Wasserstein distance between Pr and Pg can be calculated 
can also limit the gradient of the discriminator, causing the 
problem of gradient vanishing. In WGAN-GP [36], the 
Lipschitz constraint can be realized by adding a new loss to 
the equation: 

( ) [ ( )] [ ( )]

2
|| ( ) 1

ˆ
||

L
r

x E D x E D xD x P x Pg

E D xx px Px
 

    

    

 (10) 

where the first two parts are similar to Equation 8. The third 
part is a new loss. ||xD(x)||p represents the Lp-norm of 

D(x). The ~ ˆx Px  represents x is limited to the concentration 

area of the generated samples, the concentration area of the 
real samples, and the area between them. 

Based on the WGAN-GP, we use Wavelet Transform 
(WT) to transform the waveform before we feed the data 
into the WGAN-GP. We do this based on the following two 
considerations. Firstly, the generated short vowel /:a/ in this 
way is more diverse. Secondly, it is easier to train the 
network in this way. We have also considered short-term 
Fourier transform (STFT) as the input of GAN, and 
reconstructed the waveform by the spectrogram just like 
many other methods [19], [33]. But the spectrogram 
extracted by STFT ignores the phase information, and can't 
get a satisfying waveform reconstructed by the spectrogram 
with Griffin-Lim algorithm [37] in our experiments. Besides, 
the multiresolution of WT can help us avoid the setting of 
the window size which is important in STFT. The WT of a 
signal f(t) is defined as: 

1 t-b
T(a, b) = f(t) y dt

a aR

    
 

 (11) 

where a is the scale factor, b is the translation, and   

represents wavelet. With a large a, we can have an overall 
view of the signal because of the expansion of the wavelet, 
and with a small a, we can have a localized and detailed 
view of the signal because the wavelet is shrunk in the time 
domain. 

We chose the Stationary Wavelet Transform (SWT) [38] 
as the voice feature because we don't need to change the 
architecture of the network using the SWT coefficients. 
SWT can make up for the loss of translation-invariant using 
Discrete Wavelet Transform (DWT) due to down-sampling 
operation. SWT is different from DWT, mainly in that after 
each order of the high-pass filter and low-pass filter, the 
results are up-sampled to the same length of original data, 
instead of the down-sampling operation in DWT after the 
filter. We trained different GANS for the coefficients with 
different levels, and this makes the training of the network 
easier because the SWT coefficients use more data to 
characterize the raw data. In the reconstruction of the voice 
segments, inverse stationary wavelet transform (ISWT) was 
used for the SWT coefficients, and this makes the result 
diverse since the final waveform can be reconstructed with 
the random combination of the generated coefficients with 
different levels. 

D. Imbalanced Test and Evaluation 

Due to the imbalanced distribution of positive and 
negative samples in MEEI database and SVD, we have 
performed a classification experiment in which we use our 
generated data to expand the original imbalanced database 
into a balanced database just like some other works [7]. The 
results are shown in a confusion matrix like Table Ⅱ. 

TABLE Ⅱ 
THE CONFUSION MATRIX OF THE BINARY CLASSIFICATION 

Actual classes 
Predicted classes 

Positive class Negative class 
Positive class TP FN 
Negative class FP TN 

In the Table Ⅱ, TP, FP, TN and FN represent the positive 
sample classified as positive, the negative sample classified 
as positive, the negative sample classified as negative, and 
the positive sample classified as negative respectively. 

In the imbalanced test, we use the accuracy, recall, 
precision and F1-score as the main objective evaluation 
metrics, which are defined as: 

 = 100%
TP TN

Accuracy
TP FP FN TN


  

 (12) 

100%
TP

Recall
TP FN

 
 (13) 

TP
Precision = 100%

TP+FP
  (14) 

2 100%
Pression Recall

F1 - score
Presion Recall


  

 (15) 
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where the parameters are the same as in Table Ⅱ. The 
Equation 13 shows the recall of positive samples since the 
positive samples are minority samples in our experiments. 

To evaluate the performance of our methods for 
generating voice in a low-resource pathological voice 
database, we should test them in at least two aspects. The 
first is the similarity between the generated data and the true 
data. The second is whether the generated data is diverse. 
Different from other fields such as TTS, the human listening 
test is not very suitable for our task because it is hard for 
common listeners to distinguish between different types of 
vowels and the true labels of raw vowels are clinically 
determined. Our goal is not only to get natural-sounding 
vowels, but more importantly, they must have healthy or 
pathological characteristics. For the first aspect, we can test 
whether the distribution of the generated data is similar to 
the original data. The Time domain waveforms of the 
generated vowels and the original vowels will be shown to 
see their similarity directly. Besides, we can observe their 
distribution from the feature space of the generated voices 
and the original voices. For the objective evaluation, we take 
evaluation methodology called accuracy-score and diversity-
score. Where accuracy-score means the accuracy of our 
generated healthy and pathological voices using the 
classifier trained with original healthy and pathological 
voices. The diversity-score represents the accuracy of 
original healthy and pathological voices using the classifier 
trained with our generated healthy and pathological voices. 
If the accuracy-score is high, we can infer that the generated 
data conforms to the distribution of the original data. It is 
similar to the Mode Score (MS) [39] and Inception Score 
(IS) [40] in the evaluation of GAN in other fields. If the 
diversity-score is high, we can consider that the generated 
data is diverse because the original data can be classified 
with high accuracy only when the generated data is diverse. 
The proposed accuracy-score and diversity-score can 
evaluate the accuracy and diversity of the generated data. 

III. EXPERIMENTS 

The improved WaveNet for the generation of long vowel 
segments and SWT-WGANGP for the generation of short 
vowel segments were implemented by Pytorch [41] deep 
learning framework with Nvidia 3060Ti GPU. Our 
experiments were based on MEEI and SVD databases which 
are two commonly used databases in the pathological voice 
field. 

A. Experiments of the Generation of Long Vowel Segments 

To find the best set of parameters, we have implemented a 
lot of experiments. Due to the WaveNet is an autoregressive 
model, we made the dimensions of output as the same as 
input except for the length of data. For example, if the input 
data have a dimension of (batch size, 256, n), which means 
the input of WaveNet is composed of batch size pieces of 
data of length n. 256 is the result of one-hot encoding. The 
dimension of output is (batch size, 256, output length). In 
our experiments, the output length is 16, the n is defined as 
follows: 

 n = receptive  field + output length - 1  (16) 

where the receptive field is associated with the dilation rate 

as we have introduced in section Ⅱ A. We use the teacher 
forcing strategy when training the improved WaveNet. 

When training the improved WaveNet, the loss is 
calculated by the data (xt, xt+1, ……, xt+16) and the output of 
the network. Then the xt is added into the input to train the 
next series of data. When inferencing the network, we 
predict one point per time step. 

The learning rate was set to 0.0001 based on our pilot 
experimental results. Cross entropy was used for the loss 
function, and the optimizer was Adam. We first adjusted the 
structure of the network by directly observing the generated 
waveform. Part of the experimental parameter settings and 
preliminary experimental results are shown in Table Ⅲ. 

The 'Data nums' column in Table Ⅲ represents the 
number and category of the voices we used. For example, '1 
h' represents 1 healthy voice, '149 p' represents 149 
pathological voices. The 'Dilation depth' column represents 
the n in the residual block of Fig. 3, and the column 
'Repeats' represents the N in the improved WaveNet of Fig. 
3. The ‘Shuffle’ column means whether the order of input 
data is randomly disrupted. The 'useful' column means 
whether the trained network can generate different types of 
voices using different seeds. 

In experiment 1, the network was overfitting with the 
trained voice, so it can’t be used for the other voices without 
training. In experiment 2, though we used more voice 
segments for training with the input in order, the network 
can only predict the waveform of the last trained voice well.  
Therefore, we inferred that the order of the input needs to be 
shuffled. In experiments 3 and 4, the structure of the 
network was adjusted, and we came to a preliminary 
conclusion that the size of the receptive field is about 50 to 
100 milliseconds for the vowel /:a/. In experiments 6 to 8, 
we used MEEI database and design the network and strategy 
of training based on previous experiments. The data 
generated in experiments 7 to 10 is used for the following 
imbalanced test and evaluation. 

B. Experiments of the Generation of Short Vowel Segments 

In the experiments of SWT-WGANGP, we framed the 
voice to a length of 512 points. We chose 53 healthy voices 
and 149 pathological voices in MEEI, 687 healthy voices, 
and 1290 pathological voices in SVD. We down-sampled 
the voice to 25 kHz to get more periods at a fixed length of 
512 points in all used voices. We used a rectangular window 
with a length of 512 and a shift of 25% for every voice. 
There were 30438 frames of healthy voice and 34427 frames 
of pathology voice in MEEI, 174012 frames of healthy 
voice, and 314792 frames of pathology voice in SVD. Each 
frame has 512 points. SWT with 2 levels was used for all 
frames. That means we trained 16 WGAN-GP models in the 
two databases. Each model took about half an hour to train, 
which is very efficient compared to the improved WaveNet. 
SWT can effectively reduce the complexity of the original 
data since we use 2048 points to describe the original 512 
points, and this can effectively reduce the difficulty for 
GAN to learn the data distributions of different voices. 
Daubechies 1 wavelet is chosen as the mother wavelet to  
implement the wavelet transform. The architecture of 
WGAN-GP is shown in Table Ⅳ. 
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TABLE Ⅲ 
EXPERIMENTS OF THE IMPROVED WAVENET 

Num Sr(kHz) Database Data nums 
Dilation 
depth 

Repeats Shuffle Useful 

1 50 SVD 1 h 10 4 No No 
2 50 SVD 10 h 10 4 No No 
3 50 SVD 10 h 10 4 Yes No 
4 50 SVD 10 h 10 2 Yes Yes 
5 25 SVD 10 h 10 2 Yes No 
6 25 MEEI 10 h 9 2 Yes Yes 
7 25 MEEI 53 h 9 2 Yes Yes 
8 25 MEEI 149 p 9 2 Yes Yes 
9 50 SVD 100 h 10 4 Yes Yes 
10 50 SVD 50 p 10 4 Yes Yes 

 

TABLE Ⅳ 
THE ARCHITECTURE OF SWT-WAGNGP 

Generator Output Shape Discriminator Output shape 
Noise 1 × 100 Input data 1×512 
Liner + Relu 1 × 512 Liner + Relu 1×256 
Liner + Relu 1 × 512 Liner + Relu 1×256 
Liner + Relu 1 × 512 Liner + Relu 1×256 
Liner 1 × 512 Liner 1×1 

Preliminary experiments show that 100 training epochs in 
MEEI and 50 training epochs in SVD is suitable from the 
view of the generated waveforms. Hence, the training 
epochs are 100 and 50 in MEEI and SVD respectively. After 
the training of each model, we used the model to generate 
new data. SWT with Daubechies 1 wavelet was used to 
reconfigure a voice segment. In the last, we generated 53*20 
healthy voice segments and 149*20 pathological voice 
segments in MEEI. In SVD, we also generated 20 times the 
number of voices in the original database. 

IV. RESULTS 

A. Results of The Generation of Long Vowel Segments 

 
Fig. 4. The losses in experiments 7 to 10. 

The Fig. 4 is the training loss in experiments 7 to 10 
respectively. We used 53 healthy voices and 149 
pathological voices in MEEI. In SVD, we used 100 healthy 
voices and 50 pathological voices. We trained 20 epochs in 
MEEI and 10 epochs in SVD. When we trained the models 
in MEEI, every epoch took about 20 minutes. When we 
trained the models in SVD, it took about 4 hours to use the 
healthy voices and 2 hours to use the pathological voices 
every epoch. We can see that the loss of pathological voices 
is higher than healthy voices in both databases. It is 
reasonable considering that healthy voices are more regular 

than pathological voices. Besides, the overall loss of MEEI 
is higher than SVD, which is mainly because we used a 
batch size of 4 for SVD due to the GPU memory limit, but a 
batch size of 16 for MEEI. As we know, with a smaller 
batch size, the training loss will drop faster, so the loss in 
SVD will be lower than in MEEI from the first epoch to the 
last epoch. We found the loss of first iteration of the first 
epoch in both MEEI and SVD was almost 5, the loss in SVD 
dropped fast than MEEI. 

The Fig. 5 shows the generated voices in experiments 7 to 
10 respectively. The blue line is the seed we used, the red 
line is the true data after the seed, and the green line is the 
predicted data. We predicted 200 milliseconds of points for 
both MEEI and SVD. It took about 30 seconds to generate 
every voice in MEEI, and 4 minutes in SVD. We can find 
that the healthy and pathological voices in the two databases 
are both quasi-periodical. Due to the original periodicity in 
many pathological voices having been broken [28], there 
will be some high-frequency disturbances in the waveforms 
which will make it more difficult to predict. This is the 
reason why the network is more difficult to converge during 
the training of pathological voices. In Fig. 5 (a), the 
predicted line and the target line almost overlap, which 
shows that our predicted waveform is very close to the real 
data. We can see the data in MEEI can be predicted better 
than the data in SVD. We believe the reasons are as follows. 
Firstly, the MEEI database has less noise and fewer samples, 
so the network is easier to converge. Secondly, the improved 
WaveNet model used for SVD is more complicated than the 
model used for the MEEI since the receptive fields are 4093 
and 1023 respectively. The second reason is likely to cause 
the results that the length of the predicted voice will not be 
long enough. In MEEI, the generated voices tended to 
amplitude attenuation., so we need to weigh the model 
complexity and prediction accuracy to prevent the model 
from being unable to predict the data or failing to converge.  

B. Imbalanced Test and Evaluation of the Generated Long 
Vowel Segments 

We have mentioned above that the imbalanced 
distribution of positive and negative samples can cause 
meaningless classification results when most samples are 
classified into the category of majority samples. To explore 
whether this situation will be improved after balancing 
different types of samples by adding the generated data, we 
designed an experiment in both MEEI database and SVD 
like other papers [7], [24]. We used the trained models to 
generate extra data and added them to the original  
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Fig. 5. The generated waveform with different seeds: (a) healthy voice in MEEI, (b) pathological voice in MEEI, (c) healthy voice in SVD, (d) pathological 
voice in SVD. 

 
Fig. 6. The confusion matrixes of the imbalanced tests using long vowels: 
(a) imbalanced MEEI, (b) balanced MEEI, (c) imbalanced SVD, (d) 
balanced SVD. 

imbalanced databases. As for MEEI database, we used the 
model with a receptive field of 1023 to generate 96 healthy 
voices since there are 53 healthy voices and 149 
pathological voices in the original MEEI database. As for 
SVD, we used the model with a receptive field of 4097 to 
generate 88 healthy voices since we only chose 100 healthy 
voices to train the network, and there are 188 pathological 
voices with the types of the vocal nodule, polyp, cyst, and 
paralysis in SVD. After we got the generated vowels, we 
extracted MFCC parameters of the true labelled voices and 
the generated voices to make the imbalanced test. The 
classifier we used is support vector machine (SVM). 10-fold 

cross-validation was used in the experiments. We show the 
confusion matrix in Fig. 6. 

In Fig. 6, there are four confusion matrixes which are 
binary classification results of imbalanced MEEI, balanced 
MEEI, imbalanced SVD, and balanced SVD respectively, so 
there is a comparison between sub-figure a and b, and 
another comparison between c and d. As we can see in the 
confusion matrixes, the classification results can be 
improved using the generated data to expand the raw 
databases. The recall of minority samples in the original 
MEEI database and SVD is 81.13% and 55% respectively. 
After we balanced the databases, the recall of minority 
samples increased to 93.29% and 75% respectively. The 
recall of minority samples improved by 12.16% and 20.00% 
respectively. 

TABLE Ⅴ 
FOUR DIFFERENT EVALUATION RESULTS USING AND WITHOUT 

USING OUR IMPROVED WAVENET IN MEEI AND SVD 

Database Parameters Baseline 
Improved 
WaveNet 

MEEI 

Accuracy  (%) 89.60 90.93 
Recall  (%) 81.13 93.29 
Precision  (%) 79.63 74.63 
F-1 score  (%) 80.37 82.92 

SVD 

Accuracy  (%) 75.69 80.09 
Recall  (%) 55.00 75.00 
Precision  (%) 68.75 72.82 
F-1 score  (%) 61.11 72.91 

Apart from the confusion matrixes which can show the 
accuracy and recall directly, we also presented the four 
different parameters in Equation 12 to 15. In Table Ⅴ, the 
baseline is the result without using our method. For a fair 
comparison, our proposed method uses the same features 
and classifier as the baseline except for the data generated 
by the improved WaveNet model. 

For the four objective evaluation metrics in Equation 12 
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to 15, shown in Table V, almost all of them have been 
improved by our method except for the precision in MEEI. 
In the two databases, the overall accuracy was improved by 
1.33% and 4.40% respectively. The classification results 
showed that adding our generated voice data to the original 
imbalanced database can effectively improve the 
experimental performance. The four parameters improved 
by 2.76% and 10.07% on average in our two databases. 

We augmented the original database with different 
proportions of generated data. In Fig. 7, we showed the 
accuracy and recall of MEEI and SVD by adding different 
proportions of generated data. The X-axis represents the 
proportion of the generated data used for all the generated 
data. We can see that with the increase in the amount of data, 
the accuracy rate and recall rate have increased significantly. 
Among them, the accuracy of the MEEI increased by 1.33% 
with 100% data augmentation, which means we added the 
same number of generated data as in Table Ⅴ. The recall of 
MEEI increased by 12.16% with 100% expended data. In 
SVD, the biggest improvement in accuracy and recall is also 
using the full amount of data we generated. 

 
Fig. 7. The classification accuracy and recall of MEEI and SVD using 
improved WaveNet: (a) accuracy of MEEI, (b) recall of MEEI, (c) accuracy 
of SVD, (d) recall of SVD. 

TABLE Ⅵ 
ACCURACY-SCORE AND DIVERSITY-SCORE OF THE GENERATED LONG 

VOWEL SEGMENTS IN MEEI AND SVD  

Database Raw accuracy Accuracy-score Diversity-score 
MEEI 89.60% 77.22% 85.64% 
SVD 75.70% 62.00% 63.33% 

Besides, we calculated the accuracy-score and diversity-
score of our generated voices. It has been introduced in 
section Ⅱ D and it is used to evaluate the accuracy and 
diversity of our generated data. The features used were 
MFCC parameters, and the classifier was SVM. The results 
are shown in Table Ⅵ. 

In Table Ⅵ, the raw data in MEEI were 53 healthy voices 
and 149 pathological voices, and there were 100 healthy 
voices and 50 pathological voices in SVD. The raw 
accuracy represents the classification accuracy of the raw 
data. The generated voices had the same number as the raw 
data. We can find the accuracy-score and diversity-score are 
both higher in MEEI than in SVD. The lower accuracy-
score and diversity-score in SVD were partly because the 
generated data itself was not as good as the generated data in 
MEEI. Besides, the relatively low classification accuracy of 
baseline in SVD is also an important factor. The 77.22% 

accuracy-score and 85.64% diversity-score in MEEI are 
already at a very high level, indicating that the generated 
data is very close to the original data in accuracy and 
diversity. 

C. Results of the Generation of Short Vowel Segments 

 
Fig. 8. The generated healthy voice in MEEI. 

 
Fig. 9. The SWT coefficients of the data in Fig. 9: (a) first-order 
approximation SWT coefficient, (b) first-order detail SWT coefficient, (c) 
second-order approximation SWT coefficient, (d) second-order detail SWT 
coefficient. 

Different from the data generated by the improved 
WaveNet, the length of the data generated by SWT-
WGANGP is much shorter, but it has the advantage of 
training time and difficulty. The short vowel segments 
generated by SWT-WGANGP are shown in Fig. 8, Fig. 9 
and Fig. 10. 

We used SWT to transform raw voice segments and used 
ISWT to reconstruct new voice segments. From Fig. 8 and 
Fig. 9, we can directly see the generated voice segment and 
its SWT coefficients. The generated voice segment in Fig. 8 
is very similar to the voice segments in the original database 
shown in Fig. 2. In Fig. 10 (b), the generated waveform is 
very smooth. In Fig. 10 (a) and (c), the generated voice 
segments are mixed with some noise. When the waveforms 
change greatly such as the parts framed by the boxes, and 
their periodicity is not perfect as the waveform in Fig. 8 and 
Fig. 10 (b). This is very similar to the characteristics of true 
voice segments. The SWT-WGANGP method has the 
advantage of using less training time. 

D. Imbalanced Test and Evaluation of the Generated Short 
Vowel Segments 

To evaluate the performance of SWT-WGANGP, we also 
took an imbalanced test and evaluation as we did for the 
generated long vowel segments. The voices with a length of 

Engineering Letters, 31:1, EL_31_1_42

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

 
Fig. 10. The voice segments generated by SWT-WGANGP: (a) pathological voice in MEEI, (b) healthy voice in SVD, (c) pathological voice in SVD.

512 points were used as the input of the neural network 
classifier. The classifier is a fully connected network with 
one input layer, two hidden layers, and one output layer. The 
input layer has 512 nodes followed by a Relu activation 
function. Each hidden layer has 256 nodes and is followed 
by a Relu activation function. The output layer has 2 nodes 
to be used to perform binary classification. The learning rate 
is 0.0001 with an Adam optimizer. 

 
Fig. 11. The confusion matrix of the imbalanced test using short vowel: (a) 
imbalanced MEEI, (b) balanced MEEI, (c) imbalanced SVD, (d) balanced 
SVD. 

In the imbalanced test, we extracted voice segments at 
equal intervals in every raw voice. In MEEI, we extracted 
20 voice segments of every voice. In SVD, 10 voice 
segments of every voice were chosen. We used 90% data for 
training and the remaining 10% data for testing. The 
confusion matrixes are shown in Fig. 11. 

The structure of Fig. 11 is similar to that of Fig. 6. The 
data used in the original MEEI database and SVD were all 
the data we have introduced in the above paragraph. The 

classification accuracy and recall of minority samples of the 
imbalanced MEEI database are 91.04% and 85% 
respectively. The two parameters improved by 2.28% and 
9.26% respectively after we added the generated data to the 
original MEEI. In SVD, we added 6030((1290-687)×10) 
healthy voice segments to the original database. The 
classification accuracy and recall of minority samples 
improved by 4.7% and 15.04% respectively after using our 
generated data. 

TABLE Ⅶ 
FOUR DIFFERENT EVALUATION RESULTS USING AND WITHOUT 

USING OUR IMPROVED WAVENET IN MEEI AND SVD 

Database Parameters Baseline 
SWT-
WGANGP 

MEEI 

Accuracy  (%) 91.04 93.32 
Recall  (%) 85.00 94.26 
Precision  (%) 81.61 81.48 
F-1 score  (%) 83.27 87.41 

SVD 

Accuracy  (%) 69.40 74.10 
Recall  (%) 57.77 72.81 
Precision  (%) 55.76 58.67 
F-1 score  (%) 56.75 64.98 

 
Fig. 12. The classification accuracy and recall of MEEI and SVD using 
SWT-WGANGP: (a) accuracy of MEEI, (b) recall of MEEI, (c) accuracy 
of SVD, (d) recall of SVD. 

Similar to Table Ⅴ, we also evaluated the parameters 
from Equation 12 to 15 for our generated short vowel 
segments. The results are shown in Table Ⅶ. The overall 
accuracy improved by 2.28% and 4.70% in the two 
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databases respectively. In MEEI, the accuracy of baseline 
performed better when using short vowels compared with 
using long vowels. This also explains the necessity of using 
long and short vowels in our experiments. The four 
parameters improved by 3.89% and 7.72% on average in our 
two databases.  

The Fig. 12 is similar to Fig. 7. When more generated 
data is used, the improvement is more obvious. 0% 
expanded data represents the baseline in Table Ⅶ, and 
100% expanded data means the SWT-WGANGP in Table 
Ⅶ. 

TABLE Ⅷ 
ACCURACY-SCORE AND DIVERSITY-SCORE OF THE GENERATED SHORT 

VOWEL SEGMENTS IN MEEI AND SVD  

Database 
Raw accuracy 
(%) 

Accuracy-score 
(%) 

Diversity-score 
(%) 

MEEI 91.04 93.17 83.76 
SVD 69.40 69.27 52.90 

Except for the imbalanced test, we also evaluated the 
accuracy-score and diversity-score of our generated data. In 
MEEI, we had 1060(53×20) true healthy voice segments, 
2980(149×20) true pathological voice segments, 1060 
generated healthy voice segments, and 2980 generated 
pathological voice segments. In SVD, we had 6870(687×10) 
true healthy voice segments, 12900(1290×10) true 
pathological voice segments, 6870 generated healthy voice 
segments, and 12900 generated pathological voice segments. 
The accuracy-score and diversity-score in different 
databases are shown in Table Ⅷ. 

As we can see in Table Ⅷ, the accuracy-score in both 
MEEI and SVD is close to the raw accuracy, which means 
the generated data can be classified correctly using the 
classifier trained by true labelled data. The accuracy-score is 
higher than diversity-score in both MEEI and SVD. This 
shows that the diversity of the generated data is lower than 
its accuracy, and it's a common drawback of GAN. The 
scores in SVD are quite low compared with MEEI because 
the scores are determined both by the quality of the 
generated data and the raw accuracy of the imbalanced 
databases, and the raw accuracy in MEEI is much higher 
than SVD. This result is similar to the analysis in Table Ⅵ. 

E. Comparison with traditional methods 

Traditional methods include noise addition and spectral 
augmentation. In the noise addition, white noise will be 
added to the vowels to generate more vowels. As for 
spectral augmentation, the extracted spectral features will be 
masked to generate more robust features. Since our 
improved WaveNet can generate signals long enough to 
perform both noise addition and spectral augmentation, we 
compared our improved WaveNet with these two methods. 
Since the segmental speech generated by the second method 
is insufficient to extract sufficiently long spectral features, 
we compared the short speech generated in our framework 
with the noise addition method only. The experimental setup 
is consistent with the above experiments. In the noise 
addition method, we randomly added white noise to the 
original vowels [42], and the energy of white noise is about 
10% to 50% of the energy of the original vowels. In the 
spectral augmentation method, we randomly masked 10% to 
20% of the extracted spectral features. The results are in 

Table Ⅸ. 
In the MEEI, we used short vowels for comparison 

because our experiments above show that short vowels 
perform better with our approach. Similarly, in the SVD, we 
used long vowels for our experiments. The results for the 
long vowels in SVD achieved the highest average score 
compared with the other methods, and the accuracy, recall, 
and f1-score are all the highest in our experiments. As for 
the short vowels in MEEI, compared with the noise addition 
method, our proposed framework has the highest three out 
of four scores and the average score is 3.30% higher. 

To verify the effectiveness of our method for improving 
the performance of AVPD, we not only compared our 
method with other traditional methods but also verified our 
method on the state-of-the-art (SOTA) method. In Table Ⅹ, 
we used our generated long vowel signals to balance the raw 
databases and used the Gammatone spectral latitude features 
(GTSL) [27] with the SVM classifier. The GTSL has been 
proven to be very useful on AVPD. 

As we can find in Table Ⅹ, the classification results of 
using GTSL features improved significantly after data 
augmentation using our method. Specifically, in the MEEI, 
the accuracy increased by 1.59%, and in the SVD, the 
accuracy increased by 1.65%. In addition to accuracy, 
several other indicators have also improved. In MEEI, the 
average improvement of the four indicators is 2.52%. In 
SVD, the average boost is 2.09%. The above experiments 
prove that even on some SOTA methods, the proposed data 
augmentation method is still suggestive of the overall 
classification performance. 

V. DISCUSSION 

Our method can directly generate voices to help solve the 
problem of imbalanced conditions in pathological voice 
databases and expand the raw databases. The generated 
voices with different durations can have access to a wide 
range of applications according to actual conditions. For 
example, the generated data can be added into the raw 
imbalanced and insufficient databases to make the 
classification results have a higher recall of minority 
samples and robustness. The improved WaveNet model in 
our framework can generate voice signals with hundreds of 
milliseconds. Considering the true voice signals in databases 
are only about 1 to 3 seconds, we believe the generated data 
can meet the needs of use. The proposed SWT-WGANGP 
model in our framework can generate relatively short voice 
segments in a one-shot manner. No similar works have been 
taken to expand the raw MEEI database and SVD before. 

Fig. 5, 8, and 10 directly show the waveforms generated 
by our framework and can give us subjective evaluations. 
From the time domain waveform, our method can preserve 
the health or pathological information of the original voice 
signal very well. Table Ⅵ and Ⅷ are the objective 
evaluations of our generated waveforms. Due to the 
innovation of our work, there is no good method for 
evaluating generated vowels, so we first work on the above-
mentioned subjective and objective evaluation methods to 
ensure the quality of the generated voices. Our evaluation 
methods are the basis of our work and can provide a strong 
guide for future work since they are the steps required for all 
such work on vowel generation. The Fig. 6 and Table Ⅴ are  

Engineering Letters, 31:1, EL_31_1_42

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

TABLE Ⅸ 
COMPARISON WITH TRADITIONAL METHODS 

 Methods Accuracy (%) Recall (%) Precision (%) F1-score(%) Average(%) 

Long 
vowels 

Noise addition 78.13 66.00 69.47 67.69 70.32 
spectral augmentation 79.17 65.00 72.22 68.42 71.20 
Proposed framework 80.09 75.00 72.82 72.91 75.21 

Short 
vowels 

Noise addition 89.60 77.36 82.00 79.61 82.14 
spectral augmentation \ \ \ \ \ 
Proposed framework 90.93 93.29 74.63 82.92 85.44 

TABLE Ⅹ 
EXPERIMENTS BASED ON THE SOTA METHODS 

Databases Methods Accuracy (%) Recall (%) Precision (%) F1-score(%) Average(%) 

MEEI 
GTSL [27] 93.56 90.57 85,71 88.07 89.48 

Proposed framework 95.05 94.33 87.72 90.91 92.00 

SVD 
GTSL [27] 79.29 77.29 68.43 72.59 74.40 

Proposed framework 80.94 79.77 70.44 74.81 76.49 

TABLE Ⅺ 

COMPARISON WITH OTHER WORKS 

Methods Models Expand of raw data Type of generated data 
Viability in pathological 
voice database 

Santos et al. [43] Physical model No Voice Yes 
Fan et al. [7] FC-SMOTE Yes Features of voice Yes 
Chui et al. [9] GAN Yes Features of voice Yes 
Hwang et al. [44] WaveNet Yes Voice No 
Our methods Generative models Yes Voice Yes 

 
the results of the improved WaveNet in our framework, and 
the Fig. 11 and Table Ⅶ are the results of the SWT-
WGANGP in our framework. The best results in our 
framework achieve average relative improvements of 4.55% 
and 16.85% in four metrics in MEEI and SVD respectively. 
Such results show that our method is promising because our 
data amplification method can be used as a pre-processing 
method for other researchers. Based on these best results, we 
have done comparative experiments in Table Ⅸ to verify 
the superiority of our method. In the generation of long 
vowels, our method is higher than noise addition and 
spectral augmentation by an average of 4.89% and 4.01% 
respectively. This is mainly due to the usage of dilated 
convolutions in our improved WaveNet, which can better 
capture the information of voice signals. In the generation of 
short vowels, our method is higher than the noise addition 
method by an average of 3.30%. 

We show the novelty of our idea in Table Ⅺ . We 

compare our method with other works in three main aspects. 
The method [43] used a physical model of vocal polyp to 
generate extra vowel signals with or without vocal polyp. 
However, this work only explored the model of vocal polyp, 
and there are many other diseases such as vocal nodules, and 
vocal paralysis. Some other works [7], [9] explored the 
expansion of the features extracted from voices rather than 
the voice itself. This leads to a limited application scenario 
for them, as they can only generate specified features 
instead of generic raw voices. The raw WaveNet model can 
be trained directly in the other field [44]. However, due to 
the complexity of the model and the number of raw voice 
recordings, it is difficult to train the raw WaveNet in our 
databases. Our proposed method performs well in the areas 
analyzed above. 

Whilst these results are encouraging and indicate that the 
neural generative model can directly generate voices to 
overcome the drawbacks in the commonly used databases, 

there are further challenges when generating longer voices 
with high quality in a faster way. We believe further 
research can help us to understand whether more efficient 
deep learning models can be used in the task of voice 
generation using pathological voice databases and discuss 
these aspects in more detail below: 
 We have improved the raw WaveNet model for our 

specific task, but the core idea of the improved model is 
dilated causal convolution as same as the raw model. The 
attention mechanism [45] has been considered as 
convolution operation in a broad sense, and it can also 
have a large receptive field. So we should investigate the 
probability and effects of using the attention mechanism 
in our models. 

 A compromise method has been adopted when we 
designed the SWT-WGANGP model due to the limitation 
of GAN. We have tried the GAN model [46] which can 
generate long voice segments, but we find it can't be 
trained using our databases. Future work can investigate 
the more effective voice generation GAN model. 

 The data used in our improved WaveNet was raw voice 
data, and the data used in SWT-WGANGP was the SWT 
coefficients. Except for the raw voice data and SWT 
coefficients, there exist many other types of input data for 
voice generation, such as the STFT sequence and Mel 
spectrogram used in other works [15], [47]. The effect of 
these types of input data should also be investigated. 

VI. CONCLUSION 

This paper investigates the use of deep generative models 
to synthesize vowel signals in low-resource pathological 
voice databases for the better detection of pathological voice. 
A framework which can generate both long and short vowel 
segments is presented. We improve the original WaveNet 
for the generation of vowel signals with 200 milliseconds in 
our framework with less computational complexity. A 
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SWT-WGANGP model is proposed to generate vowel 
segments with 512 sample points in our framework. The 
SWT-WGANGP model can generate vowel segments with a 
short length in a one-shot manner. Our imbalanced test and 
evaluation results show that the generated data resembles 
the real data to a large extent. The generated voice segments 
can be used to expand the raw database to improve 
classification accuracy, recall of minority samples, and F1-
score. 

Our main contribution is to show that we can expand the 
original imbalanced and insufficient pathological voice 
databases by directly generating new voices. To the best of 
our knowledge, no analytical solutions exist, which we 
believe is a positive step for better application of 
pathological voice detection. We can achieve a relative 
average boost of up to 4.55% and 16.85% on the two 
databases respectively. The advantage of our method is that 
it can be used in any other relevant research work, as it can 
be used as a pre-processing to expand the quantity of 
original data. We also discuss the challenges for the 
improvement of our methods and future research directions 
of our work. 

REFERENCES 
[1] Al-Nasheri, Ahmed, et al. "Voice pathology detection and 

classification using auto-correlation and entropy features in different 
frequency regions." Ieee Access 6 (2017): 6961-6974. 

[2] Hegde, Sarika, et al. "A survey on machine learning approaches for 
automatic detection of voice disorders." Journal of Voice 33.6 (2019): 
947-e11. 

[3] Janak Kapoor, Ajita Pathak, Manish Rai, and G.R Mishra, "Speech 
Quality Enhancement through Noise Cancellation using an Adaptive 
Algorithm," IAENG International Journal of Computer Science, vol. 
49, no.3, pp653-665, 2022 

[4] Dankovičová, Zuzana, et al. "Machine learning approach to dysphonia 
detection." Applied Sciences 8.10 (2018): 1927. 

[5] Orozco-Arroyave, J.R.; Vásquez-Correa, J.C.; Vargas-Bonilla, J.F. et 
al., “NeuroSpeech: An open-source software for Parkinson’s speech 
analysis.” Digital Signal Processing 2018, 77, 207–221. 

[6] Kim, H.; Jeon, J.; Han, Y.J. et al.; “Convolutional Neural Network 
Classifies Pathological Voice Change in Laryngeal Cancer with High 
Accuracy.” Journal of Clinical Medicine 2020, 9, 3415. 

[7] Fan, Z.; Wu, Y.; Zhou, C.; Zhang, X.; Tao, Z. “Class-Imbalanced 
Voice Pathology Detection and Classification Using Fuzzy Cluster 
Oversampling Method.” Applied Sciences 2021, 11, 3450. 

[8] Soltanzadeh, P.; Hashemzadeh, M. “RCSMOTE: range-controlled 
synthetic minority over-sampling technique for handling the class 
imbalance problem.” Information Sciences 2021, 542, 92–111. 

[9] Chui, K.T.; Lytras, M.D.; Vasant, P. “Combined generative 
adversarial network and fuzzy C-means clustering for multi-class 
voice disorder detection with an imbalanced dataset.” Applied 
Sciences 2020, 10, 4571. 

[10] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu et al.; “Generative 
adversarial nets.” Advances in Neural Information Processing 
Systems 2014, 27. 

[11] Aicha, A.B. “Contribution of data augmentation for the prenventive 
detection of vocal fold precancerous lesions.” Procedia Computer 
Science 2019, 159, 212–220. 

[12] Childers, D.; Yegnanarayana, B.; Wu, K. “Voice conversion: Factors 
responsible for quality. ICASSP’85. IEEE International Conference 
on Acoustics, Speech, and Signal Processing.” IEEE, 1985, Vol. 10, 
pp. 748–751. 

[13] Kawahara, H.; Masuda-Katsuse, I.; De Cheveigne, A. “Restructuring 
speech representations using a pitch-adaptive time–frequency 
smoothing and an instantaneous-frequency-based F0 extraction: 
Possible role of a repetitive structure in sounds.” Speech 
Communication 1999, 27, 187–207. 

[14] Morise, M.; Yokomori, F.; Ozawa, K. “WORLD: a vocoder-based 
high-quality speech synthesis system for real-time applications.” 
IEICE Transactions on Information and Systems 2016, 99, 1877–
1884. 

[15] Wang, X.; Takaki, S.; Yamagishi, J. “Neural source-filter waveform 
models for statistical parametric speech synthesis.” IEEE/ACM 
Transactions on Audio, Speech, and Language Processing 2019, 28, 
402–415. 

[16] Ai, Y.; Ling, Z.H. “A neural vocoder with hierarchical generation of 
amplitude and phase spectra for statistical parametric speech 
synthesis.” IEEE/ACM Transactions on Audio, Speech, and Language 
Processing 2020, 28, 839–851. 

[17] Amara, A.B.; Jebara, S.B. “Contribution on Gaussian Mixture Model 
Order Determination for Voice Conversion.” 2018 9th International 
Symposium on Signal, Image, Video and Communications (ISIVC). 
IEEE, 2018, pp. 87–92. 

[18] Zhang, T.; Shao, Y.; Wu, Y.; Pang, Z.; Liu, G. “Multiple vowels 
repair based on pitch extraction and line spectrum pair feature for 
voice disorder.” IEEE Journal of Biomedical and Health Informatics 
2020, 24, 1940–1951. 

[19] Jiao, Y.; Tu, M.; Berisha, V.; Liss, J. “Simulating dysarthric speech 
for training data augmentation in clinical speech applications.” 2018 
IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP). IEEE, 2018, pp. 6009–6013. 

[20] Sisman, B.; Zhang, M.; Li, H. “Group sparse representation with 
wavenet vocoder adaptation for spectrum and prosody conversion.” 
IEEE/ACM Transactions on Audio, Speech, and Language Processing 
2019, 27, 1085–1097. 

[21] Oord, A.v.d.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O. et al.; 
“Wavenet: A generative model for raw audio.” arXiv preprint 
arXiv:1609.03499 2016. 

[22] Angrick, M.; Herff, C.; Mugler, E. et al.; “Speech synthesis from 
ECoG using densely connected 3D convolutional neural networks.” 
Journal of Neural Engineering 2019, 16, 036019. 

[23] Cataldo, E.; Soize, C. “A stochastic model of voice generation and the 
corresponding solution for the inverse problem using Artificial Neural 
Network for case with pathology in the vocal folds.” Biomedical 
Signal Processing and Control 2021, 68, 102623. 

[24] Wu, Y.; Zhou, C.; Fan, Z. et al.; “Investigation and Evaluation of 
Glottal Flow Waveform for Voice Pathology Detection.” IEEE Access 
2020, 9, 30–44. 

[25] Bachu, R.; Kopparthi, S.; Adapa, B.; Barkana, B. “Separation of 
voiced and unvoiced using zero crossing rate and energy of the speech 
signal.” American Society for Engineering Education (ASEE) zone 
conference proceedings. American Society for Engineering Education, 
2008, pp. 1–7. 

[26] Mohammed, A.; Mansour, A.; Ghulam, M. et al.; “Automatic speech 
recognition of pathological voice.” Indian Journal of Science and 
Technology 2015, 8, 1–6. 

[27] Zhou, C.; Wu, Y.; Fan, Z. et al.; “Gammatone spectral latitude 
features extraction for pathological voice detection and 
classification.” Applied Acoustics 2022, 185, 108417. 

[28] Wulan, N.; Wang, W.; Sun, P. et al.; “Generating electrocardiogram 
signals by deep learning.” Neurocomputing 2020, 404, 122–136. 

[29] Ramírez, M.M.; Benetos, E.; Reiss, J.D. “Deep learning for black-box 
modeling of audio effects.” Applied Sciences 2020, 10, 638. 

[30] Moseley, B.; Nissen-Meyer, T.; Markham, A. “Deep learning for fast 
simulation of seismic waves in complex media.” Solid Earth 2020, 11, 
1527–1549. 

[31] Radford, A.; Metz, L.; Chintala, S. “Unsupervised representation 
learning with deep convolutional generative adversarial networks.” 
arXiv preprint arXiv:1511.06434 2015. 

[32] Elgammal, A.; Liu, B.; Elhoseiny, M.; Mazzone, M. “Can: Creative 
adversarial networks, generating" art" by learning about styles and 
deviating from style norms.” arXiv preprint arXiv:1706.07068 2017. 

[33] Jia, N.; Zheng, C.; Sun, W. “A Model of Emotional Speech 
Generation Based on Conditional Generative Adversarial Networks.” 
2019 11th International Conference on Intelligent Human-Machine 
Systems and Cybernetics (IHMSC). IEEE, 2019, Vol. 1, pp. 106–109. 

[34] Oord, A.; Li, Y.; Babuschkin, I. et al.; “Parallel wavenet: Fast high-
fidelity speech synthesis.” International Conference on Machine 
Learning. PMLR, 2018, pp. 3918–3926. 

[35] Arjovsky, M.; Chintala, S.; Bottou, L. “Wasserstein generative 
adversarial networks.” International Conference on Machine 
Learning. PMLR, 2017, pp. 214–223. 

[36] Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. 
“Improved training of wasserstein gans.” arXiv preprint arXiv: 
1704.00028 2017. 

[37] Griffin, D.; Lim, J. “Signal estimation from modified short-time 
Fourier transform.” IEEE Transactions on Acoustics, Speech, and 
Signal Processing 1984, 32, 236–243. 

[38] Nason, G.P.; Silverman, B.W. “The stationary wavelet transform and 
some statistical applications.” Wavelets and Statistics; Springer, 1995; 
pp. 281–299. 

Engineering Letters, 31:1, EL_31_1_42

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

[39] Barratt, S.; Sharma, R. “A note on the inception score.” arXiv preprint 
arXiv:1801.01973 2018. 

[40] Che T, Li Y, Jacob A P, et al. “Mode regularized generative 
adversarial networks.” arXiv preprint arXiv:1612.02136, 2016. 

[41] Paszke, A.; Gross, S.; Massa, F. et al.; “Pytorch: An imperative style, 
high-performance deep learning library.” Advances in Neural 
Information Processing Systems 2019, 32, 8026–8037. 

[42] Ruxue Guo, Tao Jiang, Qingyun Wang, Ruiyu Liang, and Cairong 
Zou, "An Improved Low-Complexity Echo Suppression Algorithm 
Based on the Acoustic Coloration Effect," IAENG International 
Journal of Computer Science, vol. 49, no.3, pp637-643, 2022. 

[43] Santos, J.; Montalvao, J.; Santos, I. “Improved Model for Vocal Folds 
with a Polyp with Potential Application.” INTERSPEECH, 2020, pp. 
1386–1390. 

[44] Hwang, M.J.; Yamamoto, R.; Song, E.; Kim, J.M. “TTS-by-TTS: 
TTS-driven data augmentation for fast and high-quality speech 
synthesis.” ICASSP 2021-2021 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 
6598–6602. 

[45] Vaswani, A.; Shazeer, N.; Parmar, N. et al.; “Attention is all you 
need.” Advances in Neural Information Processing Systems, 2017, pp. 
5998–6008. 

[46] Engel, J.; Agrawal, K.K.; Chen, S. et al.; “Gansynth: Adversarial 
neural audio synthesis.” arXiv preprint arXiv:1902.08710 2019. 

[47] Kumar, K.; Kumar, R.; de Boissiere, T. et al; “Melgan: Generative 
adversarial networks for conditional waveform synthesis.” arXiv 
preprint arXiv:1910.06711 2019. 

Engineering Letters, 31:1, EL_31_1_42

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 




