
 

  

Abstract— To date, nonparametric regression studies using a 

combined estimator model have recently begun to develop 

significantly. Yet previous research employing this approach is 

still restricted to models with a single response variable. Hence, 

this paper offers a novel method to estimate bi-response 

nonparametric regression using a model that combines Fourier 

series and truncated spline estimators. This research aims to 

estimate the regression curve of the proposed model using two-

stage estimation. The first stage is completed by the penalized 

weighted least square optimization followed by utilized the 

weighted least square optimization. We conduct numerical 

simulations with various sample sizes and correlations to assess 

the performance of the proposed model. Using generalized 

cross-validation as a criterion, the best model was obtained 

from the scenario model with big sample size and strong 

correlation. Furthermore, compared to uncombined 

estimators, the proposed model outperformed when applied to 

a real dataset of the human development index (HDI) 

education indicator in the East Java Province, Indonesia. 

 
Index Terms— bi-response, combined estimators, Fourier 

series, nonparametric regression, truncated spline 

 

I.  INTRODUCTION 

HE general relationship between the predictor and 

response variable is described by a regression curve. 

Given paired data ( ),i iy z , 1,2, ,i n=  and the relationship 

between iy  and iz  can be modeled as  

 ( )i i iy z = + , (1) 

where ( )iz  is the regression curve, i  is observation 

errors, and n  is the number of observations. There are two 

fundamental methods—parametric regression and 

nonparametric regression—for estimating regression curves 

[1]. Even though parametric regression has been used 

extensively, its main problem is that the method relies on the 

strong assumption regarding the shape of the regression 

curve should follow a particular form such as linear, 
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quadratic, cubic, etc. However, the actual shape of the 

relationship between iy  and iz  is unknown. If the 

parametric regression model is nevertheless applied in this 

situation, inaccurate results will be drawn. Hence, 

nonparametric regression has been getting attention as an 

alternative solution to parametric regression since there isn't 

any claim made on the regression curve's shape. 

In nonparametric regression, a variety of estimators can 

be used to estimate the regression curve, such as splines [2]–

[4], Fourier series [5], [6], kernel [7]–[9], and local 

polynomials [10], [11]. Moreover, in the models with 

multiple predictor variables, the relationship between each 

predictor and the response variable does not always follow 

the same pattern. Thus, current development in the field of 

nonparametric regression is not limited to a single estimator 

but also to combining two or more estimators. Several 

studies developed combination estimators such as the mixed 

estimator of spline smoothing and kernel [12], [13], the 

combination truncated spline and a Fourier series estimators 

[14]–[16], the mixed estimator of kernel and Fourier series 

[17], and the combination spline, kernel, and Fourier series 

estimators [18]. The development of regression using a 

spatial approach, namely a nonparametric truncated spline in 

a spatially weighted regression model, is also of interest to 

other researchers [19], [20].  

The research on the mixed estimator is still limited to 

models with a single response variable, even though real 

datasets sometimes reflect the presence of two or more 

correlated response variables. Consequently, by utilizing bi-

response variables, this study significantly contributes to the 

field of nonparametric regression with the combined 

estimator. The truncated spline is one of several types of 

estimators that frequently used for its several strengths, 

including being very flexible and having a good capability 

to handle data whose behavior changes at specific sub-

intervals [13], [21]. Instead, we employed the Fourier series 

function as an estimator if the data display a periodic pattern 

at particular intervals [5], [17]. By considering some of the 

benefits of these two functions, this research proposes a new 

estimation of the bi-response nonparametric regression 

curve using a combined Fourier series and truncated spline 

(bi-response nonparametric regression of the CFS-TS 

model). 

Given the perspective previously described, the primary 

objective of this research is to estimate the curve of the bi-

response nonparametric regression CFS-TS model. The 

proposed model was estimated using the least square 

method in two stages. Stage one comprised estimating the 

Fourier series component through penalized weighted least 

square (PWLS)  optimization. Once the first stage was 
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complete, the model proceeded to stage two, which was 

estimating the truncated spline component by employing 

weighted least square (WLS) optimization. After obtaining 

the curve estimation as a theoretical result, we ran 

computational modeling using simulated data. Moreover, we 

implement the proposed model into a case study of East 

Java’s HDI education indicator. 

The overall structure of the study takes the form of six 

sections. The topic overview, knowledge gap, and study 

aims are all presented in Section 1. Meanwhile, the second 

section describes the nonparametric regression model and 

the PWLS method. The research's findings are reported in 

the third section, focusing on the proposed model's curve 

estimation as well as estimator properties and smoothing 

parameter selection. The implementation of the obtained 

estimator under simulation studies and data application is 

presented in Sections 4 and 5. The last section gives a 

compact conclusion with recommendations for future work. 

 

II. MATERIAL AND METHODS 

In this paper, we only consider two response or bi-

response data. Nevertheless, these methods can be extended 

to a multi-response nonparametric regression model. Let 1iy  

and 2iy  are responses variable, jix  and kit  are the predictor 

variables with 1,...,i n=  is the number of observations. The 

following bi-response nonparametric regression model is 

assumed to represent the relationship between response and 

predictor variables: 

( )1 1,..., , ,..., ,  1,2,hi hi i pi i qi hiy x x t t h = + =  (2) 

where hi  is the regression curve. Moreover, (2) can be 

written in the following matrix form 

 ( ),= +y μ x t ε . (3) 

Equation (2) assumes that the regression curve hi  is an 

additive model as given in (4). 

 ( )1 1

1 1

,..., , ,..., ( ) ( )
p q

hi i pi i qi hj ji hk ki

j k

x x t t f x g t
= =

= +  , (4) 

while ( )hj jif x , j = 1, 2, …, p and ( )hk kig t  k = 1, 2, …, q 

were approached by Fourier series and truncated spline 

estimators respectively. Substituting (4) into (2), the bi-

response nonparametric regression of the CFS-TS model can 

be written as 

 
1 1

( ) ( ) .
p q

hi hj ji hk ki hi

j k

y f x g t 
= =

= + +   (5) 

Two-stage optimization was used to obtain the estimator 

of hi , i.e., the penalized weighted least square (PWLS) and  

the weighted least square (WLS) method. Firstly, PWLS 

was conducted to estimate ( )hj jif x , which resulted in 

Theorem 1. Once the first stage was completed, the second 

stage was carried out using WLS to estimate ( )hk kig t , which 

led to Theorem 2. Taken together the result from both 

theorems gave the regression curve estimation of hi  as in 

Corollary 1.    

 

III. RESULTS 

A. The Curve Estimation of Bi-response Nonparametric 

Regression of the CFS-TS Model 

The section discusses the two-stage optimization to 

estimate the nonparametric regression curve of hi  in (4). In 

the first stage, we must complete PWLS optimization as 

follows 

( )

2
2

1

[0, ]
1 1 1 1

2
''

1 0

(2 ) ( ) ( )

2
           ( ) ,

p

p qn

hi hi hj ji hk ki
f C

h i j k

p

j j j j

j

Min n w y f x g t

f x dx








−


= = = =

=

  
− −  

 


+ 



  

 

 (6) 

where hiw  is a weighted component and j  is defined as a 

smoothing parameter. To make it simpler to carry out, we 

divided the equation into two components namely Goodness 

of Fit (GoF) and penalty that is presented in Lemma 1 and 

Lemma 2 respectively. 

 

Lemma 1. Suppose ( )hj jif x  is approached by the Fourier 

series function, then the Goodness of Fit can be written as 

( ) ( ) ( )1 * *

1 2, (2 )
T

G n −= − −f f y Xa W y Xa . 

 

Proof of Lemma 1. To begin with, we assume ( )hj jif x  in 

(5) as a smooth function and it is contained in the space of 

continuous function on the interval (0, )C  . Additionally, 

( )hj jif x is approached by the modified Fourier series cosine 

function used by Bilodeau [5] as follows 

 
0

1

( ) cos
2

V
hj

hj ji hj ji vhj ji

v

a
f x b x a vx

=

= + +  . (7) 

For efficiency, the function ( )hj jif x  can be drawn in the 

following matrix form 

1 1 1 11

22 2 22

T

T

      
= = =      

       

f X a aX 0
f

0 XX a af
 

 = Xa  (8) 

where  

1 1 1 1

2 2 2 2

1 2 cos1 cos 2 cos

cos1 cos 2 cos1 2

1 2 cos1 cos 2 cos

j j j j

j j j j

h

jn jn jn jn

x x x Vx

x x x Vx

x x x Vx

 
 
 

=
 
 
  

X , 

 
0 1 2h hj hj hj hj Vhjb a a a a =  a , h = 1, 2. 

Furthermore, we define the Goodness of Fit component in 

(6) as follows 

 

( )1

2
2

1

1 1 1 1

( ), , ( )

(2 ) ( ) ( ) .

hj j hj jn

p qn

hi hi hj ji hk ki

h i j k

G f x f x

n w y f x g t−

= = = =

 
= − − 

 
  

 (9) 

Based on the bi-response nonparametric regression model in 

(5), if we move the 
1

( )
q

hk ki

k

g t
=

  to the left side then (5) can 

easily be expressed as below 

Engineering Letters, 31:1, EL_31_1_45

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

 
1 1

( ) ( )
q p

hi hk ki hj ji hi

k j

y g t f x 
= =

− = +  . (10) 

Let *

1

( )
q

hi hi hk ki

k

y y g t
=

= −  , the Goodness of Fit in (9) is 

written as follows 

 

( )1

2
2

1 *

1 1 1

( ), , ( )

(2 ) ( ) .

hj j hj jn

qn

hi hi hj ji

h i k

G f x f x

n w y f x−

= = =

 
= − 

 
 

 (11) 

The outcome in (11) can be presented in the following 

matrix form 

 ( ) ( )
2

1

1 2, (2 )G n −= −*
f f W y Xa  

( ) ( )1(2 )
T

n −= − −* *
y Xa W y Xa ,                     ■ 

where = −*y y g , 
1

2

 
=  

 

X 0
X

0 X
, and 

1

2

 
=  

 

a
a

a
. 

 

Lemma 2. The penalty component is presented by the 

following equation 

1( , , ) ( )T

pP   = a D a . 

 

Proof of Lemma 2. With regards to (6), we define the 

penalty component as below   

 ( )
2

''

1

1 0

2
( , , ) ( )

p

p j j j j

j

P f x dx



  
=

=    (12) 

where ( )j jf x  is approached by the Fourier series in (7). To 

begin with, we solve the second derivative of ( )j jf x  such 

that we obtain (13). 

( )
2

''

1

1 0

2
( , , ) ( )

p

p j j j j

j

P f x dx



  
=

=     

2

0

10

2
cos

2

V
j

j j vj j j

vj j

ad d
b x a vx dx

dx dx



 =

  
= + +  

   
  

 4 2

1 1

 
p V

j vj

j v

v a
= =

 
=  

 
  . (13) 

As a result, (13) can be written in the following matrix form. 

1( , , ) ( )T

pP   = a D a ,                           ■ 

where 

1

2

( )
( )

( )






 
=  

 

D 0
D

0 D
, 

1

2
( )h

p



 
 
 =
 
 
  

d 0 0

0 d 0
D

0

0 0 d

, 

0 0j jd diag  =  I , 4 4 41 2j j j jV   =  I .  

In summary, the construction of the Goodness of Fit and 

penalty has been established in Lemma 1 and Lemma 2. The 

result was Theorem 1 which presents the first stage of 

estimation using PWLS optimization.  

 

Theorem 1. The PWLS optimization yielded the following 

Fourier series estimator as follows 

( )1

( )
ˆ ( , ) (2 ) ( )T Tn 

−

 = + 
*

K,λ,V
f x t X X WX D X W y . 

 

Proof of Theorem 1. The results from Lemma 1 and 

Lemma 2 were substituted into the PWLS optimization in 

(6) to produce the following equation 

( )

2
2

1

[0, ]
1 1 1 1

2
''

1 0

(2 ) ( ) ( )

2
           ( ) ,

p

p qn

hi hi hj ji hk ki
f C

h i j k

p

j j j j

j

Min n w y f x g t

f x dx








−


= = = =

=

  
− −  

 


+ 



  

 

 

( )
( ) ( ) 2 x1

1(2 ) ( )
V pr

T
T

R

Min n 
+

−



= − − +* *

a

y Xa W y Xa a D a  

( )




2 x1

1 1

1

(2 ) 2(2 )

               (2 ) ( ) .

rpV

T T T

R

T T T

Min n n

n 

+

− −



−

= −

+ +

* * *

a

y Wy a X Wy

a X WXa a D a
 (14) 

By partially deriving (14) against a  and equating the 

outcome with 0 then â  is obtained as below 
1 1 1(2 ) 2(2 ) (2 ) ( )T T T T T Tn n n − − −  − + + 

=


* * *
y Wy a X Wy a X WXa a D a

0
a

 

1

ˆ (2 ) ( )T Tn 
−

 = + 
*

a X WX D X Wy .            (15) 

Thus, by substituting â  into (8), we get the following 

estimator of the Fourier series component 

( )
ˆ ˆ( , ) =K,λ,Vf x t Xa                (16) 

 ( )1

(2 ) ( )T Tn 
−

 = + 
*X X WX D X W y    ■ 

= *Hy   (17) 

where 
1

(2 ) ( )T Tn 
−

 = + H X X WX D X W . 

Moving on to obtain the estimation of the truncated spline 

component, the next stage estimated the regression curve 

using WLS optimization, as stated in Lemma 3, and the 

outcome is shown in Theorem 2. 

 

Lemma 3. The WLS optimization can be presented as the 

following equation 

( )( ) ( )( )
T

− − − −      I H y Jθ W I H y Jθ . 

 

Proof of Lemma 3.  In this paper, we assume ( )hk kig t  in (5) 

is approached by linear truncated spline function with knot 

1 2, ,...,hk hk hkuK K K  as follows  

 
1

( ) ( )
u

hk ki hk ki hks ki hks

s

g t t t K  +

=

= + −  (18) 

with the truncated function 

( )   ,
( )

0                  , .

ki hks ki hks

ki hks

ki hks

t K t K
t K

t K

+

+

− 
− = 


 

The truncated spline function in (18) can be defined as 

matrix form in (19) . 

  1 1 1 11

2 2 2 22

|
T

T

       
= = + =       

     

Tα S βg α
g T S

T α S β βg
 

  = Jθ , (19) 

where 

 |=J T S , 
 

=  
 

α
θ

β
, 

11 21 1

12 22 2

1 2

q

q

i

n n qn

t t t

t t t

t t t

 
 
 =
 
 
  

T , 

Engineering Letters, 31:1, EL_31_1_45

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

11 11 11 1 1 1 11

12 11 12 1 2 1 12

1 11 1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

h h u p hq hqu

h h u p hq hqu

i

n h n h u pn hq n hqu

t K t K t K t K

t K t K t K t K

t K t K t K t K

+ + + +

+ + + +

+ + + +

− − − − 
 

− − − −
 =
 
 

− − − −  

S
, 

11 12 1 1 2

T

h h h h u hq hq hqu      =  β , 

1

T

h h qh  =  α . Thereafter, the equation in (17) and 

(19) are substituted into (3), hence we retrieve the result as 

in (20).   

= + +y f g ε ; where = *
f Hy  

= − −*
ε y Hy g  

 ( )( )= − −I H y Jθ . (20) 

The estimator θ̂  is derived by solving the subsequent WLS 

optimization given by (21) 

( )( ) ( )( )
TT = − − − −      ε ε I H y Jθ W I H y Jθ .   ■ (21) 

Therefore, the following step was to solve the optimization 

using WLS given by Theorem 2 as follows. 

 

Theorem 2. As a result of WLS optimization, the model's 

truncated spline estimator is given by the equation below. 
1

( )
ˆ ( , ) −=K,λ,Vg x t JK Ly . 

 

Proof of Theorem 2. Using (21) as a reference, suppose 

( )T =ε ε M θ  such that the following equation obtained. 

   ( )
T

= − − + − − +M θ y Hy Jθ HJθ W y Hy Jθ HJθ . (22) 

By partially deriving ( )M θ  on θ  and equating the outcome 

with 0, we obtain the equation below. 

   ( )( ) T 
= − − + − − +

 

M θ
y Hy Jθ HJθ W y Hy Jθ HJθ

θ θ
 

( ) ( ) ( )
1

ˆ 2 .T T T T T T
−

   = − + − −
   

θ J I H WJ J H WHJ J H I W H I y

1ˆ .−=θ K Ly                     (23) 

where ( )2T T T T = − +
 

K J I H WJ J H WHJ , 

( ) ( )T T = − −
 

L J H I W H I . Substituting (23) into (19) 

yields 

( )
ˆˆ ( , ) =K,λ,Vg x t Jθ   

 
1

( ) .−= = K,λ,VJK Ly A y          ■ (24) 

Thus, we substitute (24) into (15) such that we attain the 

equation below.  
1

ˆ (2 ) ( )T Tn 
−

 = + 
*

a X WX D X Wy  

( )
1

1(2 ) ( ) .T Tn 
−

− = + − X WX D X W I JK L y  (25) 

Following that, the outcome on (25) is substituted into (16). 

Consequently, we get the estimator of ( )hk kig t  which no 

longer contains ( )hj jif x  as follows   

( )
ˆ ˆ( , ) =K,λ,Vf x t Xa  

( )( )1
1(2 ) ( )T Tn 

−
− = + − X X WX D X W I JK L y  

( )1

( )

−= − = K,λ,VH I JK L y B y               (26) 

 

 

Another main finding in the theoretical result is the 

regression curve estimation of hi , as shown in Corollary 1. 

 

Corollary 1. Utilizing the findings in (24) and (26) such that 

we obtain the regression curve estimation of bi-response 

nonparametric regression with the CFS-TS model as follows 

( )1 1

( )
ˆ ( ) .− − = − +

 K,λ,V
μ x,t H I JK L JK L y  

 

Proof of Corollary 1. The model's regression curve 

estimation can be expressed in the following matrix form by 

employing an additive model in (4) of the equation. 

 
( ) ( ) ( )

ˆ ˆˆ ( ) ( ) ( ).= +K,λ,V K,λ,V K,λ,Vμ x,t f x,t g x,t  (27) 

According to the results of truncated spline and Fourier 

series estimators on (24) and (26) respectively, (27) can be 

written as  

( )1 1

( )
ˆ ( ) − − = − +

 K,λ,V
μ x,t H I JK L JK L y    ■ 

( )= K,λ,VC y . 

 

B. The Properties of Bi-response Nonparametric 

Regression of the CFS-TS Model  

Regarding the outcome in the previous section, the 

following procedure was to verify the properties of the 

proposed model. If we assign the mathematical expectation 

to (27) then, 

( ) ( )( ) ( )
ˆ ( )E E=K,λ,V K,λ,Vμ x,t C y  

( )( ) E= K,λ,VC y  

( )( ) ( ) ( )
ˆ ˆ( ) ( )E= +

K,λ,V K,λ,V K,λ,V
C f x,t g x, t

( ) ( ) K,λ,Vμ x,t . 

Since ( )( ) ( )
ˆ ( ) ( )E K,λ,V K,λ,Vμ x,t μ x,t , this leads to the 

conclusion that the obtained estimator is biased. 

Nevertheless, the estimator is linear in the observation as 

proved in the following equation 

( ) ( ) ( )
ˆ ˆˆ ( ) ( ) ( )= +K,λ,V K,λ,V K,λ,Vμ x,t f x,t g x,t  

( ) ( )= +K,λ,V K,λ,VA y B y  

( )= K,λ,VC y . 

  

C. Smoothing Parameter Selection 

Smoothing parameter selection is fundamental in 

nonparametric regression analysis since it will influence the 

estimated results of the regression curve. In this paper, we 

selected the optimal knot, oscillation parameter, and 

smoothing parameter to find the best model. From a variety 

of knots, oscillation, and smoothing parameter, the smallest 

GCV value can be used as a criterion for determining the 

best model.  

For the proposed model described in section B, the 

modified GCV is presented in (29). 

( )
( )

( , , ) 2
1

( )

MSE
GCV ,

(2 )n trace−

=
 −
 

K,λ,V

K λ T

K,λ,VI C

 (28) 

where 

( )MSE =K,λ,V ( ) ( )1 ˆ ˆ(2 )
T

n − − −y μ y μ =
2

1

( )(2 )n − −
K,λ,V

I C y . 
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Hence, (28) can be written as follows  

 

( )

2
1

( )

( , , ) 2
1

( )

(2 )
.

(2 )

n
GCV

n trace

−

−

−
=

 −
 

K,λ,V

K λ T

K,λ,V

I C y

I C

 (29) 

 

IV. SIMULATION STUDY 

So far, this paper has focused on curve estimation as a 

theoretical result of the proposed model. The following 

section provides a simulation study of the bi-response 

nonparametric regression of the CFS-TS model to assess the 

performance of the obtained estimator. The simulation was 

carried out with three data sample sizes (n = 20, 50, 100) 

which were repeated 100 times for each sample size. For 

each response resulting from the formula, we constructed 

models that describe two distinct functions that stand in for 

the truncated spline and Fourier series functions.  

 

Fig. I (a) illustrate how a trigonometric function reflects a 

trend for the Fourier series function. Meanwhile Fig. I (b) 

display partially scattered plot of polynomial function which 

represent the truncated spline. Thus, the model used in this 

numerical study is as follows 

 

( ) ( )
3

1 11.5 cos 6 17 0.8i i i i iy x x t = − − − − + , 

( ) ( )
3

2 21.75 1.2cos 6 18 0.8 .i i i i iy x x t = − − − − +  (30) 

 

In (30), we use a Uniform (0,1) distribution to generate 

these two predictor variables while the multivariate normal 

distribution is used to generate the random error hi . The 

correlation between 1i  and 2i  id defined as 

( )1 2,i icorr   =  . Moreover, since the study discusses the 

bi-response model, the simulation was carried out with three 

different correlations  = 0, 0.5, and 0.9. According to the 

partial scatterplot identification in Fig. 1 and with the 

intention to simplify the computational process, we executed 

the simulation with combination of three knots (K = 1, 2, 

and 3) and three oscillation parameters (V = 1, 2, and 3). 

Furthermore, Table I compares the GCV of the proposed 

models using simulated data with one knot on various data 

sample sizes, correlation, and the number of oscillations. A 

complete summary of the statistical result for the proposed 

models using two and three knots is provided in Appendix 

(Table A and Table B). Table I demonstrates that the 

smallest GCV of the sample size n = 20, 50, and 100 occurs 

for  = 0.9 with the combination of one knot and three 

oscillation model. Additionally, n = 100 yields the GCV 

with the least value (1.18067) among the three sample sizes. 

Surprisingly, we obtain the same outcome by using models 

with two and three knots, as shown in Table A and Table B 

(Appendix). Consequently, a high correlation with a large 

sample size will result in a smaller GCV, which indicates 

that the regression curve will be better estimated as well. 

 

V.  DATA APPLICATION 

This section continues with the application of an actual 

dataset utilizing bi-response nonparametric regression of the 

CFS-TS model. In this article, we employed 2019 data from 

38 regencies/cities in East Java Province, Indonesia, for the 

education indicator of the human development index (HDI). 

Both indicators, expected years of schooling (EYS) and 

mean years of schooling (MYS), were used in this case 

TABLE I 

COMPARISON GCV OF THE PROPOSED MODEL USING SIMULATION DATA 

WITH THE NUMBER OF KNOTS IS 1 

n    Number of 

oscillations 
 GCV  

20 0 1 1.31016 

 0 2 1.30794 

 0 3 1.29848 

 0.5 1 1.29660 

 0.5 2 1.29636 

 0.5 3 1.29479 

 0.9 1 1.29209 

 0.9 2 1.29122 

 0.9 3   1.28670*) 

50 0 1 1.23039 

 0 2 1.23000 

 0 3 1.22970 

 0.5 1 1.19910 

 0.5 2 1.19881 

 0.5 3 1.19676 

 0.9 1 1.19033 

 0.9 2 1.19026 

 0.9 3   1.18662*) 

100 0 1 1.20418 

 0 2 1.20403 

 0 3 1.20355 

 0.5 1 1.18326 

 0.5 2 1.18322 

 0.5 3 1.18165 

 0.9 1 1.18118 

 0.9 2 1.18108 

 0.9 3   1.18067*) 

 

 
(a) 

 
(b) 

Fig. 1.  Partially scattered plot for each predictor variable to the response 

variable, which represents a truncated spline function (a) and a Fourier series 

function (b)  
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study as the response variables and thus were denoted as 1y  

and 2y , respectively. According to earlier studies, several 

predictor variables, including the percentage of poverty [16], 

[22], the unemployment rate [22], [23], and the per capita 

gross regional domestic product (GRDP) [22], [24] 

potentially influence Indonesia's HDI. Thus, the per capita 

gross regional domestic product (per capita GRDP) and the 

percentage of people who lived in poverty were utilized as 

predictor variables in this study. Despite being one of 

Indonesia's largest provinces, East Java's HDI problem 

nonetheless attracted a lot of criticism, notably in the 

education dimension. Additionally, when compared to the 

other provinces on the island of Java, East Java has the 

lowest HDI; this ranking is based on the province's HDI 

accomplishments from 2015 to 2019. It is therefore possible 

to discuss further studies on the HDI in East Java.    

In this study, we used the Pearson correlation to measure 

the strength and direction of the association between y1 and 

y2. The outcome revealed a statistical value of 0.769 for the 

Pearson correlation (r), indicating a positive and generally 

strong association between the two response variables. 

Additionally, the p-value is 0.00, which implies that the null 

hypothesis is rejected since the p-value <  (0.05). This 

finding implies that there is a significant correlation between 

y1 and y2, hence bi-response nonparametric regression can 

be applied. A partial scatterplot, as seen in Fig. 2, was used 

to determine the relationship between each predictor 

variable and the response variable. 

The partial scatter plot between the per capita GRDP (t) 

and both response variables revealed changes at a particular 

subinterval that fit the truncated spline function. Meanwhile, 

the partial scatterplot between the response variable and the 

percentage of persons living in poverty (x) followed a 

pattern that is repeated with a particular trend and at a 

specific interval; as a result, the Fourier series function was 

used to approach this variable.  

     

 

 
Additionally, we chose the best model using the smallest 

GCV as the criterion. The results of the GCV value from 

several value   of are summarized in Table II and Fig. 3. 

What is interesting about the data in this table is that the 

smallest GCV not always obtained from the smallest  . As 

shown in Fig.3, we obtained the minimum GCV from 

 =0.07.  

 

 
We compared the proposed model which uses a combined 

estimator (Model 1) to a single estimator or uncombined 

estimator (Model 2 and Model 3), as illustrated in Table III. 

When these three models were evaluated, compared to the 

single or uncombined estimator model, it became clear that 

the proposed model (Model 1) had the lowest GCV 

(0.51986). Also, Model 1 generally has a lower GCV value 

than Models 2 and 3 for all combinations number of 

oscillation and knots. Consequently, it can be concluded that 

the proposed model is generally more recommended to be 

used in modeling the real dataset of 2019 East Java Province 

EYS and MYS data.  

 

TABLE II 

GCV VALUE AROUND OPTIMUM VALUED 

  GCV    GCV 

0.0001 0.52821  0.01 0.52463 

0.0003 0.52812  0.03 0.52103 

0.0005 0.52803  0.05 0.51990 

0.0007 0.52795  0.07   0.51986*) 

0.0009 0.52786  0.09 0.51994 

0.001 0.52781  0.3 0.52331 

0.003 0.52699  0.5 0.52542 

0.005 0.52624  0.7 0.52665 

0.007 0.52555  0.9 0.52745 

0.009 0.52493  1 0.52775 

 

 
Fig. 3.  The GCV value on various  .   

 
Fig. 2.  Partial scatter plot between response variable with two predictor 

variables: per capita GRDP and percentage of people living in poverty. 
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Another result from Table III, the best model obtained 

from the bi-response nonparametric regression of CTS-FS 

model with one oscillation and three knot. Based on these 

models, we can calculate the parameter estimation of East 

Java’s education human development index (HDI) model as 

the following equation.  

  

1

1
ˆ 0.004 (25.864) 0.108cos 0.348

2

0.779( 119.939) 0.7( 132.511)

0.329( 157.654)

i i i

i i

i

y x x t

t t

t

+ +

+

= + − +

− − + −

− −

 

2

1
ˆ 0.005 (8.413) 0.206cos 3.439

2

4.301( 119.939) 1.278( 132.511)

0.676( 157.654)

i i i

i i

i

y x x t

t t

t

+ +

+

= − − +

− − + −

− −

 

 

Comparison of the actual and prediction from both 

response variables presented in Fig. 4 and Fig. 5. On the 

graph, we can notice that, with a few exceptions, all fitted 

values generally follow the pattern of the true data. 

Consequently, the suggested model can result in a prediction 

model.     

 

 
 

 

 
Fig. 5.  Comparison between the actual and prediction of mean years of schooling (MYS) variable 

 
Fig. 4. Comparison between the actual and prediction of expected years of schooling (EYS) variable 

TABLE III 

SUMMARY OF GCV AND MSE FOR THE DATA APPLICATION 

Model 1 Bi-response nonparametric regression of CTS-FS  

 Number of 

Oscillation 

Number 

of Knots 
GCV MSE 

 1 1 0.53752 0.41454 

  2 0.52876 0.38401 

  3   0.51986*) 0.35706 
 2 1 0.54028 0.41685 
  2 0.53143 0.38387 

  3 0.52135 0.35843 

 3 1 0.53913 0.41305 

  2 0.53084 0.38311 

  3 0.52120 0.35817 

Model 2 Bi-response nonparametric regression of truncated spline 

 Number of Knots GCV MSE 

 1 0.59074 0.44551 

 2 0.59983 0.39919 

 3 0.56248 0.35058 

Model 3 Bi-response nonparametric regression of Fourier series 

 Number of Oscillation GCV MSE 

 1 0.66312 0.50009 

 2 0.70051 0.46620 

 3 0.77373 0.45063 

 

Engineering Letters, 31:1, EL_31_1_45

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 



 

VI.  CONCLUSION 

Through utilizing PWLS and WLS optimization, this 

article gives the findings of regression curve estimation 

using a combined truncated spline and Fourier series 

estimator in bi-response nonparametric regression as follows 

( )1 1

( )
ˆ ( ) − − = − +

 K,λ,V
μ x,t H I JK L JK L y  

According to the numerical simulations, the findings of this 

study suggest that the proposed model be employed for data 

with a large number of samples and a strongly correlated 

response variable. Additionally, in the application with HDI 

education indicator data in East Java, the proposed model 

outperformed compared to the model with a single 

estimator.  

Due to the limited scope of the regression curve 

estimation, the main weakness of this study was the absence 

of hypothesis testing and confidence interval of the 

proposed model. Hence, further work needs to be conducted 

to obtain the test statistics for hypothesis testing and critical 

region. Despite its shortcoming, this work contributes to the 

current literature on nonparametric regression. Firstly, we 

demonstrate how to estimate the regression curve of 

combined estimators for bi-response variables through two-

stage estimation using PWLS and WLS methods. 

Additionally, the proposed model is expandable for data 

with more than two response variables or multi-response 

model. Secondly, the methods used for this model may be 

applied to other combined estimators which open  future 

research opportunities. Besides, more numerical simulations 

with the additional variation of correlation and error 

variance would reveal more information along with a 

comprehension conclusion of the proposed model’s 

performance. 

APPENDIX 

TABLE A 

COMPARISON GCV OF THE PROPOSED MODEL USING SIMULATION DATA 

WITH THE NUMBER OF KNOTS IS 2 

n    Number of 

oscillations 
 GCV  

20 0 1 1.28684 

 0 2 1.28411 

 0 3 1.28360 

 0.5 1 1.28317 

 0.5 2 1.28145 

 0.5 3 1.27457 

 0.9 1 1.24394 

 0.9 2 1.24374 

 0.9 3  1.24150*) 

50 0 1 1.18191 

 0 2 1.18171 

 0 3 1.18092 

 0.5 1 1.14388 

 0.5 2 1.14374 

 0.5 3 1.14087 

 0.9 1 1.12542 

 0.9 2 1.12514 

 0.9 3   1.12293*) 

100 0 1 1.13866 

 0 2 1.13850 

 0 3 1.13811 

 0.5 1 1.12871 

 0.5 2 1.12863 

 0.5 3 1.12802 

 0.9 1 1.12795 

 0.9 2 1.12778 

 0.9 3   1.12628*) 

 
 

TABLE B 

COMPARISON GCV OF THE PROPOSED MODEL USING SIMULATION DATA 

WITH THE NUMBER OF KNOTS IS 3 

n    Number of oscillations  GCV  

20 0 1 1.36142 

 0 2 1.36122 

 0 3 1.35880 

 0.5 1 1.34759 

 0.5 2 1.34526 

 0.5 3 1.33274 

 0.9 1 1.28127 

 0.9 2 1.28080 

 0.9 3   1.27912*) 

50 0 1 1.17640 

 0 2 1.17613 

 0 3 1.17543 

 0.5 1 1.13806 

 0.5 2 1.13801 

 0.5 3 1.13656 

 0.9 1 1.11365 

 0.9 2 1.11337 

 0.9 3   1.11096*) 

100 0 1 1.13035 

 0 2 1.13020 

 0 3 1.12984 

 0.5 1 1.12013 

 0.5 2 1.12009 

 0.5 3 1.11964 

 0.9 1 1.11941 

 0.9 2 1.11939 

 0.9 3   1.11762*) 
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