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Abstract—This paper studies the stability problems of sys-
tems with an interval time-varying delay. First, an improved
reciprocally convex lemma is introduced. Second, based on this
reciprocally convex lemma, a less conservative stability criterion
is obtained. Finally, the merits of the proposed method is shown
via a numerical example.

Index Terms—Reciprocally convex lemma, Time-varying de-
lay, Stability, Linear matrix inequality.

I. INTRODUCTION

T IME -delay occurs in many practical systems, and it
may cause poor performance or even instability. There-

fore, the stability analysis of time-delay systems has attracted
considerable attention during the past two decades [1, 2].
The Lyapunov-Krasovskii functional (LKF) method is an
effective method for stability analysis of time-delay systems.
There are two approaches to obtain less conservative criteria
for systems with time-delay: introducing an appropriate LKF
and estimating the derivative of the LKF. In constructing
LKF, many types of LKFs are introduced, such as integral
delay partitioning-based LKFs [3], delay partitioning-based
LKFs [4], polynomial-type LKFs [5] and the augmented
LKFs [6]. Sometimes in order to contain more information
about the time-delay, some quadratic terms of the time-delay
are introduced [7]. In [8], a new inequality is proposed
for the quadratic polynomials by introducing free matrix
variables. However, these free matrix variables lead to the
great increase in computational complexity.

In recent years, several inequalities are introduced to
estimate the integral terms in the derivative of LKFs, such as
the Jensen inequality [9-10], Wirtinger inequality [11], aux-
iliary inequality [12], Bessel inequality [13] and free matrix
inequality [14]. By using the Jensen inequality, Wirtinger
inequality and Bessel inequality to estimate the integral term
in the derivative of the LKF, the term − 1

αζ
T
1 (t)Rζ1(t) −

1
1−αζ

T
2 (t)Rζ2(t) is obtained, where α ∈ (0, 1), ζ1(t) and

ζ2(t) are two real column vectors with appropriate dimen-
sions and R is a positive symmetric matrix. This term is
usually handled by a reciprocally convex combination lemma
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[15] and some improved reciprocally convex lemmas [16-
20]. The advantage of these lemmas lie in changing the non
convex terms into a single convex expression. However, it is
shown that these lemmas are conservative due to still exist
many zero elements in the decision matrices. This motivates
the present research.

In this paper, a generalized reciprocally convex lemma is
introduced which includes some existing reciprocally convex
lemmas as special cases. Based on this proposed lemma
and a delay-partitioning approach, a new stability criterion
is obtained for time-varying delay systems. The merits of
the presented criterion is demonstrated through a numerical
example.

II. PRELIMINARY

Consider the following systems with a time-varying delay{
ẋ(t) = Ax(t) +Bx(t− h(t))

x(t) = ϕ(t), t ∈ [−h2, 0]
(1)

where x(t) ∈ Rn is the state vector and A,B ∈ Rn×n are
constant matrices. The time-varying delay h(t) satisfies

0 ≤ h1 ≤ h(t) ≤ h2 (2)

h12 = h2 − h1 (3)

Lemma 2.1[20] For any matrix R ∈ Sn
+, if there exist

X1, X2, X3, Z1, Z2, Z4 ∈ Sn, Y1, Y2, Y3, Y4 ∈ Rn×n and
∀β ∈ (0, 1) such that the following inequality holds:[
R 0

0 R

]
≥ β

[
X1 Y1

∗ (1− β)Z1

]

+ (1− β)

[
βX2 Y2

∗ Z2

]

+ β2

[
X3 Y3

∗ 0

]
+ (1− β)2

[
0 Y4

∗ Z4

] (4)

then [
1
βR 0

0 1
1−βR

]
≥

[
R+ S1 S2

ST
2 R+ S3

]
(5)

where
S1 = (1− β)X1 + (1− β)2X2 + β(1− β)X3,
S2 = βY1 + (1− β)Y2 + β2Y3 + (1− β)2Y4,
S3 = β2Z1 + βZ2 + β(1− β)Z4.
Remark 2.2 Setting X1 = X2 = X3 = Z1 = Z2 = Z4 =
Y3 = Y4 = 0 and Y1 = Y2 = S, Lemma 2.1 reduces
to Theorem 1 in [15]. Setting X2 = X3 = Y3 = Y4 =
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Z1 = Z4 = 0 and Y1 = Y2 = S, Lemma 2.1 reduces to
Theorem 1 in [17]. Setting X1 = X̄1+X̄2, X2 = −X̄2, Z1 =
−Ȳ2, Z2 = Ȳ1 + Ȳ2, Y1 = Z̄0 + Z̄1, Y2 = Z̄0, Y3 = Z̄2 and
X3 = Y4 = Z4 = 0, Lemma 2.1 reduces to Lemma 2 in [18].
Setting Z1 = X2 = 0, Lemma 2.1 reduces to Lemma 3 in
[19]. Therefore, the generalized reciprocally convex lemma
proposed in Lemma 2.1 includes lemmas in [15, 17-19] as
special cases.
Remark 2.3 In Lemma 2.1, the cross terms β(1−β)Z1 and
β(1 − β)X2 are introduced to exploit more information on
the decision matrices. This may yield more less conservative
stability results.
Lemma 2.3[21]For a matrix R ∈ Sn

+ and any continuously
differentiable function y : [a, b] −→ Rn the following
inequality holds:∫ b

a

ẏT (s)Rẏ(s)ds

≥ 1

b− a
(ΩT

0 RΩ0 + 3ΩT
1 RΩ1 + 5ΩT

2 RΩ2),

(6)

Ω0 = y(b)− y(a),

Ω1 = y(b) + y(a)− 2
b−a

∫ b

a
y(s)ds,

Ω2 = y(b)− y(a)+ 6
b−a

∫ b

a
y(s)ds− 12

(b−a)2

∫ b

a

∫ b

u
y(s)dsdu.

Lemma 2.4[19] Let g(y) = a0 + a1y+ a2y
2, where y ∈

[h1, h2] and a0, a1, a2 ∈ R. For a given non-negative integer
N , if the following conditions hold for i = 1, 2, · · · , 2N :
(i) g(h1) < 0,
(ii)g(h2) < 0,
(iii) h12

2N+1 ġ(
i−1
2N
h12 + h1) + g( i−1

2N
h12 + h1) < 0, i =

1, 2, · · · , 2N ,
then g(y) < 0.

III. MAIN RESULTS

In this section, a novel delay-dependent stability criterion
is obtained as follows.
Theorem 3.1 For given scalars h1 > 0 and h2 > 0 and
non-negative integers N and m, if there exist matrices P ∈
S5n
+ , Q1 ∈ S3n

+ , Q2 ∈ S4n
+ , Q3 ∈ Smn

+ , R1 ∈ Sn
+, R2 ∈ Sn

+,
X1, X2, X3, Z1, Z2, Z4 ∈ S3n, Y1, Y2, Y3, Y4 ∈ R3n×3n and
L1, L2 ∈ R(11+m)×n such that the following LMIs hold:

ψ0 ≤ 0, (7)

ψ2 + ψ1 + ψ0 ≤ 0, (8)

(
1

2N
ρ̄j + ρ̄2j )ψ2 + (

1

2N+1
ρ̄j + ρ̄2j )ψ1 + ψ0 ≤ 0, (9)

h2iϖ2 + hiϖ1 +ϖ0 ≤ 0, i = 1, 2, (10)

(
h12
2N

ρ̂j + ρ̂2j )ϖ2 + (
h12
2N+1

ρ̂j + ρ̂2j )ϖ1 +ϖ0 ≤ 0, (11)

then, system (1) is asymptotically stable.
where

ψ0 =

[
−R̄2 Y2 + Y4

∗ −R̄2 + Z2 + Z4

]
,

ψ1 =

[
X1 +X2 Y1 − Y2 + 2Y4

∗ Z1 − Z2 − 2Z4

]
,

ψ2 =

[
−X2 +X3 Y3 + 2Y4

∗ Z4 − Z1

]
,

ϖ0 =Sym
{
ΠT

11Pδ1 +ΠT
41Q2δ2 − L1(h1em+5 + em+10)

+L2(h2em+6 − em+11) + ΥT
2 (
h1Y1 − h2Y2

h12
)Υ3

+ΠT
03Q1Π04

}
+ΠT

01Q1Π01 −ΠT
02Q1Π02

+ΠT
21Q2Π21 −ΠT

22Q2Π22 +ΠT
31Q3Π31

−ΠT
32Q3Π32 −ΥT

1 R̄1Υ1

−ΥT
2 (R̄2 +

h2
h12

X1 +
h22
h212

X2 −
h1h2
h212

X3)Υ2

−ΥT
3 (R̄2 −

h21
h212

Z1 −
h1
h12

Z2 −
h1h2
h212

Z4)Υ3

+ eT0 (
h21
m2

R1 + h212R2)e0,

ϖ1 =Sym

{
ΥT

2 (
Y2 − Y1
h12

+
2h1Y3 − 2h2Y4

h212
)Υ3

+ΠT
12Pδ1 +ΠT

42Q2δ2 + L1em+5 − L2em+6

}
+ΥT

2 (
X1

h12
+

2h2
h212

X2 −
h1 + h2
h212

X3)Υ2

+ΥT
3 (

2h1
h212

Z1 −
Z2

h12
− h1 + h2

h212
Z4)Υ3,

ϖ2 =Sym

{
ΠT

13Pδ1 +ΠT
43Q2δ2 −ΥT

2

Y3 − Y4
h212

Υ3

}
+ΥT

2 (
X3 −X2

h212
)Υ2 +ΥT

3 (
Z4 − Z1

h212
)Υ3,

ρ̄j =
j−1
2N

, ρ̂j = j−1
2N

h12 + h1, j = 1, 2, · · · , 2N ,
Π01 =

[
eT1 eT1 0

]T
,

Π02 =
[
eTm+2 eT1 h1e

T
m+4

]T
,

Π03 =
[
h1e

T
m+4 h1e

T
1 h21e

T
m+7

]T
,

Π04 =
[
0 υT eT1

]T
,

Π11 =
[
eT1 h1e

T
m+4 Π̄T

11 h21e
T
m+7 υT

]T
,

Π̄11 = em+10 + em+11,
Π12 =

[
0 0 0 0 Π̄T

12

]T
,

Π̄12 = −2h1em+8 − 2h2em+9 − em+10,
Π13 =

[
0 0 0 0 eTm+8 + eTm+9

]T
,

Π21 =
[
eTm+1 eT1 0 eTm+10 + eTm+11

]T
,

Π22 =
[
eTm+3 eT1 eTm+10 + eTm+11 0

]T
,

Π31 =
[
eT1 eT2 · · · eTm−1

]T
,

Π32 =
[
eT2 eT3 · · · eTm

]T
,

Π41 =
[
eTm+10 + eTm+11 h12e

T
1 υT T1

]T
,

Π42 =
[
0 0 Π̄T

42 T2
]T

,

Π̄42 = −2h1em+8 − 2h2em+9 − em+10,
Π43 =

[
0 0 eTm+8 + eTm+9 −eTm+8 − eTm+9

]T
,

δ1 =
[
eT0 eT1 − eTm+1 eTm+1 − eTm+3 T3 T4

]T
,

δ2 =
[
0 eT0 eTm+1 −eTm+3

]T
,

υ = h21em+8 + h22em+9 + h2em+10,

Υ1 =
[
eT1 − eT2 eT1 + eT2 − 2eTm+4 T5

]T
,
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Υ2 =
[
eTm+1 − eTm+2 ῩT

2 T6
]T
,

Ῡ2 = em+1 + em+2 − 2em+5,
Υ3 =

[
eTm+2 − eTm+3 ῩT

3 T7
]T
,

Ῡ3 = em+2 + em+3 − 2em+6,
T1 = h12(e

T
m+10 + eTm+11)− υT ,

T2 = 2h1e
T
m+8 + 2h2e

T
m+9 + eTm+10,

T3 = h1(e
T
1 − eTm+4),

T4 = h12e
T
m+1 − eTm+10 − eTm+11,

T5 = eT1 − eT2 + 6eTm+4 − 12eTm+7,
T6 = eTm+1 − eTm+2 + 6eTm+5 − 12eTm+8,
T7 = eTm+2 − eTm+3 + 6eTm+6 − 12eTm+9,
e0 = Ae1 +Bem+2,
R̄i = diag(Ri, 3Ri, 5Ri), i = 1, 2,

ei =
[
0n×(i−1)n In 0n×((11+m)−i)n

]
,

for i = 1, 2, · · · , (11 +m).
Proof. Let an integer m > 0, [0, h1] is divided into m
segments equally, i.e., [0, h1] =

∪m
i=1[

i−1
m h1,

i
mh1]. Then,

we introduce a LKF candidate as follows:

V (xt) = V1(xt) + V2(xt) + V3(xt), (12)

where

V1(xt) = ηT1 (t)Pη1(t), (13)

V2(xt) =

∫ t

t−h1

ηT2 (t, s)Q1η2(t, s)ds

+

∫ t−h1

t−h2

ηT3 (t, s)Q2η3(t, s)ds

+

∫ t

t−h1
m

ηT4 (s)Q3η2(s)ds,

(14)

V3(xt) =
h1
m

∫ t

t−h1
m

∫ t

u

ẋT (s)R1ẋ(s)dsdu

+ h12

∫ t−h1

t−h2

∫ t

u

ẋT (s)R2ẋ(s)dsdu,

(15)

η1(t) =
[
xT (t) µT

1 (t) η̄1(t)
T µT

4 (t) µT
5 (t)

]T
η̄1(t) = µ2(t) + µ3(t)

η2(t, s) =
[
xT (s) xT (t)

∫ t

s
xT (β)dβ

]T
ηT3 (t, s) =

[
xT (s) xT (t)

∫ t−h1

s
xT (β)dβ η̄3(t, s)

T
]

η̄3(t, s) =
∫ s

t−h2
x(β)dβ

η4(t) =
[
xT (s) xT (s− h1

m ) · · · xT (s− m−1
m h1)

]T
µ1(t) =

∫ t

t−h1
m
x(θ)dθ

µ2(t) =
∫ t−h1

t−h(t)
x(θ)dθ

µ3(t) =
∫ t−h(t)

t−h2
x(θ)dθ

µ4(t) =
∫ t

t−h1
m

∫ t

θ
x(s)dsdθ

µ5(t) =
∫ t−h1

t−h2

∫ t−h1

θ
x(s)dsdθ

µ6(t) =
∫ t−h1

t−h(t)

∫ t−h1

θ
x(s)dsdθ

µ7(t) =
∫ t−h(t)

t−h2

∫ t−h(t)

θ
x(s)dsdθ

ζ(t) =
[
ζT1 (t) ζT2 (t) ζT3 (t)

]T
ζ0(t) =

[
xT (t) xT (t− 1

mh1) · · · xT (t− m−1
m h1)

]T
ζ1(t) =

[
ζT0 (t) xT (t1) xT (t− h(t)) xT (t2)

]T
t1 = t− h1, t2 = t− h2

ζ2(t) =
[

m
h1
µT
1 (t)

1
ĥ1
µT
2 (t)

1
ĥ2
µT
3 (t)

m2

h2
1
µT
4 (t)

]T
ζ3(t) =

[
1

(ĥ1)2
µT
6 (t)

1
(ĥ2)2

µT
7 (t) µT

2 (t) µT
3 (t)

]T
ĥ1 = h(t)− h1, ĥ2 = h2 − h(t)
Calculating the derivative of V (xt) along the system (1)
yields:

V̇1(xt) =2ηT1 (t)P η̇1(t), (16)

V̇2(xt) =η
T
2 (t, t)Q1η2(t, t)

− ηT2 (t, t− h1)Q1η2(t, t− h1)

+ 2

∫ t

t−h1

ηT2 (t, s)Q1
∂η2(t, s)

∂t
ds

+ ηT3 (t, t− h1)Q2η3(t, t− h1)

− ηT3 (t, t− h2)Q2η3(t, t− h2)

+ ηT4 (t)Q3η3(t)

− ηT4 (t−
h1
m

)Q3η4(t−
h1
m

)

+ 2

∫ t−h1

t−h2

ηT3 (t, s)Q2
∂η3(t, s)

∂t
ds

=ζT (t)(h2(t)ϖ21 + h(t)ϖ11 +ϖ01)ζ(t),

(17)

where

ϖ01 =Sym
{
ΠT

41Q2δ2 +ΠT
03Q1Π04

}
+ΠT

01Q1Π01 −ΠT
02Q1Π02 +ΠT

21Q2Π21

−ΠT
22Q2Π22 +ΠT

31Q3Π31 −ΠT
32Q3Π32,

ϖ11 = Sym
{
ΠT

42Q2δ2
}
,

ϖ21 = Sym
{
ΠT

43Q2δ2
}
,

V̇3(xt) =
h21
m2

ẋT (t)R1ẋ(t) + h212ẋ
T (t)R2ẋ(t)

− ω1 − ω2,
(18)

where

ω1 =
h1
m

∫ t

t−h1
m

ẋT (s)R1ẋ(s)ds,

ω2 =h12

∫ t−h1

t−h(t)

ẋT (s)R2ẋ(s)ds

+ h12

∫ t−h(t)

t−h2

ẋT (s)R2ẋ(s)ds.

Based on Lemma 2.3, the following inequalities hold:

ω1 ≥ ζT (t)ΥT
1 R̄1Υ1ζ(t), (19)

ω2 ≥ ζT (t)(
1

β
ΥT

2 R̄2Υ2 +
1

1− β
ΥT

3 R̄2Υ3)ζ(t), (20)
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where
β = h(t)−h1

h12
.

Then, based on Lemma 2.2, we have:

ω2 ≥ ζT (t)(ΥT
2 S̄1Υ2 + 2ΥT

2 S̄2Υ3 +ΥT
3 S̄3Υ3)ζ(t), (21)

where
S̄1 = R̄2 + (1− β)X1 + (1− β)2X2 + β(1− β)X3,
S̄2 = βY1 + (1− β)Y2 + β2Y3 + (1− β)2Y4,
S̄3 = R̄2 + β2Z1 + βZ2 + β(1− β)Z4.
According to (18)-(21), we can obtain:

V̇3(xt) ≤ ζT (t)(h2(t)ϖ22 + h(t)ϖ12 +ϖ02)ζ(t), (22)

where

ϖ02 =Sym

{
ΥT

2 (
h1Y1 − h2Y2

h12
)Υ3

}
−ΥT

1 R̄1Υ1

−ΥT
2 (R̄2 +

h2
h12

X1 +
h22
h212

X2 −
h1h2
h212

X3)Υ2

−ΥT
3 (R̄2 −

h21
h212

Z1 −
h1
h12

Z2 −
h1h2
h212

Z4)Υ3

+ eT0 (
h21
m2

R1 + h212R2)e0,

ϖ12 =Sym

{
ΥT

2 (
Y2 − Y1
h12

+
2h1Y3 − 2h2Y4

h212
)Υ3

}
+ΥT

2 (
X1

h12
+

2h2
h212

X2 −
h1 + h2
h212

X3)Υ2

+ΥT
3 (

2h1
h212

Z1 −
Z2

h12
− h1 + h2

h212
Z4)Υ3,

ϖ22 =Sym

{
−ΥT

2

Y3 − Y4
h212

Υ3

}
+ΥT

2 (
X3 −X2

h212
)Υ2

+ΥT
3 (
Z4 − Z1

h212
)Υ3.

For any matrices L1, L2 ∈ R(11+m)×n, we have:

2ζT (t) [L1((h(t)− h1)em+5 − em+10)

+L2((h2 − h(t))em+6 − em+11)] ζ(t) = 0.
(23)

According to (16), (17), (22) and (23), we can obtain

V̇ (xt) ≤ ζT (t)(h2(t)ϖ2 + h(t)ϖ1 +ϖ0)ζ(t), (24)

where ϖ2, ϖ1 and ϖ0 are defined in Theorem 3.1. For
h(t) ∈ [h1, h2], based on Lemma 2.1, if (7)-(11) hold, then
we have h2(t)ϖ2+h(t)ϖ1+ϖ0 < 0, i.e.,V̇ (xt) < 0. There-
fore, system (1) is asymptotically stable. This completes the
proof.
Remark 3.2 To reduce the conservativeness, the delay in-
terval [0, h1] is divided into m segments equally. The LKF
includes the term

∫ t

t−h1
m
ηT4 (s)Q3η4(s)ds, so the relationship

among some state vectors xT (t), xT (t− 1
mh1), · · · , x

T (t−
m−1
m h1) and xT (t − h1) are considered sufficiently, which

may yield less conservative results.

IV. NUMERICAL EXAMPLES

In this section, a numerical example is given to
demonstrate the advantages of the proposed criterion.
Example 4.1 Consider system (1) with

TABLE I
UPPER BOUND OF h2 FOR DIFFERENT h1

h1 0.0 0.4 0.7 1.0

[11] 1.59 2.01 2.41 2.62

[12] 1.64 2.13 2.70 2.96

[16] 1.86 2.28 2.69 2.89

[13] 2.39 2.76 3.15 3.41

[19] 2.54 2.90 3.23 3.44

Theorem 3.1(m = 1) 2.59 2.94 3.26 3.46

Theorem 3.1(m = 2) 2.63 2.97 3.28 3.48

Theorem 3.1(m = 3) 2.66 2.99 3.30 3.49

A =

[
0 1

−10 −1

]
, B =

[
0 0.1

0.1 0.2

]
.

For different h1, the upper bounds of h2 calculated by
Theorem 3.1 in this paper are listed in table 1, along with
others reported in [11-13, 16, 19]. Comparing with recently
existing results, it is obvious that the stability criterion
presented in this paper is less conservative than those in
[11-13, 16, 19]. For different m and h1 = 0.0, the upper
bounds of h2 calculated by Theorem 3.1 in this paper are
2.59 (m = 1), 2.63 (m = 2) and 2.66 (m = 3). Therefore,
the conservativeness of obtained results will be reduced with
the increase of m.

V. CONCLUSION

In this paper, an improved reciprocally convex lemma
was introduced, which yielded a less conservative stability
criterion. It was observed that the generalized reciprocally
convex lemma proposed in this paper included lemmas in
[15, 17-19] as special cases. Finally, a numerical example
was provided to show the effectiveness of the presented
method.
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