
A Concurrent Signature Scheme from Coding
Theory Assumptions

ASSIDI Hafsa

Abstract—Concurrent signature is considered as a type of
fair exchange protocols. This signature allows two entities
to exchange their signature in a fair manner. In that case,
the two signatures are ambiguous until an extra piece of
information, namely the keystone, is revealed. Consequently, the
two signatures become binding to their real signers. Concurrent
signatures find applications in different real life scenarios such
as auction protocol, fair tendering of contracts, electronic trans-
actions, etc. In this paper, we propose a concurrent signature
scheme based on coding theory assumptions as a promising
alternative to classical cryptography in the era of quantum
computers. Our construction fulfils the security requirements
of concurrent signature including correctness, unforgeability,
ambiguity and fairness. In addition, our construction presents
a practical results for signature size and public key length. For
instance, we achieve a signature of size equal to 4.2KB and
a public key of length 3200KB for 128 − bits security level,
we find an average 96% reduction of the signature public key
size. Our construction fulfills all the security requierement and
achieves optimal results in terms of public key size.

Index Terms—Concurrent Signature, Code-based Cryptogra-
phy, Fairness, Correctness, Unforgeability, Provable Security,
Ambiguity, Post-quantum.

I. INTRODUCTION

THe concept of concurrent signature was introduced for
the first time by Chen et al. [1] in 2004. Concurrent

signature allows entities to exchange their digital signatures
efficiently and fairly. The two entities, namely an initial
signer A and a matching signer B sign messages without the
need of a third entity. The signers exchange their signature
in a fair way, that is, either allowing all the entities to get
each other’s signatures simultaneously or letting none of
them get any counterpart’s signature. This point of time
is exactly when one of the two signers computes a set
of information called a keystone. Consequently, the two
signatures are ambiguous in a third entity point of view until
the keystone is revealed. Then, the two signatures become
binding to their real signers.

Since its introduction, concurrent signature has been
considered as a type of fair exchange protocols. The
advantage of concurrent signature is that, it does not rely
on any trusted or semi-trusted third entity for disputing
resolution or assume computational balance between the
entities compared to other fair exchange solutions.
Concurrent signature find applications in different real
life scenarios such as auction protocol, fair tendering of
contracts, electronic transactions and so on. In what follows,
we illustrate one of the use cases of concurrent signature
namely in electronic transactions. We consider the situation

Manuscript received July 26, 2022; revised February 6, 2023.
ASSIDI Hafsa is a PhD candidate of University Mohammed V, Rabat,

Morocco, BP 1014, (e-mail: assidihafsa@gmail.com).

where a customer C aims to purchase an article from a
vendor V. To achieve this, the customer and the vendor
exchange their respective signatures. The initial signer A
chooses a keystone, then signs his payment instruction
ambiguously to pay the vendor V as the matching signer.
When receiving the client’s signature, the vendor V agrees
this order by signing a receipt ambiguously that authorizes
C to pick up the article from the shop. In order to get
the article from the shop, the client C has to present both
vendor’s signature and the keystone, because vendor’s
ambiguous signature alone can be forged by C. When the
keystone is released, both of the two ambiguous signatures
become binding concurrently to V and C respectively.
Therefore, V can present the client’s signature with the
keystone to get money from bank.

A secure concurrent signature must verify some specified
security requirements including correctness, unforgeability,
fairness and ambiguity. The correctness means that, if a
signature is generated by a honest signer, then the verification
process will succeed. The unforgeability property means
that the entity that receives an ambiguous signature, for
example the matching signer (without loss of generality), is
sure that the signature is produced by the initial signer. For
the fairness property, it means that the signatures of the two
entities (the initial and the matching signer) are bounded
concurrently i.e until a set of information is revealed,
namely the keystone. Concerning the ambiguity, we say
that a signature is ambiguous from a third entity point of
view, when he cannot distinguish whether the signature is
generated by the initial or the matching signer.

In the literature, Chen et al. [1] presented for the first
time the concept of concurrent signatures. They also explain
how concurrent signatures can provide a solution to the
problem of fair exchange of signatures. Therefore, they
present a security model and a concrete construction of such
kind of signature. Later, many constructions and variants of
concurrent signature have been proposed. For example in [2],
the authors extend the concurrent signature by using a new
notion called perfect concurrent signature, they instantiate
their proposal by a bilinear pairing construction. In [3], the
authors provide the first generic construction of identity-
based perfect concurrent signature schemes from ring signa-
ture schemes. In [4], the authors propose a new concurrent
signature scheme which is independent of the ring signature
concept. Their concurrent signatures are anonymous. The
ordinary signatures obtained from their concurrent signature
protocol are unlinkable and do not reveal which concurrent
signature transaction has occurred. In the multi-users setting,
the proposal of [5] is the first construction of multi-users
concurrent signatures using techniques of ring signatures and

Engineering Letters, 31:2, EL_31_2_15

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 



bilinear pairings. In 2017, BaoHong et al. [6] present an
attribute concurrent signature which is an extension of con-
current signature in the attribute-based setting. The proposed
scheme of [6] allows two entities to fairly exchange their
signatures only if each of them has convinced the opposite
entity that he or she possesses some attributes that satisfy a
given signing policy.

Concerning post-quantum cryptography, in 2013, Wang
et al. [7] presented a lattice-based multi-parties concurrent
signature scheme where a new formal model of multi-parties
concurrent signatures is proposed. Their construction is based
on constant-size ring signatures and a lattice-based multi-
parties concurrent signatures scheme. Later in 2016, Xiang
et al. in [8] proposed an efficient multi-parties concurrent
signature from lattice assumptions. The security of their
scheme is based on the hardness of the small integer solution
(SIS) problem. In 2017, Asaar et al. [9] proposed a code
based concurrent signature. Their proposal is derived from
the modified CFS signature [10] and it is proved secure under
the hardness of code-based assumptions in the random oracle
model.
In the literature, theire are some recent works related to
encryption like [11] where the authors present an encryption
system involving matrix associated with semigraphs. Also in
terms of coding theory, the authors in [12] proposed a weight
enumerator of some families of linear error-block codes and
in [13] they prensent a tensor product and linear error block
codes.

Given that the number theoretic based cryptography will
not resist to the quantum computer as shown by Shor in
his paper [14], the research for alternative solutions is of
special interest. Code based cryptography is considered as an
attractive and prominent alternative to classical cryptography
in the era of quantum computers as well as lattice based
cryptography, multivariate cryptography and isogeny
based cryptography. In the literature, many cryptographic
primitives were derived from coding theory assumptions
such as group signature [15], ring and threshold ring
signature In 2020, a strong designated verifier signature was
proposed [16] using rank metric code-based cryptography.

The contribution of this paper consists in proposing a
concurrent signature scheme that is based on error correcting
code assumptions. Our construction is based on the ternary
generalized (U |U + V ) codes to design a ”hash-and-sign”
signature [17] . Our construction fulfils the security require-
ments including the correctness, the fairness, the unforge-
ability and the ambiguity. The practical results show that our
proposal is practical, for instance, we achieve a signature of
size equal to 4.2KB and a public key of length 3200KB
for 128− bits security level.

This paper is organized as follows: in Section II, we recall
some definitions from error correcting codes. We recall also
the algorithms that compose a concurrent signature and we
give formal definitions of the security requirements in Sec-
tion III. In Section IV, we present our proposed construction
of code-based concurrent signature. Section V is devoted
to the security analysis of our proposal. In Section VI, we
analyse the performance of the proposed concurrent signature
scheme in terms of public key size and signature size,
then we make a comparison with some known concurrent

signature schemes. We conclude in Section VII.

II. PRELIMINARIES

In this section, we first provide the notations that will be
used all along this paper. Secondly, we give some background
related to code-based cryptography. We present also the wave
signature scheme based on ternary generalized (U |U + V )
codes.

A. Error Correcting Codes

Let Fq denotes the finite field of cardinality q. A linear
[n, k]-code, denoted C, is a linear subspace of dimension
k of the vector space Fnq , where k and n ∈ N with
n ≥ k ≥ 1. The elements of Fnq and of an [n, k]-code
are named words and codewords, respectively. We use
coding theory notations, where G and H respectively denote
generator and parity check matrices of a code. We consider
a vector x ∈ Fnq and a matrix H in the space of k × n
matrices over Fq , H ∈ Mk×n(Fq) . The product H · xT
is called the syndrome of x where xT is the transpose
of a vector x and wH(x) refers to the Hamming weight of x.

A generalized (U |U + V ) code C of length n over Fq is
built from two codes U and V of length n

2 and 4 vectors
a, b, c and d in F

n
2
q as the following “mixture” of U and V :

C = {(a� u+ b� v, c� u+ d� v) : u ∈ U, v ∈ V } (1)

where x� y stands for the component-wise product.
We recall hereafter two difficult problems based on

coding theory assumptions that were proven to be NP hard.
These problems are the syndrome decoding problem and
the problem of distinguishing generalised (U |U + V ) code
from random codes.

Problem 1 (Syndrome decoding (SD) [18]): The
SD(n, k, ω) problem is formulated as follows: let n,
k and ω be non negative integers, given a uniformly random
matrix H ∈ Mk×n(Fq) and a uniformly random syndrome
y ∈ F kq , find a vector s ∈ Fnq such that wH(s) ≤ ω and
H · s> = y>.

Problem 2 (Distinguishing generalised (U |U + V ) codes):
Distinguishing a permuted generalised (U |U + V ) code
from a random code of the same length and dimension and
this even when U and V are themselves random codes.

B. The generalised (U |U + V ) Signature Scheme

In what follows, we describe the generalised (U |U + V )
signature scheme as it is presented in [17]. Let H be a
parity check matrix of a q-ary linear code C of length n and
dimension k. We consider a one way function fw,H defined
as follows: fw,H : Sω → Fn−kq such that:

fw,H(e) = eHT (2)

Where ω is a non negative integer and Sω is the subset of
Fnq of words of weight equal to ω.

A Trapdoor One-way Preimage Sampleable on Average
Code-based Functions is a pair of probabilistic polynomial-
time algorithms (Trapdoor, InvAlg) together with a triple

Engineering Letters, 31:2, EL_31_2_15

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 



of functions (n(λ), k(λ), w(λ)) growing polynomially with
the security parameter λ and giving the length and dimension
of the codes and the weights we consider for the syndrome
decoding problem, such that:

• Trapdoor : when given λ, outputs (H,T ) where H
is an (n − k) × n matrix over Fq and T the trapdoor
corresponding to H .

• InvAlg : is a probabilistic algorithm which takes as
input T and an element s ∈ Fn−kq and outputs an
e ∈ Sw,n such that eHT = s.

In what follows, we describe concretely the algorithms
Trapdoor and InvAlg:
We consider λ as a security parameter and n, k, w are
the system parameters. We split k = kU + kV , The tuple
T = sk = (φ,HU , HV , S, P ) is the secret key where φ is a
UV-normalized mapping (The definition of UV-normalized
mapping is in [17] Proposition 1), HU ∈ F

(n2−kU )×n2
q ,

HV ∈ F
(n2−kV )×n2
q , S ∈ F

(n−k)×(n−k)
q is a non singular

matrix and P ∈ Fn×nq . All the elements of the secret key
sk are chosen randomly and uniformly in their domain.
From (φ,HU , HV ) we derive the parity check matrix
Hsk = H(φ,HU , HV ) (For the definition of H, see [17]
Proposition 1). The public key is H = SHskP . We
consider Dφ,HU ,HV as an algorithm which inverts fw.Hsk .
To conclude we have:

• (pk, sk) = Trapdoor(λ) where
sk = (φ,HU , HV , S, P ) and pk = H .

• InvAlg(s, sk) returns eP where
e = Dφ,HU ,HV (s.(S

−1)T ).

Given a one-way preimage sampleable code-based func-
tion (Trapdoor, InvAlg) we easily define a code-based
FDH signature scheme as follows. We generate the pub-
lic/secret key as (pk, sk) = (H,T ) ← Trapdoor(λ). We
also select a cryptographic hash function
h : {0, 1}∗ → Fn−kq and a salt r of size λ0 . The signature
and verification algorithms are defined as follows:

Algorithm 1 The generalised (U |U + V ) signature
Input: A message m.
Output: The signature σ of m.
• To sign a message m, the signer chooses randomly
r ∈ {0, 1}λ0 (where λ0 is a positive integer as a security
parameter),

• Then, he computes s = h(m, r) and e = InvAlg(s, T )
where h : {0, 1}∗ → Fn−kq is a one way hash function,

• The signature is σ = (e′, r) where e′ = eP .

Algorithm 2 The generalised (U |U + V ) verification
Input: A message m and its signature σ = (e′, r).
Output: 1 or 0.
• The verifier computes s = h(m, r) and ω0 = wH(e′)

(where wH denotes the Hamming weight of a vector),
• If e′HT = s and ω0 = ω then return 1,
• else return 0 .

III. CONCURRENT SIGNATURE

A. Definition

A concurrent signature scheme [1] is a digital signature
scheme comprised of the following algorithms:
• Setup: a probabilistic algorithm that takes as input a

security parameter λ. It returns a set of users partic-
ipants U , the message space M, the signature space
S, the keystone space K, the keystone fix space F ,
and a function KGen : K → F . The algorithm also
returns the public keys p(i)k of all the participants, each
participant retaining its private key s

(i)
k , s(j)k and the

public parameters P = {U ,M,K,F ,S}.
• KGen: this algorithm takes as input the public parame-

ters P , a random keystone κ ∈ K and outputs a keystone
fix x ∈ F such that x = KGen(κ).

• ASign: a probabilistic algorithm that takes as inputs
s
(i)
k , p(i)k , p(j)k , a keystone fix x ∈ F and a message
m ∈ M and outputs a signature σ = (s, h1, h2) where
s ∈ S and h1, h2 ∈ F .

• AVerify: a deterministic algorithm that takes as inputs
participants public keys p(i)k , p(j)k , the public parameters
P and a signature σ = (s, h1, h2) where s ∈ S and h1,
h2 ∈ F . The algorithm returns 1 if σ is a valid signature
and 0 otherwise.

• Verify: a deterministic algorithm that takes as inputs
participants public keys p

(i)
k , p(j)k , the public param-

eters P , κ ∈ K and a signature σ = (s, h1, h2)
where s ∈ S and h1, h2 ∈ F . It outputs 1 if
AV erify(P, p(i)k , p

(j)
k , σ,m) = 1 and x = KGen(κ).

Otherwise, it outputs 0.

B. Concurrent Protocol

In what follows, we define what is a concurrent protocol.
The first entity A, who creates the keystone and sends the
first ambiguous signature is called the initial signer. The
second entity B, who responds to the initial signature by
creating another ambiguous signature with the same keystone
fix is called a matching signer. The two participants run the
Setup algorithm to generate public parameters P , A’s public
and secret keys p(A)

k and s
(A)
k and B’s public key p

(B)
k . A

concurrent protocol consists of the following steps:
1) A picks a random keystone κ ∈ K, and computes

x = KGen(κ). Then, A takes his/her own public key
p
(A)
k and B’s public key p

(B)
k and picks a message

mA ∈M to sign. Finally, A computes his ambiguous
signature to be:

σA = (sA, hA, x) = ASign(p
(A)
k , p

(B)
k , s

(A)
k , x,mA)

(3)
Then A sends σA to B.

2) Once the ambiguous signature σA of participant A
is received, B verifies the signature by checking that
AV erify(sA, hA, x, p

(A)
k , p

(B)
k ,mA) = 1. If not, B

aborts and then chooses a message mB ∈ M to sign
and computes his ambiguous signature:

σB = (sB , hB , x) = ASign(p
(B)
k , p

(A)
k , s

(B)
k , x,mB)

(4)
Then, B sends σB back to A. Note that B uses the
same value x in his signature as A did to produce σA.

Engineering Letters, 31:2, EL_31_2_15

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 



3) The initial signer A verifies that
AV erify(sB , hB , x, p

(B)
k , p

(A)
k ,mB) = 1, where

x is the same keystone fix as A used in Step 1. If not,
A aborts, otherwise A sends keystone κ to B. Note
that V erify algorithm outputs 1 on inputs (σA, κ)
and (σB , κ).

C. Security model of concurrent signature

In what follows, we present the security requirements
that must be verified by a concurrent signature namely,
Correctness, Unforgeability, Ambiguity and fairness.

Correctness: A concurrent signature is correct if the follow-
ing conditions hold: If σ = ASign(p

(i)
k , p

(j)
k , s

(i)
k , x,m), then

AV erify(σ, p
(i)
k , p

(j)
k ,m) = 1. In addition, if x = KGen(κ)

where κ ∈ K then V erify(κ, p(i)k , p
(j)
k , s

(i)
k , x,m) = 1.

Unforgeability: We consider the following security
game between the adversary A and a challenger Ch.

1) The challenger Ch runs the Setup algorithm on a
security parameter λ, it obtains public parameters P
participant’s key pair (pk, sk) and sends (P, pk) to
adversary A.

2) The adversary A makes the following queries to the
challenger Ch as follows:
• Private Key Extract: Adversary A can ask for the

secret key of each user with public key pk, and
the challenger Ch returns the corresponding secret
key, sk.

• KGen: Adversary A can ask Ch to choose a
keystone κ ∈ K and returns its corresponding
keystone fix x = KGen(κ) to A. Note that the
corresponding keystone fix x is computed using
KGen algorithm.

• KReveal: Adversary A can ask for the keystone
κ ∈ K of each keystone fix x ∈ F which was
returned by KGen. In response, Ch returns κ if x
is a previous KGen output; otherwise, it returns
0.

• ASign: Adversary A can ask for an ambiguous
signature on the tuple (p

(i)
k , p

(j)
k , x,m), where

m ∈ M is the message, x ∈ F is the
keystone fix and p

(i)
k and p

(j)
k are users pub-

lic keys. Then, Ch returns σ = (s, h1, h2) =

ASign(P, s(i)k , p
(i)
k , p

(j)
k , x,m), where h1, h2 ∈ F

and s ∈ S.
3) The adversary A returns a forged signature σ∗

of a message m∗ where σ∗ = (s∗, h∗1, h
∗
2) us-

ing users public keys p
(i∗)
k and p

(j∗)
k such that

AV erify(P, p(i
∗)

k , p
(j∗)
k , σ∗,m∗) = 1, A wins the

unforgeability game if one of the two conditions holds.
a) No ASign query with input either of the tuples

(p
(i∗)
k , p

(j∗)
k , x∗,m∗) or (p(j

∗)
k , p

(i∗)
k , x∗,m∗) was

made by A and no Private Key Extract query was
made by A on either p(i

∗)
k or p(j

∗)
k .

b) No ASign query with input (p(i
∗)

k , p
(j∗)
k , x∗,m∗)

was made by A for any p(i
∗)

k 6= p
(j∗)
k , no Private

Key Extract query with input p(i
∗)

k was made by
A, and either x∗ was a previous output from a

KGen query or A produces a keystone κ such
that x∗ = KGen(κ).

Definition 1: A concurrent signature scheme is existen-
tially unforgeable under chosen message attack if the prob-
ability of success in the previous game is negligible.
Ambiguity: To define what is ambiguity, we consider the
following game between an adversary A and a challenger
Ch:

1) Setup: It is the same as the unforgeability game.
2) The adversary A makes a sequence of KGen,

KReveal, ASign and Private Key Extract queries
like the unforgeability game.

3) The adversary A request an ambiguous signature on
inputs (p

(i)
k , p

(j)
k , x,m), the challenger Ch chooses

randomly b ∈ {i, j} and returns either

σi = (s1, h1, f) = ASign(P, s(i)k , p
(i)
k , p

(j)
k , x,m)

or

σj = (s2, h2, f) = ASign(P, s(j)k , p
(j)
k , p

(i)
k , x,m)

4) The adversary A outputs b′ ∈ {i, j} and wins the
ambiguity game if b′ = b and A has not made a
KReveal query on any values of f, h1 or h2.

Definition 2: A concurrent signature scheme is ambiguous
if no polynomially bounded adversary has advantage that is
non-negligibly greater than 1

2 of winning in the above game.
Fairness: The concept of fairness is defined in the following
game between the adversary A and the challenger Ch:

1) Setup: It is the same as the unforgeability game.
2) The adversary A makes a sequence of KGen,

KReveal, ASign and Private Key Extract queries
like the unforgeability game.

3) Finally A chooses the challenge public keys p(i
∗)

k and
p
(j∗)
k outputs a keystone κ∗ ∈ K, and a signature
σ∗ = (s∗, h∗1, f

∗), s∗ ∈ S, h∗1, f∗ ∈ F , and m∗ ∈
M where AV erify(P, p(i

∗)
k , p

(j∗)
k , σ∗,m∗) = 1. The

adversary wins the game if either of the following cases
hold:
• Case 1: If f was a previous output from a KGen

query, no KReveal query on input f was made and
also V erify(P, p(i

∗)
k , p

(j∗)
k , σ∗, κ∗,m∗) = 1.

• Case 2: If A also produces σ′ = (s′, h′1, f), s
′ ∈

S, h′1, f ∈ F , message m′ ∈ M, where
AV erify(P, p(i

∗)
k , p

(j∗)
k , σ′,m′) = 1 and (κ∗, σ∗)

we have V erify(P, p(i
∗)

k , p
(j∗)
k , σ∗, κ∗,m∗) = 1

but V erify(P, p(i
∗)

k , p
(j∗)
k , σ

′∗, κ∗,m′) = 0.
Definition 3: A concurrent signature scheme is fair if a

polynomially bounded adversary’s probability of success in
the above game is negligible.

IV. THE PROPOSED CONCURRENT SIGNATURE

In this section, we present our proposal according to
concurrent signature scheme from error correcting codes. We
explain in details the components of our construction namely
Algorithms 3, 4, 5, 6 and 7.

Setup: Given the security parameter λ, this algorithm
outputs a set of public parameters P , the secret key sk and
it’s corresponding public key pk as detailed in Algorithm 3.

Engineering Letters, 31:2, EL_31_2_15

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 



Algorithm 3 Setup(1λ)
Input: a security parameter λ.
Output: a set of public parameters P , secret key sk and
public key pk.
• Let h : {0, 1}∗ → Fn−kq be a hash function and g :
Fn−kq → Fn−kq is a random oracle where wH(g(.)) ≤ t
(where t is an integer).

• We consider fw,H : Sω → Fn−kq such that: fw,H(e) =
eHT where H is an (n−k)×n parity check matrix of
a code over Fq

• The public key is pk = H and the secret key is sk = T
where (H,T ) = Trapdoor(λ).

• The output is sk, pk and P = (h, g, fw,H , n, k, t, w).

KGen: Given the public parameters P and a random
keystone κ, it outputs a fix keystone x = KGen(κ).
Algorithm 4 describes more details on KGen algorithm.

Algorithm 4 KGen(κ)
Input: a keystone κ.
Output: a keystone fix x.
• Let κ ∈ Fnq where wH(κ) ≤ t (t is an integer).
• Let x = g(H(i).κT ) where wH(x) ≤ t.
• Return x.

To avoid any ambiguity through the upcoming sections we
mention that each user has his own pair of keys (public and
secret keys) that differs for all users:

• s
(i)
k = (φ(i), H

(i)
U , H

(i)
V , S(i), P (i)) refers to the secret

key of user i.
• s

(j)
k = (φ(j), H

(j)
U , H

(j)
V , S(j), P (j)) refers to the secret

key of user j.
• p

(i)
k = H(i) = S(i)H

(i)
sk P

(i) is the public key of user i
where H(i)

sk = H(φ(i), H
(i)
U , H

(i)
V ).

• p
(j)
k = H(j) = S(j)H

(j)
sk P

(j) is the public key of user
j where H(j)

sk = H(φ(j), H
(j)
U , H

(j)
V ).

ASign: The signature algorithm takes as input the public
parameters P , the signer’s pair keys (s(i)k , p

(i)
k ), the matching

signer’s public key p
(j)
k , a fix keystone x and the message

m. Algorithm 5 explain the signature process.

Algorithm 5 ASign(P, p(i)k , s
(i)
k , p

(j)
k , x,m)

Input: public parameter P , users’ keys s
(i)
k , p

(i)
k , p

(j)
k , a

keystone κ and a message m.
Output: an ambiguous signature σ.
• Given a message m ∈ F ∗2 , the signer chooses randomly
r in (Fn2 )

λ0 .
• The signer computes y = h(m, r,H(i), H(j)) +
g(H(j).xT ) and e = InvAlg(y, ski).

• Output a signature σ = (e′, r, x) where e′ = eP .

AV erify: This algorithm takes as input the public param-
eters P , the signers public keys p(i)k , p(j)k and a signature σ
of a message m. The algorithm outputs 1 if the verification
succeed and 0 otherwise.

Algorithm 6 AV erify(P, p(i)k , p
(j)
k , σ,m)

Input: public parameter P , users’ public keys p(i)k , p
(j)
k and

signature σ of a message m.
Output: 1 or 0.
• If e′(H(i))T = y and wH(e′) = w where y =
h(m, r,H(i), H(j)) + g(H(j).xT )
Then return 1.

• Else
return 0.
End If

Given the same inputs as in AV erify in addition to the
keystone κ, this algorithm outputs 1 if the AV erify returns
1 and the verification of the fix keystone succeed and 0
otherwise.

Algorithm 7 V erify(P, p(i)k , p
(j)
k , σ, κ,m)

Input: public parameter P , users’ public keys p(i)k , p
(j)
k , a

signature σ of a message m and the keystone κ.
Output: 1 or 0.
• If e′(H(i))T = y and wH(e′) = w where y =
h(m, r,H(i), H(j)) + g(H(j).xT ) and g(H(i).κT ) = x
and wH(x) ≤ t and wH(κ) ≤ t.
Then return 1

• Else
return 0.
End If

V. SECURITY ANALYSIS

This section is devoted to analyse the security require-
ments using the Random Oracle (RO) model of the proposed
concurrent signature scheme by proving, respectively, the
correctness, the unforgeability, the ambiguity and the fair-
ness.

Correctness

The correctness property means that if σ is a signature
produced by Asign algorithm. The process of its verification
will succeed i.e. V erify Algorithm 7 returns 1.

We consider σ = (e′, r, x), a signature obtained
by ASign Algorithm 5, we have to prove that
V erify(p

(i)
k , p

(j)
k , σ, κ,m) = 1. For this reason, we have to

prove in a first level that AV erify(P, p(i)k , p
(j)
k , σ,m) = 1

i.e,
the conditions e′.(H(i))T = y and wH(e′) = w hold

where y = h(m, r,H(i), H(j)) + g(H(j).xT ). Since σ =
(e′, r, x) is a signature generated by ASign Algorithm 5,
we have by definition of InvAlg algorithm

e = Dφ(y.(S
−1)T )

fw,Hsk(e) = y.(S−1)T

e.(Hsk)
T = y.(S−1)T

e.(Hsk)
T .ST = y.(S−1)T .ST

e.(SHsk)
T = y

e′.PT .(SHsk)
T = y

e′.(S.Hsk.P )
T = y

e′.HT = y

Engineering Letters, 31:2, EL_31_2_15

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 



Furthermore, for the signer i we have e′.(H(i))T = y
and wH(e′) = w. In addition, since σ = (e′, r, x) is a
valid signature, then x = KGen(κ) = g(H(i).κT ) where
wH(x) ≤ t and wH(κ) ≤ t.
We conclude that if σ = (e′, r, x) on a message m then
V erify(p

(i)
k , p

(j)
k , σ, κ,m) = 1.

Unforgeability

The unforgeability property means that it is infeasible
for an adversary A to produce a valid concurrent signature
without the knowledge of signers secret keys.

We consider in one side an adversary A witch is able to
break the unforgeability of the concurrent signature scheme
with probability equal to ε1, we consider on the other side
a challenger Ch that is able to solve an instance of Problem
1 with probability ε2 i.e. The adversary Ch returns a vector
s∗ ∈ Fnq such that wH(s∗) ≤ t and H∗s∗T = y∗ where H∗

is a random matrix in Fn−k×nq .
The challenger Ch runs the Setup Algorithm 3 on the
security parameter λ and gets the public parameters
P = (h, g, fw,H , w, n, k, t), then the challenger Ch provides
the adversary A with P and H(i) = H∗, A makes adaptively
a sequence of queries to the oracles that are constructed as
follows:

• g(.) queries: If Tg[.] is defined for query (H(κ)T ), then
Ch returns its value, else Tg[H(κ)T ]$←Fn−kq where
wH(g(H(κ)T )) ≤ t and returns g(H(κ)T ) to A (where
$← means, it is chosen randomly).

• h(.) queries: If Th[.] is defined for query
(m, r,H(i), H(j)) the challenger Ch returns
its value, else the challenger Ch chooses
Th[m, r,H(i), H(j)]$←Fn−kq and return it to A.

• KGen queries: The challenger Ch chooses randomly
κ ∈ Fnq where wH(κ) ≤ t, then it computes H.(κ)T .
We distinguish two cases: If Tg[.] is already defined
for query H(κ)T , then Ch returns its value. Elsewhere,
Ch chooses a random value Tg[H(κ)T ]$←Fn−kq where
wH(g(H.(κ)) ≤ t and returns x = g(H.(κ)T ) to A ,
the tuple (κ, x) is joined to what we call K-list.

• KReveal queries: The challenger Ch searches for the
tuple (κ, x) in the K-list where x is produced by KGen
query. If (κ, x) is in the K-list returns κ else returns
invalid.

• Private Key extract queries: The challenger Ch returns
the secret key that corresponds to the public key.

• ASign queries: For a query (P, H(i), H(j), x,m), the
challenger Ch generates a signature using ASign Al-
gorithm 5.

• In the last step, the adversaryA returns a signature σ∗ =
(e
′∗, r∗, x∗) of the message m∗ where the public keys

are H∗ and H(j) with success probability equal to ε1.
The adversary A wins the unforgeability game with proba-
bility equal to

Pr[Event1]× Pr[Event2Event1]

where:
• Event1: The adversary Ch does not abort as a result of
ASign oracle.

• Event2: The adversary A breaks the unforgeability of
the scheme.

In order to compute the probability of Event1, we distin-
guish two cases:
• Case 1: If (r∗, H∗, H(j),m) produced in one ASign

oracle has occurred in a previous query to h(.) oracle,
in that case we have bad = true (Where event bad
refers to the adversary Ch abort in ASign Algorithm
5). Given that there exists (qh + qs) (Whre qh and
qs are the number of queries asked to h and ASign
oracles respectively) in Th[.] and r is chosen uniformly
at random in Fλ0

2 , we have the probability of this event
for qs query is at most qs(qh+qs)

2λ0
.

• Case 2: If the adversary Ch used the same randomness
r ∈ Fλ0

2 in one ASign oracle, we have bad = true
and Ch makes at most qs queries to ASign oracle. As
a consequence, the probability of this event is at most
q2s
2λ0

Pr[Event1] ≥ 1− qs(2qs + qh)

2λ0

Consequently, the adversary A returns the tuple (e
′∗, r∗, x∗)

with probability at least equal to ε1 − qs(2qs+qh)
2λ0

.
The challenger employs A, guesses the indices 1 ≤ i1 ≤ qg
and 1 ≤ i2 ≤ qh and expect that i1 be the index of the
query H∗(κ∗)T to oracle g and i2 be the index of the query
(m∗, r∗, H∗, Hj∗) to oracle h. The adversary Ch outputs
x∗ as a response to the query (m∗, r∗, H∗, Hj∗) and the
probability of this event is 1

qgqh
.

Ambiguity

The ambiguity means that, if we have two potential signers
i and j, for any third entity it is infeasible to distinguish if
a signature σ is either produced by the user i or j.

Let Ch be a challenger and A an adversary against the
ambiguity of the concurrent signature scheme, the adversary
A makes a sequence of KGen, KReveal, ASign, and
KeyExtract queries as it is described in the unforgeability
game, the challenger Ch chooses random public keys H(i)

and H(j) and makes ASign query on (H(i), H(j), x,M),
then Ch chooses randomly b ∈ {i, j} and returns a signature
σb = ASign(P, p(b)k , s

(b)
k , p

(a)
k , x,m).

The probability of a signer to produce a signature σi given
(H(i), H(j), x,M) is equal to 1

2λ0
which is equal to the

probability to choose randomly ri ∈ {0, 1}λ0 where a
signature σi = (e′, r, x). Consequently, the probability of
a signer to produce an ambiguous signature is equal to
1

2λ0
which is the same probability for the jth signer. Thus,

we conclude that a signature generated by the ith signer
is undistinguishable from one produced by the jth signer.
The conclusion is that the adversary A returns b′ = b with
probability equal to 1

2 .

Fairness

By fairness, we mean that no one of the signers (either the
initial or the matching signer) is able to return a malicious
keystone where the ambiguous signature and this forged
keystone passes the verification Algorithm 7 V erify.

Engineering Letters, 31:2, EL_31_2_15

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 



We consider a challenger Ch that runs the Setup Algorithm
3 and sends the public parameters P and users public keys
to the adversary A who makes qg and qh queries to random
oracles g(.) and h(.), qkg queries to the KGen oracle and
also a sequence of queries to KReveal, Private key Extract
and ASign oracles, the challenger Ch sends the answers to
the adversary A as in the unforgeability game. We suppose
that the adversary A wins the fairness property with non
negligible probability, chooses the challenge public keys p(i)

∗

k

and p(j)
∗

k outputs a keystone κ∗ ∈ K, and a signature σ∗ =
(e′∗, r∗, x∗) where AV erify(P, pi∗k , p

j∗
k , σ

∗,m∗) = 1. The
adversary wins the game if either of the following cases hold:

• Case 1: If x∗ is a previous output from a KGen
query, no KReveal query on input x∗ was made, and
if V erify(P, pi∗k , p

j∗
k , σ

∗, κ∗,m∗) = 1.
• Case 2: If A also produces σ∗ = (e′∗, r∗, x∗), message
m′ ∈ M, where AV erify(P, pi∗k , p

j∗
k , σ

′,m′) = 1 and
(κ∗, σ∗) we have V erify(P, p(i)

∗

k , p
(j)∗

k , σ∗, κ∗,m∗) =
1 but V erify(P, pi∗k , p

j∗
k , σ

′
, κ∗,m′) = 0

Hereafter, we analyse in details the two cases:

• Analysis of case 1: In this case, the adversary A is as-
sumed to return, with non negligible probability, a valid
signature σ∗ = (e′∗, r∗, x∗) and a keystone κ∗ where for
(κ∗, σ∗) we have V erify(P, pk∗i , pk∗j , σ∗, κ∗,m∗) = 1.
This means that C returns the tuple (κ∗, x∗) with non
negligible probability such that g(H(i).κ∗T ) = x∗

where κ∗T is a keystone and x∗ is the output of KGen
Algorithm 4 without making KReveal query on x∗ .
The probability of returning the tuple (κ∗, x∗) by A is
negligible.

• Analysis of case 2: We suppose that A returns a
signature σ′ = (e′′, r′, x∗) as another valid ambiguous
signature for public keys H∗i and H∗j on the message
m′ such that for σ′, AV erify(P, pi∗k , p

j∗
k , σ

′,m′) = 1
but V erify(P, pi∗k , p

j∗
k , σ

′
, κ∗,m′) = 0 on the input

(σ′, κ∗). On the other hand, σ∗ is a valid ambigu-
ous signature, which implies that AV erify for that
returns 1, and by assumption V erify algorithm on
input(κ∗, σ∗) outputs 1, then x∗ = g(H(i).κ∗T ) is
fulfilled. Since σ∗ and σ′ shares the same value x∗ and
also AV erify on input σ′ returns 1, as a consequence
we have V erify(P, pi∗k , p

j∗
k , σ

′
, κ∗,m′) = 1 and this

is a contradiction with the assumption which states that
V erify(P, pk∗i , pk∗j , σ

′
, κ∗,m′) = 0.

VI. PARAMETERS AND RESULTS

In this section, we present the parameters of our concurrent
signature scheme namely for signature size and public key
length for a large scale of security levels. We also evaluate
our construction by computing the computational cost of
different lgorithms including KGen, ASign, AV erify and
V erify (Algorithms 4, 5, 6, 7 respectively).

• The signer’s public key size: The public key is a parity-
check matrix, which requires n× (n− k) bits

size(pk) = size(H)

= (n× (n− k))bits

• The signature size is computed as follows:

size(σ) = size(e′) + size(r) + size(x)

= (2× (q − 1)× n+ λ0)bits

For a securty level λ we have: n = 66.34λ, w =
0.9396n,kU = 0.8379n, kV = 0.4821n, size(pk) =
1565λ2

In Table I, we give the parameters used for different security
levels, we present the signature size and the public key
length. In table II, we compare the security requierements
with some related works and then in table III, we compare
the public key and signature size of our proposal and the
scheme in [9]

The practical results presented in Tables I and III show
clearly that our schemes produce signature of smaller public
key size than the schemes presented in [9]. For example, we
reach a public key equal to 3200KB insted of 99000KB
for 128 bit security level witch is equivalent to a reduction
of 96% of the public key size.

TABLE I
PARAMETERS FOR DIFFERENT SECURITY LEVELS.

Security
level

n kU kV ω λ0 Public
key
size

Signature
size

80
bits

5308 2224 1280 4987 240 1250
KB

2.6 KB

128
bits

8492 3558 2047 7980 384 3200
KB

4.2 KB

256
bits

16984 7116 3738 15957 768 12800
KB

8.5KB

512
bits

33971 14028 7477 31916 1536 51282
KB

16.7KB

1024
bits

67942 28056 14954 63831 3072 205127
KB

33.3KB

TABLE II
COMPARISON IN TERMS OF SECURITY PROPERTIES WITH SOME RELATED

WORKS.

Scheme Correctness Unforgeability Ambiguity Fairness
Scheme
of [9]

Yes Yes Yes Yes

Scheme
of [8]

Yes Yes Yes Yes

Our
scheme

Yes Yes Yes Yes

TABLE III
COMPARISON IN TERMS OF PUBLIC KEY AND SIGNATURE SIZES.

Scheme Hard
problem

Security
model

Signature
size

Public key
size

Scheme
of [9]

Syndrome
Decoding

Random
oracle

0.07 KB 99000 KB

Our
scheme

Rank
Syndrome
Decoding

Random
oracle

4.2 KB 3200 KB

VII. CONCLUSION

Since in the literrature there is just one conccurent sig-
nature scheme that is based on coding theory, our scheme
is the second one and reduces significantly the public key
size which makes our proposal very efficient and prartical
in different real life applications. Throughout this article, a

Engineering Letters, 31:2, EL_31_2_15

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 



concurrent signature scheme is proposed using coding theory
hard problems. Our construction relies on error correcting
codes assumptions based on the Hamming metric as a
promising alternative to classical cryptography in the era
of quantum computers. In addition, the proposed approach
uses the generalized (U |U + V ) codes and makes a trade-
off between efficiency and security requirements since we
achieve efficient results particularly in terms of public key
size if we compare it with some post-quantum constructions.
Our scheme maintain the security requirements including
correcteness, unforgeability, ambiguity and fairness.

REFERENCES

[1] L. Chen, C. Kudla, and K. Paterson, “Concurrent signatures,” in
International Conference on the Theory and Applications of Cryp-
tographic Techniques, ser. Lecture Notes in Computer Science, vol.
3027. Springer, 2004, pp. 287–305.

[2] W. Susilo, Y. Mu, and F. Zhang, “Perfect concurrent signature
schemes,” in International Conference on Information and Commu-
nications Security, ser. Lecture Notes in Computer Science, vol. 3269.
Springer, 2004, pp. 14–26.

[3] S. Chow and W. Susilo, “Generic construction of (identity-based)
perfect concurrent signatures,” in International Conference on Infor-
mation and Communications Security, ser. Lecture Notes in Computer
Science, vol. 3783. Springer, 2005, pp. 194–206.

[4] K. Nguyen, “Asymmetric concurrent signatures,” in International
Conference on Information and Communications Security, ser. Lecture
Notes in Computer Science, vol. 3783. Springer, 2005, pp. 181–193.

[5] D. Tonien, W. Susilo, and R. Safavi-Naini, “Multi-party concurrent
signatures,” in International Conference on Information Security, ser.
Lecture Notes in Computer Science, vol. 4176. Springer, 2006, pp.
131–145.

[6] B. Li, G. Xu, and Y. Zhao, “Attribute-based concurrent signatures,”
in Proceedings of the 6th International Conference on Information
Engineering, 2017, pp. 1–7.

[7] S. Wang, L. Liu, J. Chen, J. Sun, X. Zhang, and Y. Zhang, “Lattice-
based multi-party concurrent signatures scheme,” in 2013 5th In-
ternational Conference on Intelligent Networking and Collaborative
Systems. IEEE, 2013, pp. 568–572.

[8] X. Xiang, H. Li, M. Wang, and X. Zhao, “Efficient multi-party
concurrent signature from lattices,” Information Processing Letters,
vol. 116, no. 8, pp. 497–502, 2016.

[9] M. Asaar, M. Ameri, M. Salmasizadeh, and M. Aref, “A provably
secure code-based concurrent signature scheme,” IET Information
Security, vol. 12, no. 1, pp. 34–41, 2017.

[10] L. Dallot, “Towards a concrete security proof of courtois, finiasz
and sendrier signature scheme,” in Research in Cryptology: Second
Western European Workshop, WEWoRC 2007, Bochum, Germany, July
4-6, 2007, Revised Selected Papers 2, ser. Lecture Notes in Computer
Science, vol. 4945. Springer, 2007, pp. 65–77.

[11] J. Shetty, G. Sudhakara, and V. Madhusudanan, “Encryption system
involving matrix associated with semigraphs,” IAENG International
Journal of Applied Mathematics, vol. 52, no. 2, pp. 458–465, 2022.

[12] S. Belabssir, “The weight enumerator of some families of linear error-
block codes,” IAENG International Journal of Computer Science,
vol. 49, no. 3, pp. 728–735, 2022.

[13] S. Belabssir and N. Sahlal, “Tensor product and linear error block
codes,” IAENG International Journal of Applied Mathematics, vol. 51,
no. 2, pp. 279–283, 2021.

[14] P. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in 35th Annual Symposium on Foundations of Com-
puter Science, Santa Fe,New Mexico, USA, 20-22 November 1994,
1994, pp. 124–134.

[15] H. Assidi, E. Ayebie, and E. Souidi, “A code-based group signature
scheme with shorter public key length,” in Proceedings of the 13th
International Joint Conference on e-Business and Telecommunications
(ICETE 2016), vol. 4, 2016, pp. 432–439.

[16] H. Assidi and E. Souidi, “Strong designated verifier signature based
on the rank metric,” in IFIP International Conference on Information
Security Theory and Practice, ser. Lecture Notes in Computer Science,
vol. 12024. Springer, 2019, pp. 85–102.

[17] T. Debris-Alazard, N. Sendrier, and J. Tillich, “Wave: A new family of
trapdoor one-way preimage sampleable functions based on codes,” in
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2019, pp. 21–51.

[18] E. Berlekamp, R. McEliece, and H. Van Tilborg, “On the inherent in-
tractability of certain coding problems (corresp.),” IEEE Transactions
on Information Theory, vol. 24, no. 3, pp. 384–386, 1978.

Engineering Letters, 31:2, EL_31_2_15

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 




