
 

  

Abstract—For an undirected connected graph 𝑮(𝒑, 𝒒), where 

p is the number of vertices and q is the number of edges, there 

exists a mapping f: 𝑽(𝑮) ∪ 𝑬(𝑮) → {𝟏, 𝟐, ⋯ , 𝒑 + 𝒒} , and the 

sum of the labels of any two adjacent vertices of the same degree 

in the graph is the same, being 𝑺(𝒖) = 𝒇(𝒖) + ∑ 𝒇(𝒖𝒘)𝒖𝒘∈𝑬(𝑮) , 

then f is called Adjacent Vertex Reducible Total Labeling 

(AVRTL) of the graph G. Based on the concept of Adjacent 

Vertex Reducible Total Labeling, an AVRTL algorithm is 

designed, which finds Adjacent Vertex Reducible Total 

Labeling of any simple connected graph within finite vertices in 

an iterative, circular fashion. The labeling rules of several 

corona graphs were discovered through the analysis and 

summary of the experiment results, and the relevant theorems 

were further summarized. Finally, a conjecture was proposed: 

if the graphs G and H are AVRTL graphs, then their corona 

graphs 𝑮 ∘ 𝑯 or 𝑯 ∘ 𝑮 are also AVRTL graphs. 

 
Index Terms—corona graphs, reducible total labeling, 

algorithm, graph labeling 

 

I. INTRODUCTION 

INCE many complex problems in computer science can be 

converted to graph theoretical issues and then solved 

using graph theoretic algorithms, graph theory has a 

significant theoretical and practical research value. Rosa et al. 

introduced the concept of graph labeling in 1966 to resolve 

the Graceful Tree Conjecture [1]. The presentation of the 

conjecture established the foundation for the ongoing 

development of graph labeling, even if the Graceful Tree 

Conjecture is still under study. The study of graph labeling 

has been further divided into categories by academics during 

the following decades, including Elegant Labeling, 

Harmonious Labeling, Graceful Labeling and Magic 

Labeling. The literature [2] is where Vertex Magic Complete 

Labeling initially gained traction. Many scholars have 
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studied special graphs and certain graphs that are more 

readily inscribed in order to produce a wide range of research 

findings on Vertex Magic Total Labeling. The well-known 

Total Chromatic Number Conjecture was independently 

formulated in 1965 by M. Behzad and V.G. Vizing [3]–[4], 

respectively. On the basis of Vertex Distinguishable Proper 

Edge Coloring, literature [5] proposed the concept and some 

conjectures of Adjacent Strong Edge Coloring of graphs. 

Both domestic and international specialists have conducted 

extensive research [6]–[8] on this topic. The concepts and 

corollaries connected to Reducible Coloring were thoroughly 

discussed in the literature [9] in 2013. 

The deployment relationships in sensor networks can be 

represented visually by graphs with nodes and edges. The 

weights of the edges reflect the amount of information 

transported between the nodes, while the weights of the 

nodes represent the energy expended by the network's 

computers or servers. In special circumstances, transmission 

paths between adjacent nodes of comparable importance are 

required to maintain equal energy consumption, and as many 

different path types as possible could be maintained. This 

paper builds constraints by the definition of Adjacent Vertex 

Reducible Total Labeling. Combined with the above 

real-world issues, designs a novel heuristic algorithm that can 

solve the problem of Adjacent Vertex Reducible Total 

Labeling of special graphs and their joint graphs within finite 

points. The labeling properties of several kinds of crown 

graphs were discovered in accordance with the experimental 

results, several theorems were summarized, and proofs were 

provided. 

II. PRELIMINARY KNOWLEDGE 

In this paper, 𝐺(𝑝, 𝑞) is a simple connected graph with p 

vertices and q edges. 𝐹𝑚 is a fan graph with central node 𝑣0 

and contains m fan vertices. A wheel graph 𝑊𝑛 is defined as a 

graph with 𝑛 + 1 vertices, and the central node 𝑢0 is adjacent 

to the remaining 𝑛 vertices. 

Definition 1: If 𝐺(𝑉, 𝐸) is a simple undirected connected 

graph, and there exists a bijection f: 𝑉(𝐺) ∪ 𝐸(𝐺) →
{1, 2, ⋯ , |𝑉| + |𝐸|}, for any two adjacent vertices 𝑢𝑣 ∈ 𝐸(𝐺), 

if 𝑑(𝑢) = 𝑑(𝑣) , we have 𝑆(𝑢) = 𝑆(𝑣) , where 𝑆(𝑢) =
𝑓(𝑢) + ∑ 𝑓(𝑢𝑤)𝑢𝑤∈𝐸(𝐺) , 𝑑(𝑢) denotes the degree of vertex 

u, then f is said to be the Adjacent Vertex Reducible Total 

Labeling of the graph G, or AVRTL for short, and graph G is 

an AVRTL graph. If a graph does not have an AVRTL, it is 

said to be a NAVRTL graph. 

Definition 2: The graph 𝐼𝑟(𝐺) denotes the r-corona graph 

of graph G, which is the graph created by attaching 

r-suspended edges on each vertex of the graph G. The 

1-corona graph, also known as the crown graph, is denoted as 
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I(G). The set of endpoints of the r-hanging edges bonded at a 

vertex v of G is referred to as the r-hanging points, denoted as 

v*, two examples are shown in Figure 1. 
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(a) 𝐼3(𝑃4) 
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(b) 𝐼4(𝐶6) 

Fig 1. Examples of  𝐼𝑟(𝐺) graph 

Definition 3: For any given graph G and H, duplicate H 

first based on the number of vertices in graph G, then suspend 

H for each vertex in graph G, where each common vertex is 

denoted by 𝑣0 in H. The graph created in this way is known 

as the corona graph of G, noted as 𝐺 ∘ 𝐻. Two examples are 

shown in Figure 2. 
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(a) 𝑃4 ∘  𝐹5 
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(b) 𝑆3 ∘  𝑊6 

Fig 2. Examples of  𝐺 ∘ 𝐻 graph 

III. AVRTL ALGORITHM 

A. The basic principle of the algorithm 

The adjustment principle of the algorithm is built utilizing 

the definition of Adjacent Vertex Reducible Total Labeling. 

The adjustment function breaks the current equilibrium, and 

then the balance is gradually restored.  In this way, the final 

labeling matrix of the graph 𝐺(𝑝, 𝑞) is found to satisfy the 

requirement that the sums of the labels of the neighboring 

vertices of the same degree are the same, and there exists a 

one-to-one mapping of the merged sets of point-edge labeling 

values to {1,2, ⋯ , 𝑝 + 𝑞}. 

(1) Pretreatment function: 

The graph set file is read, and the adjacency matrix 

InitAdjust of the graph 𝐺, as well as other information, are 

used to figure out the number of vertices, edges, initial 

labeling sequence, classification set divided according to the 

adjacency of two points, and other statistics. 

(2) Adjustment function: 

Step 1: Set up the adjustment principle, one of which is to 

choose the current maximum number of labels to adjust, and 

the other is to set the adjustment span of the label value to 1. 

Step 2: The current adjustment matrix is modified, and the 

backward function determines whether to back off. Until the 

condition that the sum of the labels is the same is satisfied, 

the intermediate matrix 𝑀𝑖𝑑𝐴𝑑𝑗𝑢𝑠𝑡𝑖  is recorded. 

Step 3: Loop iteration until the label value reaches the 

maximum or 𝑀𝑖𝑑𝐴𝑑𝑗𝑢𝑠𝑡𝑖 = 𝑀𝑖𝑑𝐴𝑑𝑗𝑢𝑠𝑡𝑖+1, record the final 

matrix 𝐹𝑖𝑛𝑎𝑙𝑀𝑎𝑡𝑟𝑖𝑥. 

(3) Backward function:  

Return False if the sum of the labels between neighboring 

vertices in the same degree differs by more than 2 or if the 

collection of labels is not continuous. 

(4) Output function:  

Output the adjacency matrix that finally satisfies the 

labeling requirements. 

B. Pseudocode of the algorithm 

𝑰𝒏𝒑𝒖𝒕 The adjacency matrix of the graph 𝐺(𝑝, 𝑞) 

𝑶𝒖𝒕𝒑𝒖𝒕 The matrix satisfying the labeling requirements 

1 read the adjacency matrix 𝑖𝑛𝑖𝑡𝐴𝑑𝑗𝑢𝑠𝑡  of the 

graph G 

2 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑉𝑒𝑟𝑡𝑒𝑥𝑁𝑢𝑚, 𝐸𝑑𝑔𝑒𝑁𝑢𝑚, 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙,  

𝑆𝑎𝑚𝑒𝐿𝑖𝑠𝑡 

/* 𝑉𝑒𝑟𝑡𝑒𝑥𝑁𝑢𝑚  is the number of vertices, 

𝐸𝑑𝑔𝑒𝑁𝑢𝑚 is the number of edges, 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙 is 

the maximum value in the label set, and 

𝑆𝑎𝑚𝑒𝐿𝑖𝑠𝑡  is the set of adjacent vertices of the 

same degree */ 

3 𝑔𝑒𝑡 𝐹𝑖𝑛𝑎𝑙𝑀𝑎𝑡𝑟𝑖𝑥, 𝑓𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒  

/*𝐹𝑖𝑛𝑎𝑙𝐴𝑑𝑗𝑢𝑠𝑡 is the final matrix */ 

4 𝑤ℎ𝑖𝑙𝑒(𝑓𝑙𝑎𝑔) 

5 𝑓𝑜𝑟 𝑖 ← 0 𝑡𝑜 𝑉𝑒𝑟𝑡𝑒𝑥𝑁𝑢𝑚 

6 𝑒𝑣 + + 

7 𝑖𝑓 (The backward function returns true) 

8 𝑒𝑣 − − 

9 𝑒𝑛𝑑 𝑖𝑓 

10 𝑖𝑓(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑑𝑗𝑢𝑠𝑡 satisfies the equilibrium 

condition) /* 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑑𝑗𝑢𝑠𝑡 is the matrix being 

adjusted */ 

11 𝑀𝑖𝑑𝐴𝑑𝑗𝑢𝑠𝑡𝑖 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑑𝑗𝑢𝑠𝑡 

12 𝑒𝑛𝑑 𝑖𝑓 
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13 𝑖𝑓(𝑒𝑖 == 𝑉𝑒𝑟𝑁𝑢𝑚 + 𝐸𝑑𝑔𝑒𝑁𝑢𝑚 ||  

𝑒𝑞𝑢𝑎𝑙𝐹𝑢𝑛(𝑀𝑖𝑑𝐴𝑑𝑗𝑢𝑠𝑡𝑖 , 𝑀𝑖𝑑𝐴𝑑𝑗𝑢𝑠𝑡𝑖+1) 

14 𝐹𝑖𝑛𝑎𝑙𝐴𝑑𝑗𝑢𝑠𝑡 ← 𝑀𝑖𝑑𝐴𝑑𝑗𝑢𝑠𝑡 

15 𝑏𝑟𝑒𝑎𝑘 

16 𝑒𝑛𝑑 𝑖𝑓 
17 𝑒𝑛𝑑 𝑓𝑜𝑟 

18 𝑖𝑓(𝐹𝑖𝑛𝑎𝑙𝐴𝑑𝑗𝑢𝑠𝑡. 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙 == 𝑝 + 𝑞) 
19 𝑂𝑢𝑡𝑝𝑢𝑡 𝐹𝑖𝑛𝑎𝑙𝐴𝑑𝑗𝑢𝑠𝑡 

20 𝑒𝑛𝑑 𝑖𝑓 

21 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 

22 𝑒𝑛𝑑 

C. Analysis of the algorithm operation results 

According to the experimental results, the following 

clustered bar chart shows the change in the percentage of 

AVRTL graphs versus NAVRTL graphs in the total number 

of graphs within 6-10 vertices. It can be concluded that the 

percentage of AVRTL graphs in the total number of graphs 

tends to decrease as the number of vertices increases but still 

accounts for the majority compared to NAVRTL graphs. 

 
Fig 3. Variation of the percentage of AVRTL and NAVRTL in the total 

number of graphs within finite vertices 

Figure 4 shows two AVRTL graph examples. 
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(a) 𝐺(40,48) 
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(b) 𝐺(36,41) 

Fig 4. Labeling results of two random graphs 

IV. THEOREM AND PROOF 

Theorem 1: AVRTL exists for the road graph 𝑃𝑛 when 𝑛 ≥ 3. 

Proof: Let the set of vertices of 𝑃𝑛 be {𝑢1, 𝑢2, ⋯ , 𝑢𝑛}, and the 

vertices 𝑢1 and 𝑢𝑛 lie at the two ends of 𝑃𝑛. 𝑃𝑛 has a total of 

𝑛 vertices and 𝑛 − 1 edges, as shown in Figure 5(a). 

At this point, any two elements of the vertex set 

{𝑢2, 𝑢3, ⋯ , 𝑢𝑛−1} are adjacent and of the same degree, both 

of degree 2 vertices, and a mapping about f can be obtained as 

follows. 

1

,1 1
( ) ;

2 1,

3
2 , 1(mod 2)

2 2
( ) 1 1

2 1, 0(mod 2)
2 2

i

i i

i i n
f u

n i n

i
n i

f u u i n
n i

n i
+

  −
= 

− =


− − 


=   −

  − − −    

 

At this time, 𝑓(𝑉) = {1,2, ⋯ , 𝑛 − 1} ∪ {2𝑛 − 1}  and 

𝑓(𝐸) = {𝑛, 𝑛 + 1, ⋯ ,2𝑛 − 2} , which gives (𝑉(𝐺)) ∪

𝑓(𝐸(𝐺)) → [1,2𝑛 − 1] and 𝑓(𝑉(𝐺)) ∩ 𝑓(𝐸(𝐺)) = ∅. 

And 𝑆(𝑢𝑖) = 𝑓(𝑢𝑖) + 𝑓(𝑢𝑖𝑢𝑖+1) + 𝑓(𝑢𝑖𝑢𝑖−1) = 4𝑛 −

⌊
𝑛

2
⌋ − 2, 2 ≤ 𝑖 ≤ 𝑛 − 1, which gives the same sum of labels 

of all elements in the set {𝑢2, 𝑢3, ⋯ , 𝑢𝑛−1}.  The vertices 𝑢1 

and 𝑢𝑛 have no adjacent vertices of the same degree, so it is 

not necessary to consider the sum of their labels. 

To sum up, Theorem 1 holds. 

 

Theorem 2: AVRTL exists for the circle graph 𝐶𝑛(𝑛 ≥ 3) 

when 𝑛 ≡ 1(𝑚𝑜𝑑 2). 

Proof: Let the set of vertices of 𝐶𝑛 be {𝑢1, 𝑢2, ⋯ , 𝑢𝑛}, with 

vertices 𝑢1  adjacent to both 𝑢𝑛  and 𝑢2 . 𝐶𝑛  has a total of 𝑛 

vertices and 𝑛 edges, as shown in Figure 5(b).  

At this point, all vertices in the graph are adjacent and of 

the same degree, all of degree 2 vertices, and a mapping about 

f can be obtained as follows.  

1
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At this time, 𝑓(𝑉) = {1,2, ⋯ , 𝑛}  and 𝑓(𝐸) =

{𝑛 + 1, 𝑛 + 2, ⋯ ,2𝑛} , which gives 𝑓(𝑉(𝐺)) ∪ 𝑓(𝐸(𝐺)) →

[1, 2𝑛] and 𝑓(𝑉(𝐺)) ∩ 𝑓(𝐸(𝐺)) = ∅. 

And  𝑆(𝑢1) = 𝑓(𝑢1) + 𝑓(𝑢1𝑢2) + 𝑓(𝑢1𝑢𝑛) = 4𝑛 + 1 −

⌊
𝑛

2
⌋;  𝑆(𝑢𝑛) = 𝑓(𝑢𝑛) + 𝑓(𝑢1𝑢𝑛) + 𝑓(𝑢𝑛−1𝑢𝑛) = 4𝑛 + 1 −

⌊
𝑛

2
⌋;  𝑆(𝑢𝑖) = 𝑓(𝑢𝑖) + 𝑓(𝑢𝑖𝑢𝑖+1) + 𝑓(𝑢𝑖𝑢𝑖−1) = 4𝑛 + 1 −

⌊
𝑛

2
⌋ , 2 ≤ 𝑖 ≤ 𝑛 − 1, which give the same sum of labels of all 

elements in the set {𝑢1, 𝑢2, ⋯ , 𝑢𝑛}.  

To sum up, Theorem 2 holds. 
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(b)𝐶𝑛 

Fig 5. 𝑃𝑛 and 𝐶𝑛 

 

Theorem 3: If the graph 𝑆𝑚 represents a star graph with 𝑚 +
1(𝑚 ≥ 2) vertices, then AVRTL exists for 𝑆𝑚.  

Theorem 3 obviously holds according to the definition of 

Adjacent Vertex Reducible Total Labeling. 
 

Theorem 4: If the graph 𝐹𝑛 represents a fan graph with 𝑛 +
1(𝑛 > 3) vertices, then AVRTL exists for 𝐹𝑛.  

Proof: Let the set of vertices of 𝐹𝑛 be {𝑢0, 𝑢1, ⋯ , 𝑢𝑛}, and the 

center of the fan is 𝑢0. 𝐹𝑛 has a total of 𝑛 + 1 vertices and 

2𝑛 − 1 edges, as shown in Figure 6. 

At this point, any two elements of the vertex set 

{𝑢2, 𝑢3, ⋯ , 𝑢𝑛−1} are adjacent and of the same degree, both 

of degree 3 vertices, and a mapping about f can be obtained as 

follows. 
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=


− =
= 

−   −
 − =

− =


= + −   −
 − =

= − −   −

 

At this time, 𝑓(𝑉) = {1,2, ⋯ , 𝑛 − 2} ∪ {3𝑛 − 2, 3𝑛 −
1, 3𝑛}  and 𝑓(𝐸) = {𝑛 − 1, 𝑛, ⋯ ,3𝑛 − 3} , which gives 

𝑓(𝑉(𝐺)) ∪ 𝑓(𝐸(𝐺)) → [1,3𝑛]  and 𝑓(𝑉(𝐺)) ∩ 𝑓(𝐸(𝐺)) =

∅. 

𝑆(𝑢𝑖) = 𝑓(𝑢𝑖𝑢𝑖+1) + 𝑓(𝑢𝑖𝑢𝑖−1) + 𝑓(𝑢𝑖𝑢0) + 𝑓(𝑢𝑖) =
7𝑛 − 11, 2 ≤ 𝑖 ≤ 𝑛 − 1, which gives the same sum of labels 

of all elements in the set {𝑢2, 𝑢3, ⋯ , 𝑢𝑛−1}.  The vertices 

𝑢0, 𝑢1and 𝑢𝑛 have no adjacent vertices of the same degree, so 

it is not necessary to consider the sum of their labels. 

To sum up, Theorem 4 holds. 

u2
u3

u1

u0

un

un-1

u4

 
Fig 6. 𝐹𝑛 

 

Theorem 5: If the graph 𝑊𝑛 represents a wheel graph with 

𝑛 + 1(𝑛 > 2) vertices, then AVRTL exists for 𝑊𝑛.  

Proof: Let the set of vertices of 𝑊𝑛 be {𝑢0, 𝑢1, ⋯ , 𝑢𝑛}, and 

the center of the wheel is 𝑢0. The vertex 𝑢1 is adjacent to 

both 𝑢2  and 𝑢𝑛 , 𝑊𝑛  has a total of 𝑛 + 1  vertices and 2𝑛 

edges, as shown in Figure 7(a). 

Scenario 1: When 𝑛 = 3 

At this point, all vertices in the graph are adjacent vertices 

of the same degree, as shown in Figure 7(b). 

At this time, 𝑓(𝑉) = {1,2,4,7} and 𝑓(𝐸) = {3,5,6,8,9,10}，

which gives 𝑓(𝑉(𝐺)) ∪ 𝑓(𝐸(𝐺)) → [1,3𝑛 + 1]  and 

𝑓(𝑉(𝐺)) ∩ 𝑓(𝐸(𝐺)) = ∅. And the sum of the labels of all 

adjacent vertices of the same degree is 24. 

Therefore, AVRTL exists for 𝑊𝑛(𝑛 = 3). 

Scenario 2: When 𝑛 ≥ 4 

At this point, any two elements of the vertex set 

{𝑢1, 𝑢2, ⋯ , 𝑢𝑛} are adjacent and of the same degree, both of 

degree 3 vertices, and a mapping about f can be obtained as 

follows. 

0

1

1

3 1, 0
( ) ;

,1

2 1,1 1
( ) ;

2 1,

( ) 2 ;

( ) 2 ,1 1

i

i

n

i i

n i
f u

i i n

n i i n
f u u

n i n

f u u n

f u u n i i n+

+ =
= 

 

+ +   −
= 

+ =

=

= −   −

 

At this time, 𝑓(𝑉) = {1,2, ⋯ , 𝑛} ∪ {3𝑛 + 1}  and 𝑓(𝐸) 

={𝑛 + 1, 𝑛 + 2, ⋯ ,3𝑛}, which gives 𝑓(𝑉(𝐺)) ∪ 𝑓(𝐸(𝐺)) →

[1,3𝑛 + 1] and 𝑓(𝑉(𝐺)) ∩ 𝑓(𝐸(𝐺)) = ∅. 

And 𝑆(𝑢1) = 𝑓(𝑢1) + 𝑓(𝑢1𝑢2) + 𝑓(𝑢1𝑢𝑛) + 𝑓(𝑢1𝑢0) =
6𝑛 + 2;  𝑆(𝑢𝑛) = 𝑓(𝑢1𝑢𝑛) + 𝑓(𝑢𝑛−1𝑢𝑛) + 𝑓(𝑢𝑛𝑢0) +
𝑓(𝑢𝑛) = 6n + 2;  𝑆(𝑢𝑖) = 𝑓(𝑢𝑖𝑢𝑖+1) + 𝑓(𝑢𝑖𝑢0) + 𝑓(𝑢𝑖) +
𝑓(𝑢𝑖𝑢𝑖−1) = 6𝑛 + 2, 2 ≤ 𝑖 ≤ 𝑛 − 1,  which give the same 

sum of labels of all elements in the set {𝑢1, 𝑢2, ⋯ , 𝑢𝑛}.  The 

vertex 𝑢0 has no adjacent vertices of the same degree, so it is 

not necessary to consider the sum of its labels. 

Therefore, AVRTL exists for 𝑊𝑛(𝑛 ≥ 4). 

To sum up, Theorem 5 holds. 

u0
u3

u1 u2

u4u5

un

 
(a) 𝑊𝑛 
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(b) a labeling result of 𝑊3 

Fig 7. 𝑊𝑛 and a labeling result of 𝑊3 

 

Theorem 6: AVRTL exists for the graph 𝐼𝑟(𝐹𝑛) when 𝑛 ≥
3, 𝑟 ≥ 2. 

Proof: Let the set of vertices of 𝐼𝑟(𝐹𝑛) be {𝑢𝑖𝑗|1 ≤ 𝑖 ≤ 𝑛 +

1,0 ≤ 𝑗 ≤ 𝑟}, and 𝑢𝑖0( 1 ≤ 𝑖 ≤ 𝑛) is the common vertex of 

the graph 𝐹𝑛 and r hanging edges. 𝐼𝑟(𝐹𝑛) has 𝑛𝑟 + 𝑟 + 𝑛 + 1 

vertices and 𝑛𝑟 + 2𝑛 + 𝑟 − 1 edges, as shown in Figure 8.  

Scenario 1: When 𝑛 = 3, 𝑟 ≥ 2 

At this point, the vertices 𝑢20 and 𝑣0 are adjacent and of 

the same degree, both being vertices of degree 𝑟 + 3, and the 

labeling situation can be divided into two kinds. 

(1) When 𝑛 = 3, 𝑟 ≥ 2, 𝑟 ≡ 1(𝑚𝑜𝑑 2), a mapping about f 

can be obtained as follows. 

0 0

0 ( 1)0

0

8, 1

2, 2
  0

( ) ;9, 3

5, 4

(2 ) 1,1 1,1

3, 1

( ) 1, 2 ;

6, 3

4, 1
( ) ;

7, 2

(3 ) , 1(mod 2)
1

(4 ) 2, 0(mod 2)

( )

ij

i

i i

i ij

i

i
j

f u i

i

j n i j i n j r

i

f v u i

i

i
f u u

i

r j n r i j j
j

r j n r i j j

f u u

+

 =


= =
= =

 =
 + + + −   +  

=


= =
 =

=
= 

=

+ + + + + 
 

+ + + − + + 

=

1

1 4(3 ) 4, 1

(3 ) , 2,3   

(3 ) 1, 4

r

ir n r i

r n r i i j r

r n r i


−




 + + + =


+ + + = =
 + + + =

 

At this time, 𝑓(𝑉) = {2,5,8,9} ∪ {10,11, ⋯ ,3𝑛 + 𝑛𝑟 + 𝑟} 

and 𝑓(𝐸) = {1,3,4,6,7} ∪ {3𝑛 + 𝑛𝑟 + 𝑟 + 1,3𝑛 + 𝑛𝑟 + 𝑟 +

2, ⋯ ,2𝑛𝑟 + 3𝑛 + 2𝑟} , which gives 𝑓(𝑉(𝐺)) ∪ 𝑓(𝐸(𝐺)) →

[1,2𝑛𝑟 + 3𝑛 + 2𝑟] and 𝑓(𝑉(𝐺)) ∩ 𝑓(𝐸(𝐺)) = ∅. 

And 𝑆(𝑢20) = ∑ 𝑓(𝑢20𝑢2𝑗) +𝑟
𝑗=1 𝑓(𝑢10𝑢20) + 𝑓(𝑢20) +

𝑓(𝑢20𝑢30) =
3

2
𝑟2(𝑛 + 1) + (3𝑛 +

1

2
)𝑟 −

𝑛

2
+ 15;  𝑆(𝑢40) =

𝑓(𝑢40) + 𝑓(𝑢40𝑢10) + 𝑓(𝑢40𝑢30) + ∑ 𝑓(𝑢40𝑢4𝑗)𝑟
𝑗=1 =

3

2
𝑟2(𝑛 + 1) + (3𝑛 +

1

2
)𝑟 −

𝑛

2
+ 15, we can get the sum of the 

labels of vertices 𝑢20  and 𝑣0  is the same. The rest of the 

vertices have no adjacent vertices of the same degree, so it is 

not necessary to consider the sum of their labels. 

Therefore, AVRTL exists for 𝐼𝑟(𝐹𝑛)(𝑛 = 3, 𝑟 ≥ 2, 𝑟 ≡
1(𝑚𝑜𝑑 2)). 

(2) When 𝑛 = 3, 𝑟 ≥ 2, 𝑟 ≡ 0(𝑚𝑜𝑑 2), a mapping about f 

can be obtained as follows. 

8, 1

2, 2
   0

( ) ;9, 3

1, 4

(2 ) 1,1 1,1

ij

i

i
j

f u i

i

j n i j i n j r

 =


= =
= =

 =
 + + + −   +  

 

0 0

0 ( 1)0

0

5, 1

( ) 4, 2;

6, 3

3, 1
( ) ;

7, 2

( )

(2 ) 1, 1(mod 2)
1 1,1

(3 ) 1, 0(mod 2)

i

i i

i ij

i

f v u i

i

i
f u u

i

f u u

r j n r i j j
i n j r

r j n r i j j

+

=


= =
 =

=
= 

=

=

+ + + + + − 
  +  

+ + + − + + 

 

At this time, 𝑓(𝑉) = {1,2,8,9} ∪ {10,11, ⋯ ,3𝑛 + 𝑛𝑟 + 𝑟} 

and 𝑓(𝐸) = {3,4,5,6,7} ∪ {3𝑛 + 𝑛𝑟 + 𝑟 + 1,3𝑛 + 𝑛𝑟 + 𝑟 +

2, ⋯ ,2𝑛𝑟 + 3𝑛 + 2𝑟} , which gives 𝑓(𝑉(𝐺)) ∪ 𝑓(𝐸(𝐺)) →

[1,2𝑛𝑟 + 3𝑛 + 2𝑟] and 𝑓(𝑉(𝐺)) ∩ 𝑓(𝐸(𝐺)) = ∅. 

And 𝑆(𝑢20) = ∑ 𝑓(𝑢20𝑢2𝑗)𝑟
𝑗=1 + 𝑓(𝑢10𝑢20) + 𝑓(𝑢20) +

𝑓(𝑢20𝑢30) =
3

2
𝑟2(𝑛 + 1) + (3𝑛 +

1

2
) 𝑟 + 16; 𝑆(𝑢40) =

𝑓(𝑢40) + 𝑓(𝑢40𝑢10) + 𝑓(𝑢40𝑢30) + ∑ 𝑓(𝑢40𝑢4𝑗)𝑟
𝑗=1 =

3

2
𝑟2(𝑛 + 1) + (3𝑛 +

1

2
)𝑟 + 16, we can get the sum of the 

labels of vertices 𝑢20  and 𝑣0  is the same. The rest of the 

vertices have no adjacent vertices of the same degree, so it is 

not necessary to consider the sum of their labels. 

Therefore, AVRTL exists for 𝐼𝑟(𝐹𝑛)(𝑛 = 3, 𝑟 ≥ 2, 𝑟 ≡
0(𝑚𝑜𝑑 2)). 

Scenario 2: When 𝑛 ≥ 4, 𝑟 ≥ 2 

At this point, any two elements of the vertex set 

{𝑢20, 𝑢30, ⋯ , 𝑢(𝑛−1)0} are adjacent and of the same degree, 

both of degree r+3 vertices, and the labeling situation can be 

divided into two kinds. 

(1) When 𝑛 ≥ 4, 𝑟 ≥ 2, 𝑟 ≡ 1(𝑚𝑜𝑑 2), a mapping about f 

can be obtained as follows. 

0 0

0 ( 1)0

0

,1 1

2 1, 0
( ) ;

2 , 1

(1 ) 1,1 1,1

( ) (2 ) ,1 ;

3
2 , 1(mod 2)

2 2
( ) 1 1;

2 1, 0(mod 2)
2 2

( )

(3 ) ,

ij

i

i i

i ij

i i n

n i n j
f u

n i n

j n i j i n j r

f v u r n r i i n

i
n i

f u u i n
n i

n i

f u u

r j n r i j j

+

   −


− = =
=  = +

 + + + −   +  

= + + +  


− − 

=   −
  − − −    

=

+ + + + +  1(mod 2)
1 1

1 1(4 ) 2, 0(mod 2)

(4 ) 2,

j r
i nr j n r i j j

r n r i j r


  −

  ++ + + − + + 


+ + − + =

 

At this time, 𝑓(𝑉) = {1,2, ⋯ , 𝑛 − 1} ∪ {2𝑛 − 1,2𝑛,
⋯ ,2𝑛 + 𝑛𝑟 + 𝑟}  and 𝑓(𝐸) = {𝑛, 𝑛 + 1, ⋯ ,2𝑛 − 2} ∪
{2𝑛 + 𝑛𝑟 + 𝑟 + 1,2𝑛 + 𝑛𝑟 + 𝑟 + 2, ⋯ ,2𝑛𝑟 + 3𝑛 + 2𝑟},  

which gives 𝑓(𝑉(𝐺)) ∪ 𝑓(𝐸(𝐺)) → [1,2𝑛𝑟 + 3𝑛 + 2𝑟] and 

𝑓(𝑉(𝐺)) ∩ 𝑓(𝐸(𝐺)) = ∅. 

And 𝑆(𝑢𝑖0) = 𝑓(𝑢𝑖0𝑢(𝑖+1)0) + 𝑓(𝑢𝑖0) + 𝑓(𝑢𝑖0𝑢(𝑖−1)0) +

∑ 𝑓(𝑢𝑖0𝑢𝑖𝑗)𝑟
𝑗=1 + 𝑓(𝑢𝑖0𝑣0) =

3

2
𝑟2(𝑛 + 1) +

13

2
𝑛 − ⌊

𝑛

2
⌋ +

(4𝑛 +
3

2
)𝑟 − 1,2 ≤ 𝑖 ≤ 𝑛 − 1, which gives the same sum of 

labels of all elements in the set {𝑢20, 𝑢30, ⋯ , 𝑢(𝑛−1)0}. The 

rest of the vertices have no adjacent vertices of the same 
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degree, so it is not necessary to consider the sum of their 

labels. 

Therefore, AVRTL exists for 𝐼𝑟(𝐹𝑛)(𝑛 ≥ 4, 𝑟 ≥ 2, 𝑟 ≡
1(𝑚𝑜𝑑 2)). 

(2) When 𝑛 ≥ 4, 𝑟 ≥ 2, 𝑟 ≡ 0(𝑚𝑜𝑑 2), a mapping about f 

can be obtained as follows. 

0 0

0 ( 1)0

0

3 1, 1

1,2 1
0

( ) ;3 2,

3 , 1

(2 ) 1,1 1,1

3 3, 1

( ) 3,2 1;

3 4,

( ) 3 4,1 1;

( )

(2 ) 1, 1(mod 2)

(3

ij

i

i i

i ij

n i

i i n
j

f u n i n

n i n

r j n r i j i n j r

n i

f v u n i i n

n i n

f u u n i i n

f u u

j n i j j

+

 − =


−   − =
= − =

 = +
 + + + + + −   +  

− =


= + −   −
 − =

= − −   −

=

+ + + − 

+
1 1,1

) 1, 0(mod 2)
i n j r

j n i j j


  +  

− + + 

 

At this time, 𝑓(𝑉) = {1,2, ⋯ , 𝑛 − 2} ∪ {3𝑛 + 𝑛𝑟 + 𝑟 +
1,3𝑛 + 𝑛𝑟 + 𝑟 + 2, ⋯ , 2𝑛𝑟 + 3𝑛 + 2𝑟} ∪ {3𝑛 − 2,3𝑛 −
1,3𝑛}  and 𝑓(𝐸) = {𝑛 − 1, 𝑛, ⋯ ,3𝑛 − 3} ∪ {3𝑛 + 1,3𝑛 +

2, ⋯ ,3𝑛 + 𝑛𝑟 + 𝑟} , which gives 𝑓(𝑉(𝐺)) ∪ 𝑓(𝐸(𝐺)) →

[1,2𝑛𝑟 + 3𝑛 + 2𝑟] and 𝑓(𝑉(𝐺)) ∩ 𝑓(𝐸(𝐺)) = ∅. 

And 𝑆(𝑢𝑖0) = 𝑓(𝑢𝑖0) + 𝑓(𝑢𝑖0𝑢(𝑖+1)0) + 𝑓(𝑢𝑖0𝑢(𝑖−1)0) +

∑ 𝑓(𝑢𝑖0𝑢𝑖𝑗)𝑟
1 =

𝑛+1

2
𝑟2 + (3𝑛 +

1

2
)𝑟 + 7𝑛 − 11 , 2 ≤ 𝑖 ≤

𝑛 − 1, which gives the same sum of labels of all elements in 

the set {𝑢20, 𝑢30, ⋯ , 𝑢(𝑛−1)0}. The rest of the vertices have 

no adjacent vertices of the same degree, so it is not necessary 

to consider the sum of their labels. 

Therefore, AVRTL exists for 𝐼𝑟(𝐹𝑛)(𝑛 ≥ 4, 𝑟 ≥ 2, 𝑟 ≡
0(𝑚𝑜𝑑 2)). 

To sum up, Theorem 6 holds. 

u(n+1)0/v0
u(n+1)1

u11

u20

u30

un0

u(n-1)0

...

...
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u12
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u22

u2r

u31

u32

u3r

u(n-1)1

u(n-1)2

u(n-1)r

un1un2unr

u(n+1)2

u(n+1)r

 
Fig 8. 𝐼𝑟(𝐹𝑛) 

 

Theorem 7: AVRTL exists for corona graph 𝑆𝑚 ∘  𝐶𝑛 when 

𝑚 ≥ 2, 𝑛 ≥ 3. 

Proof: Let the set of vertices of 𝑆𝑚 ∘  𝐶𝑛  be {𝑢𝑖𝑗|1 ≤ 𝑖 ≤

𝑚 + 1,1 ≤ 𝑗 ≤ 𝑛 − 1} ∪ {𝑣0, 𝑣1, ⋯ , 𝑣𝑚},  and 𝑣𝑖(0 ≤ 𝑖 ≤

𝑚) is the common vertex of 𝐶𝑛, 𝑆𝑚. 𝑆𝑚 ∘  𝐶𝑛  has a total of 

𝑚𝑛 + 𝑛 vertices and 𝑚𝑛 + 𝑛 + 𝑚 edges, as shown in Figure 

9. 

At this point, in the vertex sets {𝑢11, 𝑢12, ⋯ , 𝑢1(𝑛−1)},

{𝑢21, 𝑢22, ⋯ , 𝑢2(𝑛−1)}, ⋯ , {𝑢(𝑚+1)1, 𝑢(𝑚+1)2, ⋯ , 𝑢(𝑚+1)(𝑛−1)}

, any two elements in each set are adjacent and of the same 

degree, and all are points of degree 2, and a mapping about f 

can be obtained as follows. 

0

0 ( 1)

( 1)

2 , 0
( ) 1 1;

2 2 ,1 1

( ) 2 2 ,1 ;

2 , 0(mod 2)

( ) 1 1;
2 1, 1(mod 2)

2

1
2 , 1(mod 2)

2 2
( ) 1

2 , 0(mod 2)
2 2

ri

i

r r n

ri r i

nr i
f u r m

nr n i i n

f v v mn n i i m

nr n i

f u u r mn
nr n i

i
nr i

f u u i
n i

nr i

−

−

=
=   +

− +   −

= + +  

− 


=   +  
− + −   

 


− − 


= 

  − −    

,1 1n r m   +

 

At this time, 𝑓(𝑉) = {1,2, ⋯ , 𝑛 − 1} ∪ {2𝑛 + 1,2𝑛 +
2, ⋯ ,3𝑛 − 1} ∪ ⋯ ∪ {2𝑚𝑛 + 1,2𝑚𝑛 + 2, ⋯ ,2𝑚𝑛 + 𝑛 −
1} ∪ {2𝑛, 4𝑛, ⋯ ,2𝑚𝑛 + 2𝑛}  and 𝑓(𝐸) = {𝑛, 𝑛 + 1, ⋯ ,2𝑛 −
1} ∪ {3𝑛, 3𝑛 + 1, ⋯ ,4𝑛 − 1} ∪ ⋯ ∪ {2𝑚𝑛 + 𝑛, 2𝑚𝑛 + 𝑛 +
1, ⋯ ,2𝑚𝑛 + 2𝑛 − 1} ∪ {2𝑚𝑛 + 2𝑛 + 1,2𝑚𝑛 + 2𝑛 + 2,

⋯ ,2𝑚𝑛 + 2𝑛 + 𝑚} , which gives 𝑓(𝑉(𝐺)) ∪ 𝑓(𝐸(𝐺)) →

[1,2𝑚𝑛 + 2𝑛 + 𝑚] and 𝑓(𝑉(𝐺)) ∩ 𝑓(𝐸(𝐺)) = ∅. 

And we have 𝑆(𝑢𝑟𝑛) = 𝑓(𝑢𝑟(𝑛−1)𝑢𝑟(𝑛−2)) + 𝑓(𝑢𝑟𝑛) +

𝑓(𝑢𝑟𝑛𝑢𝑟(𝑛−1)) = 6𝑛𝑟 − 2𝑛 − ⌈
𝑛

2
⌉ − 1,1 ≤ 𝑟 ≤ 𝑚 + 1;  

𝑆(𝑢𝑟𝑖) = 𝑓(𝑢𝑟𝑖𝑢𝑟(𝑖+1)) + 𝑓(𝑢𝑟𝑖𝑢𝑟(𝑖−1)) + 𝑓(𝑢𝑟𝑖) = 6𝑛𝑟 −

2𝑛 − ⌈
𝑛

2
⌉ − 1,1 ≤ 𝑖 ≤ 𝑛 − 1 𝑎𝑛𝑑 1 ≤ 𝑟 ≤ 𝑚 + 1, we can 

get that in the vertex sets {𝑢11, 𝑢12, ⋯ , 𝑢1(𝑛−1)}, {𝑢21, 𝑢22,

⋯ , 𝑢2(𝑛−1)}, ⋯ , {𝑢𝑚1, 𝑢𝑚2, ⋯ , 𝑢𝑚(𝑛−1)} , the sum of the 

labels of all elements in each set is the same. The rest of the 

vertices have no adjacent vertices of the same degree, so it is 

not necessary to consider the sum of their labels. 

To sum up, Theorem 7 holds. 
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Theorem 8: AVRTL exists for corona graph 𝐶𝑛 ∘  𝑃𝑚 when 

𝑛 ≥ 3, 𝑚 ≥ 2. 

Proof: Let the set of vertices of 𝐶𝑛 ∘  𝑃𝑚  be {𝑢𝑖𝑗|1 ≤ 𝑖 ≤

𝑛, 1 ≤ 𝑗 ≤ 𝑚}, and 𝑢𝑖1(1 ≤ 𝑖 ≤ 𝑛) is the common vertex of 

𝐶𝑛 and 𝑃𝑚. 𝐶𝑛 ∘  𝑃𝑚  has a total of 𝑚𝑛 vertices and 𝑚𝑛 edges, 

as shown in Figure 10. 

Scenario 1: When 𝑛 ≥ 3,2 ≤ 𝑚 ≤ 3 

At this point, any two elements of the vertex set 

{𝑢11, 𝑢21, ⋯ , 𝑢𝑛1} are adjacent and of the same degree, both 

of degree 3 vertices, and a mapping about f can be obtained as 

follows. 

11 1

1 ( 1)1

( 1)

, 1
1

( ) ;1,2

( 1) ,2 ,1

( ) 1;

( ) 2 1,1 1;

( ) ( 1) ,1 ,1 1

ij

n

i i

ij i j

n i
j

f u i i n

m j n i j m i n

f u u n

f u u n i i n

f u u j n i i n j m

+

+

 =
=

= −  


+ − +    

= +

= − +   −

= + +     −

 

At this time, 𝑓(𝑉) = {1,2, ⋯ , 𝑛} ∪ {𝑚𝑛 + 𝑛 + 1, 𝑚𝑛 +
𝑛 + 2, ⋯ ,2𝑚𝑛} and 𝑓(𝐸) = {𝑛 + 1, 𝑛 + 2, ⋯ , 𝑚𝑛 + 𝑛} , 

which gives 𝑓(𝑉(𝐺)) ∪ 𝑓(𝐸(𝐺)) → [1,2𝑚𝑛]  and 

𝑓(𝑉(𝐺)) ∩ 𝑓(𝐸(𝐺)) = ∅. 

And 𝑆(𝑢11) = 𝑓(𝑢11𝑢21) + 𝑓(𝑢11𝑢𝑛1) + 𝑓(𝑢11𝑢12) +

𝑓(𝑢11) = 6𝑛 + 2; 𝑆(𝑢𝑖1) = 𝑓(𝑢𝑖1𝑢(𝑖+1)1) + 𝑓(𝑢𝑖1𝑢𝑖2) +

𝑓(𝑢𝑖1𝑢(𝑖−1)1) + 𝑓(𝑢𝑖1) = 6𝑛 + 2,2 ≤ 𝑖 ≤ 𝑛 − 1; 𝑆(𝑢𝑛1) =

𝑓(𝑢𝑛1) + 𝑓(𝑢𝑛1𝑢11) + 𝑓(𝑢𝑛1𝑢𝑛2) + 𝑓(𝑢𝑛1𝑢(𝑛−1)1) =

6𝑛 + 2, which give the same sum of labels of all elements in 

the set {𝑢11, 𝑢21, ⋯ , 𝑢𝑛1}. The rest of the vertices have no 

adjacent vertices of the same degree, so it is not necessary to 

consider the sum of their labels. 

Therefore, AVRTL exists for 𝐶𝑛 ∘  𝑃𝑚(𝑛 ≥ 3,2 ≤ 𝑚 ≤
3). 

Scenario 2: When 𝑛 ≥ 3, 𝑚 ≥ 4 

At this point, in the vertex sets {𝑢12, 𝑢13, ⋯ ,

𝑢1(𝑚−1)}, {𝑢22, 𝑢23, ⋯ , 𝑢2(𝑚−1)}, ⋯ , {𝑢𝑛2, 𝑢𝑛3, ⋯ , 𝑢𝑛(𝑚−1)} , 

any two elements in each set are adjacent and of the same 

degree, and all are points of degree 2; any two elements of the 

vertex set {𝑢11, 𝑢21, ⋯ , 𝑢𝑛1} are adjacent and of the same 

degree, both of degree 3 vertices, and a mapping about f can 

be obtained as follows. 

11 1

1 ( 1)1

( 1)

, 1
1

1,2

( ) ;2 2 , 2

,3 1  1

2 ,

( ) 1;

( ) 2 1,1 1;

( )

2 , 1

(2 2 ) , 1(mod 2)
2

(2 1 ) ,
2 2

ij

n

i i

ij i j

n i
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i i n

f u mn n i j

jn i j m i n

mn n i j m

f u u n

f u u n i i n

f u u
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m n i j

j m
m n i j

+

+
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=

−  


= − + =
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 − + =

= +

= − +   −

=

+ =

 
− − +  

 

 
− − − + 

 

1
1

0(mod 2)

i n
j m





  

 
 


 

At this time, 𝑓(𝑉) = {1,2, ⋯ , 𝑛} ∪ {3𝑛 + 1,3𝑛 + 2, ⋯ ,
𝑚𝑛} ∪ {2𝑚𝑛 − 2𝑛 + 1,2𝑚𝑛 − 2𝑛 + 2, ⋯ ,2𝑚𝑛} and 𝑓(𝐸) =
{𝑛 + 1, 𝑛 + 2, ⋯ , 3𝑛} ∪ {𝑚𝑛 + 1, 𝑚𝑛 + 2, ⋯ , 2𝑚𝑛 − 2𝑛} ， 

which gives 𝑓(𝑉(𝐺)) ∪ 𝑓(𝐸(𝐺)) → [1,2𝑚𝑛] and 𝑓(𝑉(𝐺)) ∩

𝑓(𝐸(𝐺)) = ∅. 

And 𝑆(𝑢𝑖𝑗) = 𝑓(𝑢𝑖𝑗𝑢𝑖(𝑗−1)) + 𝑓(𝑢𝑖𝑗𝑢𝑖(𝑗+1)) + 𝑓(𝑢𝑖𝑗) =

4𝑚𝑛 − 2𝑛 − ⌊
𝑚

2
⌋ 𝑛 + 3𝑖, 1 ≤ 𝑖 ≤ 𝑛, 2 ≤ 𝑗 ≤ 𝑚 − 1,  we can 

get that in the vertex sets {𝑢12, 𝑢13, ⋯ , 𝑢1(𝑚−1)}, {𝑢22, 𝑢23,

⋯ , 𝑢2(𝑚−1)}, ⋯ , {𝑢𝑛2, 𝑢𝑛3, ⋯ , 𝑢𝑛(𝑚−1)} , the sum of the 

labels of all elements in each set is the same. 𝑆(𝑢𝑖1) =

𝑓(𝑢𝑖1) + 𝑓(𝑢𝑖1𝑢(𝑖+1)1) + 𝑓(𝑢𝑖1𝑢(𝑖−1)1) + 𝑓(𝑢𝑖1𝑢𝑖2) =

6𝑛 + 2,2 ≤ 𝑖 ≤ 𝑛 − 1; 𝑆(𝑢11) = 𝑓(𝑢11𝑢12) + 𝑓(𝑢11𝑢21) +

𝑓(𝑢11𝑢𝑛1) + 𝑓(𝑢11) = 6𝑛 + 2; 𝑆(𝑢𝑛1) = 𝑓(𝑢𝑛1𝑢(𝑛−1)1) +

𝑓(𝑢𝑛1𝑢11) + 𝑓(𝑢𝑛1𝑢𝑛2) + 𝑓(𝑢𝑛1) = 6𝑛 + 2, which give the 

same sum of labels of all elements in the set {𝑢11, 𝑢21,
⋯ , 𝑢𝑛1}. The rest of the vertices have no adjacent vertices of 

the same degree, so it is not necessary to consider the sum of 

their labels. 

Therefore, AVRTL exists for 𝐶𝑛 ∘  𝑃𝑚(𝑛 ≥ 3, 𝑚 ≥ 4). 

To sum up, Theorem 8 holds. 
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Fig 10. 𝐶𝑛 ∘  𝑃𝑚 

 

Theorem 9: AVRTL exists for corona graph 𝑊𝑛 ∘  𝐶𝑚 when 

𝑛 ≥ 4, 𝑚 ≥ 3, 𝑚 ≡ 1(𝑚𝑜𝑑 2). 

Proof: Let the set of vertices of 𝑊𝑛 ∘  𝐶𝑚  be {𝑢𝑖𝑗|1 ≤ 𝑖 ≤

𝑛 + 1,1 ≤ 𝑗 ≤ 𝑚}, and 𝑣𝑖(0 ≤ 𝑖 ≤ 𝑛) is the common vertex 

of 𝑊𝑛 and 𝐶𝑚. 𝑊𝑛 ∘  𝐶𝑚  has a total of 𝑚𝑛 + 𝑚 vertices and 

𝑚𝑛 + 𝑚 + 2𝑛 edges, as shown in Figure 11. 

At this point, in the vertex sets {𝑢12, 𝑢13, ⋯ ,

𝑢1𝑚}, {𝑢22, 𝑢23, ⋯ , 𝑢2𝑚}, ⋯ , {𝑢(𝑛+1)2, 𝑢(𝑛+1)3, ⋯ , 𝑢(𝑛+1)𝑚} , 

any two elements in each set are adjacent and of the same 

degree, and all are points of degree 2; any two elements of the 

vertex set {𝑢11, 𝑢21, ⋯ , 𝑢𝑛1} are adjacent and of the same 

degree, both of degree 5 vertices, and a mapping about f can 

be obtained as follows. 
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1
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1

1

0

1

(2 ) , 2
( ) ;

2( 1) 2,3

3 1, 0

( ) , 1 ;

1,2

( ) 1;

( ) 2 1,1 1;

( ) 3 1,1 ;

( ) 3 1,1 1

ij
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n

i i

i

i im

m n m i j
f u
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n i

f v n i

i i n
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f v v n i i n

f u u n i i n
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+ + −  
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

= =
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= +
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= − +  
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At this time, 𝑓(𝑉) = {1,2, ⋯ , 𝑛} ∪ {6𝑛 + 5,6𝑛 + 6, ⋯ ,
7𝑛 + 5} ∪ {8𝑛 + 7,8𝑛 + 8, ⋯ ,9𝑛 + 7} ∪ ⋯ ∪ {2𝑚𝑛 + 2𝑚 +
1,2𝑚𝑛 + 2𝑚 + 2, ⋯ ,2𝑚𝑛 + 2𝑚 + 𝑛 − 1} ∪ {3𝑛 + 1} and 

𝑓(𝐸) = {𝑛 + 1, 𝑛 + 2, ⋯ ,3𝑛} ∪ {3𝑛 + 2, 3𝑛 + 3, ⋯ , 6𝑛 +
4} ∪ {7𝑛 + 6, 7𝑛 + 7, ⋯ , 8𝑛 + 6} ∪ ⋯ ∪ {2𝑚𝑛 + 2𝑚 + 𝑛,

2𝑚𝑛 + 2𝑚 + 𝑛 + 1, ⋯ , 2𝑚𝑛 + 2𝑚 + 2𝑛} ，  which gives 

𝑓(𝑉(𝐺)) ∪ 𝑓(𝐸(𝐺)) → [1,2𝑚𝑛 + 2𝑚 + 2𝑛]  and 𝑓(𝑉(𝐺)) ∩

𝑓(𝐸(𝐺)) = ∅. 

And 𝑆(𝑢𝑖𝑗) = 𝑓(𝑢𝑖𝑗𝑢𝑖(𝑗−1)) + 𝑓(𝑢𝑖𝑗𝑢𝑖(𝑗+1)) + 𝑓(𝑢𝑖𝑗) =

3𝑚𝑛 + 3𝑚 + 7𝑛 + 3𝑖 + 1, 1 ≤ 𝑖 ≤ 𝑛 + 1, 2 ≤ 𝑗 ≤ 𝑚, we 

can get that in the vertex sets {𝑢12, 𝑢13, ⋯ , 𝑢1𝑚},

{𝑢22, 𝑢23, ⋯ , 𝑢2𝑚}, ⋯ , {𝑢(𝑛+1)2, 𝑢(𝑛+1)3, ⋯ , 𝑢(𝑛+1)𝑚} , the 

sum of the labels of all elements in each set is the same. 

𝑆(𝑢11) = 𝑓(𝑢11𝑢21) + 𝑓(𝑢11𝑢𝑛1) + 𝑓(𝑢11𝑣0) + 𝑓(𝑢11) +
𝑓(𝑢11𝑢1𝑚) + 𝑓(𝑢11𝑢12) = 14𝑛 + 6; 𝑆(𝑢𝑛1) = 𝑓(𝑢𝑛1𝑣0) +

𝑓(𝑢11𝑢𝑛1) + 𝑓(𝑢𝑛1𝑢(𝑛−1)1) + 𝑓(𝑢𝑛1𝑢𝑛𝑚) + 𝑓(𝑢𝑛1𝑢𝑛2) +

𝑓(𝑢𝑛1) = 14𝑛 + 6, 𝑆(𝑢𝑖1) = 𝑓(𝑢𝑖1𝑢(𝑖+1)1) + 𝑓(𝑢𝑖1𝑢𝑖𝑚) +

𝑓(𝑢𝑖1𝑣0) + 𝑓(𝑢𝑖1𝑢(𝑖−1)1) + 𝑓(𝑢𝑖1𝑢𝑖2) + 𝑓(𝑢𝑖1) = 14𝑛 +

6,2 ≤ 𝑖 ≤ 𝑛 − 1, which give the same sum of labels of all 

elements in the set {𝑢11, 𝑢21, ⋯ , 𝑢𝑛1}. The rest of the vertices 

have no adjacent vertices of the same degree, so it is not 

necessary to consider the sum of their labels. 

To sum up, Theorem 9 holds. 
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Fig 11. 𝑊𝑛 ∘  𝐶𝑚 

 

Theorem 10: AVRTL exists for corona graph 𝐹𝑛 ∘  𝑃𝑚 when 

𝑛 ≥ 3, 𝑚 ≥ 4. 

Proof: Let the set of vertices of 𝐹𝑛 ∘  𝑃𝑚 be {𝑢𝑖𝑗|1 ≤ 𝑖 ≤ 𝑛 +

1,1 ≤ 𝑗 ≤ 𝑚}, and 𝑣𝑖(0 ≤ 𝑖 ≤ 𝑛) is the common vertex of 

𝑃𝑛  and 𝐹𝑚 . 𝐹𝑛 ∘  𝑃𝑚   has a total of 𝑚𝑛 + 𝑚  vertices and 

𝑚𝑛 + 𝑚 + 𝑛 − 2 edges, as shown in Figure 12. 

Scenario 1: When 𝑛 = 3, 𝑚 ≥ 4 

At this point, the vertices 𝑣0 and 𝑣2 are adjacent and of the 

same degree, both being vertices of degree 4; any two 

elements of the vertex set {𝑢𝑖2, 𝑢𝑖3, ⋯ , 𝑢𝑖(𝑚−1)}(1 ≤ 𝑖 ≤ 4) 

are adjacent and of the same degree, both of degree 2 vertices, 

and a mapping about f can be obtained as follows. 
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At this time, 𝑓(𝑉) = {1,2,3,4} ∪ {14,15, ⋯ ,4𝑚 + 1} ∪
{8𝑚 − 6,8𝑚 − 5, ⋯ ,8𝑚 + 1}  and 𝑓(𝐸) = {5,6, ⋯ ,13} ∪
{4𝑚 + 2, 4𝑚 + 3, ⋯ , 8𝑚 − 7} , which gives 𝑓(𝑉(𝐺)) ∪

𝑓(𝐸(𝐺)) → [1,2𝑚𝑛 + 2𝑚 + 𝑛 − 2]  and 𝑓(𝑉(𝐺)) ∩

𝑓(𝐸(𝐺)) = ∅. 

And 𝑆(𝑣0) = 𝑓(𝑣0) + 𝑓(𝑣0𝑣1) + 𝑓(𝑣0𝑣3) + 𝑓(𝑣0𝑣2) +
𝑓(𝑣0𝑢42) = 35; 𝑆(𝑣2) = 𝑓(𝑣2) + 𝑓(𝑣2𝑣1) + 𝑓(𝑣2𝑣3) +
𝑓(𝑣0𝑣2) + 𝑓(𝑣2𝑢22) = 35, we can get the sum of the labels 

of vertices 𝑣0  and 𝑣2  is the same. 𝑆(𝑢𝑖𝑗) = 𝑓(𝑢𝑖𝑗) +

𝑓(𝑢𝑖𝑗𝑢𝑖(𝑗+1)) + 𝑓(𝑢𝑖𝑗𝑢𝑖(𝑗−1)) = 16𝑚 − 4 ⌊
𝑚

2
⌋ + 3𝑖 − 5,1 ≤

𝑖 ≤ 𝑛 + 1,2 ≤ 𝑗 ≤ 𝑚 − 1, which give the same sum of labels 

of all elements in the set {𝑢𝑖𝑗|1 ≤ 𝑖 ≤ 4,2 ≤ 𝑗 ≤ 𝑚 − 1} . 

The rest of the vertices have no adjacent vertices of the same 

degree, so it is not necessary to consider the sum of their 

labels. 

Therefore, AVRTL exists for 𝐹𝑛 ∘  𝑃𝑚(𝑛 = 3, 𝑚 ≥ 4). 

Scenario 2: When 𝑛 ≥ 4, 𝑚 ≥ 4 

At this point, in the vertex sets {𝑢12, 𝑢13,

⋯ , 𝑢1(𝑚−1)}, {𝑢22, 𝑢23, ⋯ , 𝑢2(𝑚−1)}, ⋯ , {𝑢(𝑛+1)2, 𝑢(𝑛+1)3, ⋯ ,

𝑢(𝑛+1)(𝑚−1)}, any two elements in each set are adjacent and 

of the same degree, and all are points of degree 2; any two 

elements of the vertex set {𝑢21, 𝑢31, ⋯ , 𝑢(𝑛−1)1} are adjacent 

and of the same degree, both of degree 4 vertices, and a 

mapping about f can be obtained as follows. 

( 1)( )

3 , 1

2( 1) ( 1) 4, 1(mod 2)
1 1;2

1

2( 1) ( 1)( ) 3, 0(mod 2)
2 2

ij i jf u u

n i j

j
n m i n n j

i n
j m

j m
n m i n j

+ =

+ =


   + + − − + −      +  
 

  + + − + + −    

 

Engineering Letters, 31:2, EL_31_2_17

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 



 

0

1

,1 1

( ) 2 1, ;

3 , 1

2( 1) 4, 2

( ) ( 1) 2,3 1  1 1;

2( 1) 3,

( ) 3 ,1 ;

3
2 , 1(mod 2)

2 2
( ) 1 1

2 1, 0(mod 2)
2 2

i

ij

i

i i

i i n

f v n i n

n i n

n m n i j

f u j n i j j m i n

n m i j m

f v v n i i n

i
n i

f v v i n
n i

n i
+

  −


= − =
 = +

+ − + − =


= + + + −   −   +
 + + − =

= −  


− − 

=   −
  − − −    

 

At this time, 𝑓(𝑉) = {1,2, ⋯ , 𝑛 − 1} ∪ {2𝑛 − 1,3𝑛} ∪
{4𝑛 + 2,4𝑛 + 3, ⋯ , 𝑛𝑚 + 𝑚 + 𝑛 − 2} ∪ {2𝑛𝑚 + 2𝑚 − 2,
2𝑛𝑚 + 2𝑚 − 1, ⋯ ,2𝑛𝑚 + 2𝑚 + 𝑛 − 2}  and 𝑓(𝐸) =
{𝑛, 𝑛 + 1, ⋯ , 2𝑛 − 2} ∪ {3𝑛 + 1, 3𝑛 + 2, ⋯ , 4𝑛 + 1} ∪
{2𝑛, 2𝑛 + 1, ⋯ ,3𝑛 − 1} ∪ {𝑛𝑚 + 𝑚 + 𝑛 − 1, 𝑛𝑚 + 𝑚 +

𝑛, ⋯ ,2𝑚𝑛 + 2𝑚 − 3}, which gives 𝑓(𝑉(𝐺)) ∪ 𝑓(𝐸(𝐺)) →

[1,2𝑚𝑛 + 2𝑚 + 𝑛 − 2] and 𝑓(𝑉(𝐺)) ∩ 𝑓(𝐸(𝐺)) = ∅. 

And 𝑆(𝑢𝑖𝑗) = 𝑓(𝑢𝑖𝑗𝑢𝑖(𝑗−1)) + 𝑓(𝑢𝑖𝑗𝑢𝑖(𝑗+1)) + 𝑓(𝑢𝑖𝑗) =

4𝑚𝑛 + 4𝑚 + 𝑛 − (𝑛 + 1) ⌊
𝑚

2
⌋ + 3𝑖 − 8,1 ≤ 𝑖 ≤ 𝑛 + 1,2 ≤

𝑗 ≤ 𝑚 − 1,  we can get that in the vertex sets {𝑢12, 𝑢13,

⋯ , 𝑢1(𝑚−1)}, {𝑢22, 𝑢23, ⋯ , 𝑢2(𝑚−1)}, ⋯ , {𝑢(𝑛+1)2, 𝑢(𝑛+1)3, ⋯ ,

𝑢(𝑛+1)(𝑚−1)},  the sum of the labels of all elements in each 

set is the same.  𝑆(𝑢𝑖1) = 𝑓(𝑢𝑖1𝑢(𝑖+1)1) + 𝑓(𝑢𝑖1𝑢(𝑖−1)1) +

𝑓(𝑢𝑖1𝑢𝑖2) + 𝑓(𝑣0𝑣𝑖) + 𝑓(𝑢𝑖1) = 10𝑛 − ⌊
𝑛

2
⌋ − 2,2 ≤ 𝑖 ≤

𝑛 − 1, which gives the same sum of labels of all elements in 

the set {𝑢21, 𝑢31, ⋯ , 𝑢(𝑛−1)1}. The rest of the vertices have 

no adjacent vertices of the same degree, so it is not necessary 

to consider the sum of their labels. 

Therefore, AVRTL exists for 𝐹𝑛 ∘  𝑃𝑚(𝑛 ≥ 4, 𝑚 ≥ 4). 

To sum up, Theorem 10 holds. 
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 Fig 12. 𝐹𝑛 ∘  𝑃𝑚 

 

Conjecture 1: If graphs G and H are AVRTL graphs, then 

their corona graphs 𝐺 ∘ 𝐻 or 𝐻 ∘ 𝐺 are also AVRTL graphs. 

V. CONCLUSION 

This paper designs a novel AVRTL algorithm based on the 

ideas of traditional intelligent algorithms to address the 

practical problem that special scenarios exist in sensor 

networks that the Adjacent Vertex Reducible Total Labeling 

model can describe. The algorithm labels the points and 

edges in the graph with the help of preprocessing, adjustment 

and backward functions in a circular, iterative merit-seeking 

manner. By analyzing the results of labeling from the result 

set, the labeling rules of several corona graphs were found, 

and several theorems were summarized to enrich the research 

results of the reducible series. Finally, a conjecture was given 

based on the experimental results and the summarized 

theorems: if graphs G and H are AVRTL graphs, then their 

corona graphs 𝐺 ∘ 𝐻 or 𝐻 ∘ 𝐺 are also AVRTL graphs. 
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