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Data Driven Designing of Convolutional Neural
Networks Architectures for Image Classification
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Abstract—The process of designing Convolutional Neural
Networks (CNN) architecture has been automated using Neural
Architecture Search (NAS) algorithms, however, these algo-
rithms pose a significant computational demand due to the
large search space of possible architectures. This paper proposes
a two-stage algorithm to address the computational resource
demand of NAS by generating architectures directly from the
dataset. In the first stage, the complexity tree is generated
from the dataset based on the complexity of individual images.
The image complexity is determined by color variation and
changes in color intensity. This complexity tree is then utilized
in the second stage for designing the CNN architecture. As
the complexity tree solely necessitates one-time generation for
the dataset, our proposed model does not have significant
computational demands. In the experiment that was performed
utilizing standard benchmark datasets, the generated (CNN)
models attained an accuracy of 97.35% on CIFAR-10 and
72.57% on CIFAR-100 datasets. Our proposed model was
compared with state-of-the-art models and yielded a notable
improvement in accuracy. Furthermore, it outperformed all
other models in terms of computational resource requirement.

Index Terms—CNN Architecture, Image Complexity, Macro
Architecture, NAS

I. INTRODUCTION

RTIFICIAL intelligence models utilizing deep neural

networks have had significant impacts on image clas-
sification, object detection, cancer classification, accident
prediction, and other related areas of interest, as referenced in
several scholarly sources [1], [2], [3], [4], [5] and [6]. These
models have demonstrated considerable performance im-
provements over traditional image classification techniques
[5], largely due to their capacity for automatic feature learn-
ing [7]. Unlike traditional approaches, deep learning models
can learn the features required for classification or regression
tasks during the training phase, without the need for feature
engineering by a human expert. The training process of deep
learning models is entirely automatic and end-to-end, with
only the model architecture and training parameters requiring
manual input from a human expert.

The architecture of a CNN model is defined by a set of
parameters including the size and strides of filters, depth of
layers, types of layers and activation functions, and various
training parameters. These parameters collectively determine
the performance level of the network [8], [9]. While human
experts have traditionally designed CNN architectures, this
process has now been automated using Neural Architecture
Search (NAS) [10]. NAS is a search process for discovering
architectures that perform better among a defined set of
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architectures within a specific search space. Various NAS
methods and methodologies have been utilized to design
CNN architectures, including traditional random and grid
search methods, as well as more recent evolutionary, rein-
forcement learning, and Bayesian optimization approaches.

The conventional approach to NAS entails random search
[11], [12] or grid-based search methods without incurring
any additional overhead computation. While random search
samples values for different parameters of CNN architecture
from a pre-defined range of values, grid search conducts an
exhaustive search that covers the entire search space. How-
ever, these traditional methods may fail to generate the best-
performing architecture, as random search is not exhaustive,
and grid search is inefficient for large search spaces and not
scalable. In recent years, advanced methods for NAS have
emerged. For instance, evolutionary algorithms inspired by
biological evolution generate architectures by evaluating a
large number of candidate architectures [13], [14]. Bayesian
optimization, utilized by [15], builds a probabilistic model
over the search space and uses it to search for architectures.
Reinforcement learning-based NAS, demonstrated by [16],
[17], [18], has yielded significant performance improvements
but comes at a high computational cost. Despite the advanced
architectural achievements of NAS models, NAS methods
still exhibit significant limitations. Notably, traditional NAS
methods tend to produce suboptimal results, while more
sophisticated NAS methods place heavy demands on com-
putational resources. Moreover, all of these NAS methods
necessitate the training and evaluation of a considerable
number of models to generate a high-performing model.

In our proposed model, we address the search space and
architecture search issues in a unique manner. We leverage
the dataset to devise the CNN architecture, which obviates
the need for searching an architecture that delivers optimal
performance on a given dataset. The CNN architectures in
our proposed model are derived from the complexity tree
of the dataset, which is created prior to the design of the
architectures and only requires parsing of the dataset once.
This approach eliminates the need to train and evaluate
a large number of architectures. We further mitigate the
computational resource issue in NAS by utilizing parameter
sharing among the architectures that are formed based on the
complexity tree. Overall, our approach is novel and efficient
in addressing the challenges associated with NAS.

The paper is divided into several distinct sections. Section
II features a comprehensive review of the pertinent literature
on various approaches and techniques employed in NAS.
The proposed model is expounded in detail in Section III. In
Section 1V, the experimental setup and corresponding results
are described, including a comparative analysis with other
contemporary models. Section V is dedicated to presenting
the conclusions.
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II. RELATED WORKS
A. Neural Architecture Search

NAS is defined by a search space and the architecture
search method [10], [19]. The exploration space of NAS is
often vast, requiring considerable computational resources as
noted by previous research [14]. The resource constraint is
addressed by different authors in multiple ways. According
to [20], [12], Monte Carlo analysis provides a viable option
for estimating parameters. However, the random approach
used in architecture search algorithms lacks adaptivity, which
renders it incapable of utilizing previous iterations to inform
subsequent architecture selection. Moreover, the search pro-
cess may select parameter values from suboptimal regions
of the search space, where performance is minimal and
importance is negligible.

The authors in [21] employ grid search in their work
on NAS to ensure reproducible outcomes. Nonetheless, the
implementation of this technique necessitates considerable
computational resources, underscoring the limitations of grid
search in managing large search spaces and underscoring
the urgency for more efficient search methods. Bayesian
optimization is a popular technique for optimizing the search
space of parameters using a probabilistic model. This method
is typically built upon a surrogate model, as proposed by
[22], which is based on a probabilistic framework and is
trained on the actual objective function, which in the case of
architecture search is the architecture itself. To determine the
next set of candidate parameters to evaluate, an acquisition
function is utilized. Since the relationship between the archi-
tecture parameters and performance is not explicitly known,
the surrogate model can be constructed using a variety of
methods, such as a Gaussian process or a Parzen estimator
with Bayes rules [23]. The choice of acquisition function
is also flexible and can vary depending on the problem at
hand. Some examples include a random forest-based decision
tree [24] or an iterative optimization method combined with
gradient descent [25], [26].

In their works,[27], [28] introduce the use of evolutionary
algorithms to define the architecture of NAS. The NAS
architecture is represented as a graph layout consisting of
nodes and edges, where nodes represent layers, and edges
represent connections among these layers. Additionally, the
architecture can be specified in a binary chromosome format,
as suggested by [29] and [30] The single-level architecture
specification has been identified with various issues, which
have been addressed by a multi-level architecture specifica-
tion as proposed by [31] and [32], where individual compo-
nents are encoded at one level, and the complete architecture
is encoded at a higher level [13]. Despite the success of
evolutionary algorithms in generating good architectures, it
is noted that this approach requires significant generations
to arrive at a good architecture, thus imposing a substantial
computational demand.

According to [18], the architecture parameters are repre-
sented as network embeddings produced by a Long Short-
Term Memory (LSTM) layer, which are optimized through
particle swarm optimization [33]. Additionally, the authors
employed a Q-learning-based reinforcement learning ap-
proach [34] for iterative development of the architecture pa-
rameters with greedy exploration. The reinforcement learning

technique can also be employed to develop the architecture
through network transformation, whereby an agent takes the
action of network transformation, or based on policy gradient
search for a subgraph [35].

The resource constraint issue in NAS has also been ad-
dressed by using a constrained exploration space [36], [26],
reducing the dimensions of the search space by limiting
parameter values to specific ranges, or exploring only the
architecture of a cell or block [18] rather than the entire
macro architecture. In a study by the authors in [17], the
resource constraint is addressed by incrementally construct-
ing the components of the architecture layer by layer with
the use of a resource-efficient Recurrent Neural Network
(RNN) controller [36]. This method involves a layer-by-
layer search approach, which is subsequently assembled to
construct the macro architecture. However, there is still a
requirement to explore the layers and module structure.
By employing a layer stacking technique, in conjunction
with the Q-learning [18] strategy and a relaxed continuous
exploration space [26], the resulting architectures exhibit
high efficiency and superior performance. The authors in
[37] employ stochastic implicit gradients to optimize the
architecture search process. The challenge of resource lim-
itations has also been tackled through the development of
a performance estimation approach [38] that reduces the
necessity of training and evaluating multiple architectures
by assigning scores to untrained architectures [16], but still
the requirement of estimating the score requires computation
resource in itself.

B. Image Complexity

In the domain of computer vision, the assessment of image
complexity has attracted significant interest. The methods
for evaluating image complexity have traditionally relied on
subjective human judgment, which may lead to inconsisten-
cies and bias. To address this issue, [39] proposed a method
for objectively measuring image complexity using fuzzy
clustering techniques for edge detection. Another measure
of image complexity was proposed by [40], which is based
on the spatial distribution of color intensity values and par-
titioning regions calculated using a divergence value. Image
complexity has also been defined using multiple factors such
as color variation, texture, and spatial frequency. A weighted
average of the fuzzy sets is then utilized to generate an
overall measure of image complexity [41]. It has also been
noted by authors in [42] and [43] that the complexity of
an image can be determined using the color similarity and
spatial pixel distribution, while [44] takes into consideration
the resolution of the image along with the total number of
colors in the image for defining the image complexity.

The majority of approaches for assessing image complex-
ity have been designed for quantifying general image quality
or complexity. Nevertheless, some recent studies, such as the
one cited in [45], have utilized image complexity as a means
of compressing neural networks and making predictions
regarding the accuracy of a neural network model on an
image dataset. In contrast, the authors of [46] have extended
these methods by leveraging image complexity to inform
decisions regarding network depth selection and assess the
impact of these choices on image segmentation.
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III. PROPOSED MODEL

The proposed model uses a novel approach that utilizes
a two-stage algorithm for developing a CNN architecture
tailored to a specific dataset. The first stage of the algorithm
involves the application of a unique image-splitting method
to each image in the dataset. This method is designed to
generate the complexity tree of an image, which takes into
account its color variation and intensity levels. This allows
for the creation of a structured representation of the image’s
complexity. These complexity trees are then used to construct
the complexity tree for the entire dataset. In the second stage
of the algorithm, the complexity tree of the dataset is utilized
to establish the CNN architecture for this particular dataset.
The architecture is designed to leverage the information
contained in the complexity tree to optimize its performance
in handling the specific characteristics of the dataset. By
tailoring the CNN architecture to the dataset, it is expected
to achieve better performance in terms of accuracy and
efficiency.

A. Stage One: Complexity Tree

In this stage, an image-splitting method is applied to each
image in the dataset, which recursively divides the images
into two images at multiple depth levels based on the color
and intensity variations present in the image. The dataset’s
complexity tree is constructed by averaging the complexity
trees of all the training images, which depicts the data
complexity in the dataset in the form of a tree structure.
This splitting method is inspired by the functioning of CNN,
where the filter applied to the input image or feature maps
generates an output feature map that highlights features in the
image. As the filter weights are learned during the training
process, it convolutes or highlights several inherent aspects
of the image. The feature map generated by a filter has the
activated region of images that the filter has learned while
training. In a similar manner, the splitting method assesses
the complexity of an image by recursively splitting it at
various depth levels.

The split process initiates from the input image, which
splits into two images of the same size as that of the original
input image, with one image having color intensity values
below a specific threshold value and the other having inten-
sity values above the same threshold value. The threshold
is computed from the largest variation within the image’s
intensity values. The two resultant images are passed to a
lower depth level, where the same splitting process continues
further. The output is a binary tree structure containing the
same image with different informational content at different
depth levels. The split process terminates for an image in
a branch when the image’s intensity variation reduces to
such a low level that further splitting is not possible. These
variations within the image indicate different parts or objects
in an image, similar to how human perception perceives
objects and parts of an image based on the changes in
color intensity. The splitting process assumes that significant
variations in the image represent different parts or objects in
the image.

1) Complexity of an Image: Algorithm 1 and Algorithm
2 presented below delineate the split method employed for
generating the complexity tree for an image. This split

method is uniformly applied to all images in the training
set of the dataset, yielding a complexity tree for each image.
The split algorithm for one of the images is illustrated in
Fig. 1

Algorithm 1 Algorithm for generating the complexity tree
of an image

Require: image
Ensure: tree

1: Make empty binary tree
2: Insert ¢mage in tree

3: SPLITFUNCTION(tree,tree.root)

> Input Image
> Complexity tree of Image

Algorithm 2 Split Function

1: procedure SPLITFUNCTION(tree,node)

2 if node.hasNonZeros > 8 then

3 r,9,b = node.get RGB

4: SORT(r, g, b)

5: dif f = subtract adjacent value in r, g, b
6 thres = MAX(dif f)

7 nodeLeft =r,9,b < thres

8 nodeRight = r,9,b > thres

9: tree.le ftChild < nodeLeft

10: tree.rightChild < nodeRight

11: SPLITFUNCTION(tree,tree.le ftChild)
12: SPLITFUNCTION(tree,tree.rightChild)
13: end if

14: end procedure

2) Complexity of dataset: The complexity tree of a
specific dataset is formed through the aggregation of the
complexity trees of individual images present in the training
dataset, as outlined in Algorithm 3. This is accomplished
by computing a weighted average of all feasible branches
resulting from the splitting method. The weight assigned to
each branch is determined by the number of branches having
a particular depth. To ensure comprehensive coverage, all
possible branches within the complexity trees are considered
when computing the average. Notably, the calculation ac-
counts for the possibility of sub-branches of varying lengths
within each branch, thereby taking the average of each
produced branch and its sub-branches within the dataset. The
resulting complexity trees of the datasets used in this paper
are presented in Fig. 2

B. Stage Two: Designing the CNN architecture

The architecture design of the CNN model is based on
the complexity tree of the dataset, which is a binary tree
structure, that is developed in stage one. The binary tree is
utilized in defining the architecture model for the CNN. The
macro architecture of CNN reflects the branches and nodes of
the complexity tree, where the nodes correspond to the split
images at different levels of depth in the tree as shown in Fig.
3 for the CIFAR-10 dataset. Specifically, the complexity tree
nodes represent the image segments of various depths, while
the architecture nodes denote the computation nodes utilized
for learning image features during training. The computation
nodes in the architecture represent the features of the images
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(d) Blue Channel Split Process

Fig. 1: Split Process on an Image

Algorithm 3 Algorithm for generating complexity tree of
dataset

Require: treeList > Complexity trees of all images
Ensure: tree > Complexity tree of Dataset
1: for all branch in treeList do
branchW = branch.Depth * branch.Count
branchC = branchC + branch.Count
end for
avgDepth = branchW [ branchC
for all branch in treeList do
if branch.Depth == avgDepth then
branchF < branch
end if
end for
tree < MakeTree(branchF’)

D A A

—_— —
—_ O

(b) CIFAR-100 Complexity Tree
Fig. 2: The Complexity Trees of the Datasets

during the training phase. Consequently, we have obtained a
single CNN architecture with multiple branches, in which
the nodes share a parent node, leading to a smaller number
of parameters and faster training. The complexity tree nodes
are transformed into computation nodes, and the branches
are used for the connection between them, resulting in the
formation of different branches in the CNN. The output of all
the leaf nodes is combined to create a single node that serves
as input to the Output layer. For actual computation nodes,
we have primarily used the convolution layer, the Inception
layer as introduced by [1], and Resnet block as introduced
by [2]. During training and evaluation, three distinct CNN
models were utilized for each dataset, denoted as TreeNAS-
Conv, TreeNAS-Inception, and TreeNAS-Resnet, each of
which incorporated the convolution layer, Inception layer,
and Resnet block as computation nodes respectively.
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(a) CIFAR-10 Complexity Tree

Image /" Layer Type

Image

Computation

Concatenation

| | Output Layer
A =/

Concatenation

!

Output Layer

(b) CNN Architecture for CIFAR-10

Fig. 3: CIFAR-10 Architecture designed from the Complexity Tree

IV. EXPERIMENT AND RESULTS
A. Datasets

1) CIFAR-10: The CIFAR-10 dataset is a prevailing
benchmark dataset to assess the performance of various
NAS techniques. The dataset includes 60,000 images that are
divided into ten distinct classes, namely airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. Furthermore,
the dataset has been split into a standard train and test set,
with 50,000 and 10,000 images, respectively. This standard-
ized partitioning enables consistent performance evaluation
among different architectural formation approaches. Each
image in the dataset is composed of 32x32 pixels with three
Red Green Blue (RGB) color values.

2) CIFAR-100: The CIFAR-100 dataset is a benchmark
dataset for image classification tasks. This dataset contains
100 classes of images, with each class consisting of 600
images. The total number of images in the dataset is 60,000.
Each image in the CIFAR-100 dataset is of size 32x32 pixels
with three color channels, i.e., Red, Green, and Blue (RGB).
The dataset has been divided into training and test sets,
with 50,000 and 10,000 images, respectively. The CIFAR-
100 dataset is commonly used in research for evaluating the
performance of image classification models due to its diverse
and challenging set of classes.

B. Training of Models

The study employs three different computation nodes,
which are the convolutional layer, the Inception layer [1], and
Resnet Block [2]. As such, three CNN models are trained for
each dataset, namely TreeNAS-Conv, TreeNAS-Inception,
and TreeNAS-Resnet. Although the macro architecture of
these models is identical, they differ at the computation
node level. Specifically, the TreeNAS-Conv model uses a
convolution layer with a 3x3 kernel size, followed by batch
normalization and relu activation as computation nodes. The
TreeNAS-Inception model utilizes the Inception layer, while
the TreeNAS-Resnet model adopts the Resnet Block. The

investigation reveals that the TreeNAS-Resnet model pro-
duces the best outcomes. Therefore, the Resnet Block used
in this model is depicted in Fig. 4. All CNN architectures
trained have a Maxpooling layer after the second depth,
with a pooling size of 2x2. The output of the leaf nodes is
concatenated, followed by a Global Average pooling layer, a
Dense layer with 512 neurons, and, finally, an output layer
based on the number of classes in the dataset.

Each of these models underwent training and testing on
the Google Colab platform, a cloud-based Jupyter notebook
environment equipped with GPU support. The models under-
went 300 epochs of training, utilizing the Adam optimizer
and implementing an early stop strategy with patience of 30
epochs.

C. Results

In this study, we conducted experiments to evaluate the
performance of three different models, namely TreeNAS-
conv, TreeNAS-inception, and TreeNAS-Rsenet, on two stan-
dard image datasets, CIFAR-10 and more complex CIFAR-
100. We summarize the results of our experiments in Table
I, which includes information on the number of parameters
learned, the duration of the training, and the accuracy of
each model. Our findings indicate that TreeNAS-Resnet
outperformed the other two architectures in all three pa-
rameters. Consequently, we selected TreeNAS-Resnet for
further analysis in this study. Moreover, we conducted a
comparative analysis of our model (TreeNAS-Resnet) against
six other state-of-the-art models for Neural Architecture
Search (NAS). We compared the models based on the
metrics of classification accuracy and training time, which
are commonly used in evaluating competing methods. We
report the results of our analysis in Table II for CIFAR-10
and Table III for CIFAR-100. Our findings indicate that our
model consistently outperformed the other models on both
datasets.

Results from the experiment indicate that the TreeNAS-
Resnet model outperforms existing models on both bench-
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Input
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Convolution 1x1

Batch Normalization

Convolution 3x3 Convolution 1x1

Batch Normalization Batch Normalization

| RelLU | | RelLU

v

Convolution 1x1

Batch Normalization

Output

Fig. 4: Resnet Block used in this paper

mark datasets. Moreover, the two-stage algorithm yields
significant computational savings, as it does not require
extensive training of numerous architectures. The TreeNAS-
Resnet model generates a tree structure with branches of spe-
cific depth, which leads to better results. Notably, the Resnet
block utilized in this study capitalizes on skip connections,
and the different branches of the architecture serve as macro
skip connections that enhance performance. The experiment
further demonstrates that considering the complexity measure
of the dataset images to define the depth and structure of the
CNN model is a valid approach. In addition, the accuracy
metrics obtained during the training and validation stages of
the TreeNAS-Resnet model, applied to both the CIFAR-10
and CIFAR-100 datasets, are illustrated in Fig. 5. This figure
provides a visual representation of the accuracy metrics and
helps to better understand the performance of the TreeNAS-
Resnet Model on both datasets.

V. CONCLUSION

In this study, we introduced a two-stage algorithmic ap-
proach to address the challenge of designing a Convolu-
tional Neural Network (CNN) model architecture. Our novel

TABLE I
OVERVIEW OF TRAINED MODELS

Dataset Model Params  Accuracy  Training Time
™M) (%) GPU Days
TreeNAS-Conv 1.55 93.87 0.16
CIFAR-10  TreeNAS-Inception 6.7 88.90 0.25
TreeNAS-Resnet 59 97.35 0.25
TreeNAS-Conv 1.6 65.45 0.16
CIFAR-100  TreeNAS-Inception 6.9 62.37 0.25
TreeNAS-Resnet 6.1 72.57 0.25
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(b) CIFAR-100 TreeNAS-Resnet Performance Plot
Fig. 5: TreeNAS-Resnet Model Accuracy and Loss Plot

technique avoids the need for training a plethora of CNN
models to identify an optimal architecture. Instead, we have
proposed a unique method for evaluating the complexity of
an image, which is not only highly efficient but also low
on computational resources. Specifically, the complexity of
an image is determined by the complexity tree generated
by the application of a split method on the image. The
dataset complexity tree is then derived by averaging the
complexity trees of all the training images in the dataset.
This tree is subsequently employed to design the macro
CNN architecture, thereby limiting the search for optimal
architectures to a small number of potential designs derived
from the dataset’s complexity tree. To test the efficacy of our
approach, experiments were conducted on two standard im-
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TABLE II
COMPARISON WITH STATE OF ART NAS MODELS ON
CIFAR-10

Model Accuracy  Training Time
(%) GPU Days
Chu [38] 90.07 5
Lopes [16] 92.63
Zhang [37] 93.76 2
Sun [13] 95.22 35
Barret Zoph [17] 95.53 10
Zhau Zhong [18] 96.46 90
TreeNAS-Resnet 97.35 0.25
TABLE III
COMPARISON WITH STATE OF ART NAS MODELS ON
CIFAR-100
Model Accuracy  Training Time
(%) GPU Days
Lopes [16] 70.10 4
Chu [38] 71.00 5
Zhang [37] 71.11
TreeNAS-Resnet 72.57 0.25

age classification datasets, CIFAR-10 and CIFAR-100. The
results of our investigations demonstrate that the complexity
tree of the dataset can indeed be leveraged to generate the
CNN architecture. The performance of our proposed model
in terms of accuracy achieved and computation resource
requirements surpassed that of the state-of-the-art models.
In conclusion, our two-stage algorithm offers a promising
avenue for addressing the challenge of CNN model architec-
ture design, particularly in terms of computational efficiency
and accuracy.
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