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Abstract—This article presents inductive constructions for
leaved dipole rose graphs that are embedded in the sphere,
cylinder and torus. Specifically, for each of these three classes
of surface graphs, we give a topological inductive construction
which consists of a set of topological operations and a set of
minimal graphs.

Index Terms—sparse graph, tight graph, inductive operation,
minimal graph.

I. INTRODUCTION AND PRELIMINARIES

Consider a class of graphs, G. One way to study and
investigate specific properties of G is to examine an inductive
construction for G. An inductive construction of G is a
combination of two components; a set of inductive operations
and a set of small graphs in G, which we call them here
minimal. It is possible to construct each graph in G by
conducting a sequence of some operations of the selected
set of inductive operations on some minimal graphs of G.

Selecting the minimal graphs depends on the set of in-
ductive operations. Generally, a graph is minimal if it is not
possible to perform the inverse of any inductive operation
so that the result graph still remain in the same class. In
the current article, we construct inductive constructions for
leaved dipole rose graphs that are embedded in some surfaces
of low genus.

The main purpose of initiating Inductive constructions is
to build various types of graphs. For example, in [1] and
[2], independent inductive constructions were presented for
an interested class of graphs called Laman graphs. Other
inductive constructions for specific kinds of sparse graphs
can be found in [3]. Many other inductive constructions not
concern with sparse can be found in the literature, [4] and
[5].

For classes of graphs that are embedded in surfaces,
various topological inductive constructions were initiated.
Typical examples of such constructions have been created
for triangulating surfaces. The key point in generating trian-
gulations on a surface is to present a set of minimal triangu-
lations. The natural inductive operation in that sequel is the
vertex splitting and its inverse edge contraction. Usually, such
triangulations are called minimal. Many studies have been
carried on to find such minimal triangulations on various
surfaces such as these in [6], [7] and [8]. A related problem
is to investigate the existing of finite number of triangulations
on surfaces was carried in [9]. There are many other studies
which presented various inductive constructions on different
kinds of graphs embedded in various surfaces. Interested
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readers are referred to the following examples of studies;
[10], [11] and [12].

The remainder of this section is devoted to presenting
some basic concepts that we use in this article. A graph
is a pair Γ = (VΓ, EΓ) where VΓ and EΓ is the vertex and
edge sets of Γ, respectively.

An n-leaved dipole rose graph, Ln, is a multigraph with
n+1 vertices and 2n edges with a vertex of degree 2n, called
core vertex. This graph can be constructed from a star Sn

by replacing each edge in Sn by a 2-cycle. Figure 1 presents
some examples of such graphs where Figure 1(a), (b), (c) and
(d) is a 2, 3, 4 and 6-leaved dipole rose graph, respectively.
For convenient, L0 stands for a leaved dipole rose graph with
a single vertex. The main goal of this article is to construct
some classes of leaved dipole rose graphs that are embedded
in some surfaces of low genus.

(a) (b)

(c) (d)

Fig. 1. Some kinds of leaved rose graphs.

Given an oriented surface S of a specific genus, a surface
graph is an embedding of an abstract graph in the surface
without edge crossings. An embedding of a graph Γ in S is
a continuous 1-1 function from a topological representation
of the graph Γ into S, see [13], [14] and [15]. We use the
notation ΓS to indicate that this graph is a surface graph
where Γ is embedded in a surface S. A face of ΓS is a
connected component of the complement of the embedding
of Γ, in the surface S. Let ri be the number of faces with
i edges in the boundary. A face in ΓS is cellular if it is
homeomorphic to an open disc. ΓS is cellular if all of its
faces are cellular. Let FΓS denotes the set of all faces of
the cellular surface graph ΓS . Let F be a face of a surface
subgraph H of ΓS . We define intΓS (F ) to be the surface
subgraph of ΓS corresponding to the vertices and edges
of Γ whose images lie in the topological closure of F .
Similarly, we define extΓS (F ) to be the surface subgraph
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of ΓS corresponding to those vertices and edges of Γ whose
images lie in S − F . The boundary of F can be defined
as ∂F = intΓS (F ) ∩ extΓS (F ). Figure 2 shows a surface
graph ΓS which has a surface subgraph that is bold. The
surface subgraph has a hexagon face F . The surface subgraph
intΓS (F ) is the dark gray shaded area together with its
boundary, ∂F . The surface subgraph in the light gray shaded
area together with ∂F is extΓS (F ).

ΓS

F

ntΓS (F )extΓS (F )

∂F

Fig. 2. A surface graph with two special subgraphs.

A loop α is nonseparating in S if the complement of the
image of α has the same number of components as S. Let
α be a nonseparating loop in S. Suppose that S has genus
g and α is a nonseparating loop in S and α is contained
within some face F of ΓS . By cutting S along α and filling
in the two resulting boundary curves with open discs, a new
surface graph Γ̃S is obtained. The new resulting surface is of
genus g− 1. A loop α in a surface S is called essential if it
is not null homotopic and otherwise α is called inessential,
[16]. A separating and nonseparating, respectively, cycle c in
a surface graph ΓS is a simple closed walk whose associated
simple loop is separating and nonseparating, respectively, in
S.

The main purpose of this work is to build some classes of
surface graphs. Specifically, we are interested in building LS ,
LC and LT where S, C and T stands for the sphere, cylinder
and torus, receptively. To achieve this purpose, we use
inductive constructions to build the interest classes of surface
graphs. Hence, we need to specify the topological inductive
operations for each of such classes. In the following, we
define such operations in some details. Let e be an edge
in Γ, then Γ/e represents a graph that is obtained from Γ
by contracting an edge e and identifying its end-vertices.
Let Γ − e represents a graph that is obtained from Γ by
deleting an edge e. The inductive operations that we use to
construct the three classes of surface graphs are topological
operations. We mainly use two topological inductive oper-
ations, namely digon and quadrilateral splitting. However,
we also deal with their inverses, i.e. contraction operations,
to recognise the desired minimal surface graphs. We briefly
describe the two contraction operations. Consider ΓS and let
D be a digon in ΓS with boundary walk vi, ei, vj , fj , vi.
Let ΓSD = ΓS/ei − fi. We say that ΓSD is the surface
graph that is obtained from ΓS by a digon contraction,
Figure 3(a). Now, let Q be a degenerate quadrilateral face
in ΓS with boundary walk vi, ei, vk, ej , vj , fj , vh, gj , vi. Let
ΓSQ = ΓS/(vi ∼ vj) − {ej , fj} . We say that ΓSQ is the
surface graph that is obtained from ΓS by a quadrilateral
contraction, Figure 3(b).

Proposition 1.1: There is no face of odd degree in LS .
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Fig. 3. Two contraction operations.

Proof: It is clear that Ln is bipartite. Therefore, it has
no odd cycles. Hence, any embedding of Ln has not odd
faces.

Leaved dipole rose graphs possess specific counting on their
edges. Specifically, such graphs are a special kind of sparse
and tight graphs. Let |VΓ| and |EΓ| be the cardinality of
the vertex and edge set of Γ, respectively. Let l and k be
non-negative integers, with l ≤ k. A graph Γ = (V,E) is
called (k, l)- sparse if, for every nonempty subgraph Ω of Γ,
|EΩ| ≤ k|VΩ| − l. Γ is called (k, l)-tight if it is (k, l)-sparse
and |E| = k|V | − l, [17]. Sparse and tight graphs have been
the subject of much research and investigations. They have
been used in many topics for their counting properties. In
graph decomposition, for instance, Nash-William and Tutte
[18], [19] stated and proved the well-known tree packing
theorem, which states that a graph Γ is the union of k edge-
disjoint trees if and only if Γ is (k, k)-tight. An outcome of
the tree packing theorem is that a graph Γ has k pairwise
edge-disjoint spanning trees if and only if Γ is (k, k)-tight
graph, [20].

The Henneberg type 1 operation is the addition of a vertex
of a degree two to a graph. On the other hand, the inverse
Henneberg type 1 operation represents deleting a vertex of
degree two from a graph, [3]. Figure 4(a) and (b) shows the
performing Hanneberg type 1 operation and its inverse on
a simple and muligraph, respectively. Shortly, we will see
that Ln is (2, 2)-tight. Thus, it has 2 pairwise edge-disjoint
spanning trees which each one of them is an Sn (star graph).

Proposition 1.2: For n ≥ 2, Ln can be constructed from
a single vertex by n Henneberg operations of type 1.

Proof: Choose a vertex of degree 2 in Ln. Remove this
vertex and its two adjacent edges. The resulting graph is
Ln−1. Therefore, Ln is obtained from Ln−1 by a Henneberg
of type 1 operation. Continuing performing this operation on
the graph until no vertex of degree two exist.

Lemma 1.3: Henneberg type 1 operation preserves (2, 2)-
tightness.

Proof: Let Γ = (V,E) be a (2, 2)-tight and Γ′ =
(V ′, E′) be a graph that is obtained from Γ by performing
a Henneberg type 1 operation. Notice that 2|V ′| − |E′| =
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Henneberg type 1

Inverse
Henneberg type 1

Henneberg type 1

Inverse
Henneberg type 1

(a)

(b)

Fig. 4. Henneberg type 1 operations and their inverse.

2(|V | + 1) − (|E| − 2) = 2|V | − |E| = 2. Now, let Ω be
a non-empty subgraph of Γ′. Let v be the vertex that was
added by performing the Henneberg type 1 operation. Hence,

2 ≤ 2|(VΩ\{v}) ∪ {v}| − |(EΩ\{e1, e2}) ∪ {e1, e2}| =
2|VΩ\{v})| − |(EΩ\{e1, e2}|

Lemma 1.4: Ln is (2, 2)-tight.
Proof: This follows from Proposition 1.2 and Lemma

1.3.

II. LEAVED DIPOLE ROSE SPHERICAL AND
CYLINDRICAL GRAPHS

In [21], plane leaved dipole rose graphs were mentioned as
self-dual graphs. If a leaved dipole rose graph is embedded in
the sphere in such a way that no embedded parallel edges are
contained within a digon, then we call such a graph healthy.

Lemma 2.1: If LS
n is healthy, then there are exactly n

digons and one 2n-gonal face.
Proof: By Euler’s formula, we have |VLS

n
| − |ELS

n
| +

|FLS
n
| = 2. But LS

n is (2, 2)-tight, so −|ELS
n
|+ 2|FLS

n
| = 2.

But |ELS
n
| = 2n, thus |FLS

n
| = n + 1. Since LS

n is healthy,
it follows that r2 = n and r2n = 1.

Lemma 2.2: For n ≥ 2, LS
n has at least two digons.

Proof: By Euler’s formula, we have |VLS
n
| − |ELS

n
| +

|FLS
n
| = 2. Since LS

n is (2, 2)-tight, so 2−|ELS
n
|+2|FLS

n
| =

4. But 2|ELS | =
∑

i≥0 iri, thus we get −
∑

i≥0 iri +
4
∑

i≥0 ri = 4 . Rearranging the last equation leads to∑
i≥0(i − 4)ri = −4. Expanding the last equation results

in −4r0− 3r1− 2r2− 3r3 + r5 + 2r6 + · · · = −4. It is clear
that r0 = r1 = 0. By Proposition 1.1, we have r1 = r3 =
r5 = r7 = · · · = 0. Thus, 2r2 = 4 + 2r6 + 4r8 + . . . . Hence,
r2 = 2 + 2r6 + 4r8 + . . . . Consequently, r2 ≥ 2.

Theorem 2.3: Every n-leaved dipole rose spherical graph
(LS

n) can be reduced to a vertex by n digon contractions
towards the core vertex.

Proof: By Lemma 2.2, LS
n has at least two digons. Pick

one of such digons and then contract it. Keep contracting
digons until the graph LS

n be reduced into LS
1 . The latter

graph has only two digons. By contracting one of these
digons the resulting graph is LS

0 which is just a single vertex.

A leaved dipole rose cylindrical graph is minimal if it does
not contain a digon or a degenerate quadrilateral.

Theorem 2.4: If LC is a minimal, then LC is isomorphic
to one of the cylindrical graphs shown in Figure 5

Proof: We see at once that LC , as a cylindrical graph,
either separates the cylinder or does not. We suppose first
that LC does not separate the cylinder. It follows that there
is a unique face in LC which is not cellular. By filling the
two boundaries of the cylinder with two open discs, a cellular
leaved dipole rose spherical graph LS is created. Hence, LS

is either a single vertex or it has at least two digons. If LS

has at least two digons then one of these digons must be also
a digonal face in LC which contradicts the minimality of LC .
Now, suppose that LC separates the cylinder. Clearly, LC has
exactly two noncellular faces. By filling the two noncellular
faces with two open discs, a leaved dipole rose spherical
graph LS is created. By Lemma 2.2, there are exactly two
digonal faces and these faces are the exceptional faces that
are created by the filling process. Therefore, there is no
cellular face in LS other than two digons. In fact, if there
are, then all the other faces are quadrilateral which they are
also faces of LC which contradicts the minimality of LC .
Therefore, LC in this case comprises a pair of parallel edges
embedded as a nonseparating cycle in the cylinder, Figure
5(b).

(a) (b)

Fig. 5. Leaved dipole rose cylinderical graphs

Theorem 2.5: Every leaved dipole rose cylindrical graph
can be contracted into one of the graphs in Figure 5 (a) and
(b) by a sequence of digon and quadrilateral contractions.

III. LEAVED DIPOLE ROSE TORUS GRAPHS

A leaved dipole rose torus graph is minimal if it does
not contain a digonal or a degenerate quadrilateral face. In
the following, we give an inductive construction for leaved
dipole rose graphs embedded in the torus.

Theorem 3.1: [12] Let G be a (k, l)-tight surface graph
and l ≤ k and H be a surface subgraph of G. Let F be a
face in H . Then,

k|VH∪intG(F )| − |EH∪intG(F )| ≤ k|VH | − |EH |

The following lemma indicates how specific cycles in the
torus can be embedded.

Lemma 3.2: Let H be a torus subgraph of a leaved dipole
rose torus graph LT . If H is a separating cycle of length 2
in the torus, then ˜extLT (F ) is (2, 2)-tight where F is a face
of H homeomorphic to a punctured torus.

Proof: First of all, we notice that 2|VextLT (F )| −
|EextLT (F )| = 2|V ˜extLT (F )

| − |E ˜extBIT (F )
|. Now,

2 = 2|VLT | − |ELT | = 2|VintLT (F )∪extLT (F )| −
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|EintLT (F )∪extLT (F )|
= 2|VintLT (F )| − |EintLT (F )|+ 2|VextT (F )| − |EextLT (F )| −
2|V∂F |+ |E∂F |
= 2|VintLT (F )|−|EintLT (F )|+2|VextLT (F )|−|EextLT (F )|−2

So

2|VintLT (F )|−|EintLT (F )|+2|VextLT (F )|−|EextLT (F )| = 4
(1)

By Theorem 3.1, 2|VH∪intLT (F )| − |EH∪intLT (F )| =
2|VH | − |EH |+ 2|VintLT (F )| − |EintLT (F )|
− 2|VH∩intLT (F )|+ |EH∩intLT (F )|
= 2|VH | − |EH |+ 2|VintLT (F )| − |EintLT (F )| − 2
≤ 2|VH | − |EH |

Hence
2|VintLT (F )| − |EintLT (F )| ≤ 2 (2)

Now, by the sparsity of LT we have

2|VintLT (F )| − |EintLT (F )| ≥ 2 (3)

Combining 1 with 2 gives

2|VintLT (F )| − |EintLT (F )| = 2 (4)

Substitute 4 in 1 to get 2|VextLT (F )| − |EextLT (F )| =

2|V ˜extLT (F )
| − |E ˜extLT (F )

| = 2. Now, the sparsity of LT

shows that ˜extLT (F ) is (2, 2)-tight.
Proposition 3.3: Suppose that LT is minimal. Then any

2-cycle in L has to be embedded as a nonseparating cycle
in LT .

Proof: On the contrary, suppose that W is a 2-cycle in
L which forms a separating cycle H in the torus, where H
is the embedding of W in T . Now, consider the spherical
graph ˜extLT (F ). By Lemma 3.2, ˜extLT (F ) is (2, 2)-tight.
By Lemma 2.2, we have at least one digon in ˜extLT (F ) that
is also a face in LT which contradicts the minimality of LT .

Theorem 3.4: If LT is minimal and noncellular, then it is
isomorphic to one of the torus graphs in Figure 6(a) and (b).

Proof: Since the surface here is the torus and LT is
connected, then LT has exactly one face that is not cellular.
So LT might be LT

0 , Figure 6(a). Now, suppose that LT is
not LT

0 . If the noncellular face is a punctured torus then LT

without the punctured face can be considered as a leaved
dipole rose spherical graph. By Lemma 2.2, such a graph
has two digons and so LT has a digon which contradicts the
minimality of LT . Therefore, the noncellular face of LT is
an open cylinder. Let α be a loop in the noncellular face,
such that α is nonseparating in the torus. If we cut and cap
along α, then we obtain LS . The resulting LS has two faces
that are not faces of LT . By Lemma 2.2 these two faces must
be digons. By applying Lemma 2.2 again, we get that any
other faces must be quadrilaterals and these faces are also
faces in LT contradicting the minimality of LT . Therefore,
LT in this case comprises a pair of parallel edges embedded
as nonseparating cycle in T , Figure 6(b).

Lemma 3.5: Let LT be a minimal and cellular. Then, LT

is either a torus graph with only two faces and those faces
are hexagons or a torus graph with only one face and that
face is an octagon.

Proof: By Euler’s formula, we have |VLT | − |ELT | +
|FLT | = 0. Also, we have −|ELS | + 2|FLS | = 0. Since
2|ELT | =

∑
i≥0 iri, the latter equation can be written as

(a) (b)

Fig. 6. Leaved dipole rose torus graphs.

−
∑

i≥0 iri + 4
∑

i≥0 ri = 4. Rearranging the last equation
leads to

∑
i≥0(i − 4)ri = 4. Expanding the last equation

results in −4r0−3r1−2r2−r3 +r5 +2r6 + · · · = 4. But LT

is minimal. So, by Proposition 1.1 we get that 2r6 +4r8 = 4.
Thus, (r6, r8) ∈ {(2, 0), (0, 1)}.

Theorem 3.6: If LT is minimal, then it has at most four
vertices.

Proof: If LT is noncellular, then by Theorem 3.4 we
get 1 ≤ |VLT | ≤ 2. Now, suppose LT is cellular. By the
proof of Lemma 3.5, we get 2r6 + 4r8 = 4. But 2|ELT | =∑

i≥0 iri = 6r6 + 8r8. Hence, 2|ELT | ≤ 3(2r6 + 4r8) =

3(4) = 12. Therefore, |ELT | ≤ 6. But LT is (2, 2)-tight. So,
|VLT | = |ELT |+2

2 ≤ 4.

To complete the inductive construction of leaved dipole
rose graphs that are embedded in the torus, we need to find
minimal graphs with three and four vertices. We show in
the following that there are only two minimal graphs; one of
them with three vertices and the other with four vertices.

Proposition 3.7: If LT is minimal with three vertices, then
it is isomorphic to the torus graph in Figure 7(b).

Proof: By Proposition 3.3, each of the 2-cycles of L2

should be embedded as a nonseparating cycle. There are
only two ways to embed the two 2-cycles as nonseparating
cycles; Either they are homotopic to each other or they are
not. The former embedding leads to a non-minimal LT as it
is possible to perform quadrilateral contraction. Figure 7(a)
shows how the two 2-cycles of 2-leaved dipole rose graph
are embedded homotopically to each other. It is clear that the
quadrilateral face is contractible. This means that this torus
graph is not minimal. Figure 7(b) shows how the two 2-cycles
are embedded in such a way that they are not homotopically
to each other. The latter embedding yields a minimal LT .

(a) (b)

Fig. 7. Two nonhomotopic dipole rose torus graphs.

For the purpose of finding cellular minimal leaved dipole
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rose torus graphs with four vertices, we use a useful method
of drawing the faces of leaved dipole rose torus with three
vertices. This method was proposed in [22]. Figure 8(b)
shows a polygon representation of the minimal torus graph in
Figure 8(a). We briefly describe the polygon representation
method. Let F1, F2, . . . , Fn be the faces of an LT . Each
face Fi is a plane polygon with boundary vertices and edges
are labelled by vertices and edges of LT . Therefore, we can
represent LT by drawing a labelled collection of polygons.
We call such a drawing polygon representation. We use this
drawing in the proof of Proposition 3.8.

(a)

v3v1

v2

v1

v1

v2 v1

v3

v1
v2

v3

(b)

Fig. 8. A leaved dipole rose torus graph with its polygon representation.

Proposition 3.8: If LT is minimal with four vertices, then
it is isomorphic to the torus graph in Figure 9(c).

Proof: We consider LT with three vertices. Proposition
3.7 asserts that there is only one embedding of a 2-leaved
dipole rose graph up to isomorphism. In Figure 8(b), the
polygon representation can ease the procedure of embedding
the fourth vertex of a 3-leaved dipole rose graph in the torus.
Assume the fourth vertex is v4. Now, to embed this vertex
with two incident edges, we can easily realise that there are
only two ways to do such an embedding as it is depicted
in Figure 9(a) and (b). Therefore, it is clear both of the
depicted polygon representations are equivalent to each other.
Consequently, the corresponding torus graph of the 3-leaved
dipole rose graph is the graph that is isomorphic to the graph
in Figure 9(c).
Now, by combining the previous results, we obtain the
following theorem.

Theorem 3.9: Every cellular leave dipole rose torus graph
can be constructed from one of the torus graphs in Figure
8(a) and Figure 9(c) by a sequence of digon or quadrilateral
splitting operations.

IV. CONCLUSION

This work establishes inductive constructions for leaved
dipole graphs that are embedded in the sphere, cylinder and
torus. For each of these classes of surface graphs, we present
an inductive construction which consists of a set of minimal
surface graphs and a set of topological inductive operations.
For each of such classes of surface graphs, we determined
and stated the set of minimal surface graphs.

REFERENCES

[1] G. Laman, ”On graphs and rigidity of plane skeletal structures”, J.
Engrg. Math., 4:331340, 1970.

(a)

v3

v2

v1

v1

v2 v1

v3

v4

v1

v3

v2

v1

v1

v2 v1

v3

v4

v1

(b)

(c)

v1

v2

v3

v4

Fig. 9. Two equivalent polygon representations of a torus graph.

[2] L. Henneberg, ”Die graphische statik der starren system”e, Leipzig,
1911.

[3] A. Nixon, J. C. Owen, S. C. Power, ”Rigidity of frameworks supported
on surfaces”, SIAM J. Discrete Math. 26 (4) 17331757, 2012.

[4] E. Androulaki, S. Lambropoulou, I. Economou, J. H. Przytycki,
”Inductive construction of 2-connected graphs for calculating the virial
coefficients”, J. Phys. A: Math. Theor. 43, 2010.

[5] W. Jing-yu , Siqinbate, ”Some results of the compact graphs”, IAENG
International Journal of Applied Mathematics, Vol. 49 Issue 4, 588-
594, 2019.

[6] S. A. Lavrenchenko, ”Irreducible triangulations of a torus”, Ukrain.
Geom. Sb.; (30):52-62, ii,1987.

[7] D. Barnette, ”Generating the triangulations of the projective plane”, J.
Combin. Theory Ser. B; 33(3):222-230, 1982.

[8] T. Sulanke, ”Note on the irreducible triangulations of the Klein bottle”,
J. Combin. Theory Ser. B,; 96(6):964-972, 2006.

[9] D. W. Barnette, A. Edelson, ”All orientable 2-manifolds have finitely
many minimal triangulations”, Israel J. Math, 62(1):90-98,1988.

[10] Z. Fekete, T. Jordn,W. Whiteley, ”An inductive construction for plane
Laman graphs via vertex splitting”, in: AlgorithmsESA 2004, Vol.
3221 of Lecture Notes in Comput. Sci., Springer, Berlin, pp. 299310,
2004.

[11] J. Cruickshank, D. Kitson, S. C. Power, ”The generic rigidity of
triangulated spheres with blocks and holes”, J. Combin. Theory Ser.
B 122, 550577, 2017.

[12] J. Cruickshank, D. Kitson, S. Power, Q. Shakir, ”Topological inductive
constructions for tight surface graphs”, Graphs and Combinatorics,
Graphs and Combinatorics 38, 169 , 1-31, 2022.

[13] B. Mohar, C. Thomassen , ”Graphs on surfaces”, Johns Hopkins
studies in the mathematical sciences. Johns Hopkins University Press,
Baltimore, MD, 2001.

[14] D. Archdeacon, ”Topological graph theory: a survey”, volume 115,
pages 5-54. 1996. Surveys in graph theory (San Francisco, CA) 1995.
www.math.u-szeged.hu

[15] L.W. Beineke, R. J. Wilson, ”Topics in topological graph theory”,
volume 128 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge, 2009.

[16] R. Gelca, ”Theta functions and knots”, World Scientific Publishing
Co. Pte. Ltd., Hackensack, NJ, 2014.

[17] Z. Fekete, L. Szeg o, ”A note on [k,l]-sparse graphs”, Graph theory
in Paris, Trends Math., pages 169-177. Birkhäuser, Basel, 2007.
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