
  

Abstract— Deep neural networks have gained significant 

attention in text-independent speaker recognition tasks. However, 

due to the fixed parameters of traditional static convolutional 

neural networks, they cannot flexibly capture the variation in 

phonemes that are integral to speech sentences. To address this 

limitation, this paper proposes a channel-space attention-based 

dynamic convolutional speaker recognition method. This method 

employs dual-attention mechanisms to generate dynamic 

convolutional kernels, which improves the capture of phoneme 

variation information between different inputs in the speech 

signal. We conducted experiments using the TIMIT dataset to 

evaluate the proposed method's effectiveness in various network 

frameworks. Our results show that the best performance can be 

achieved when dynamic convolution is generated using four static 

convolutional kernels. Specifically, in the ResNet-34 framework, 

the Equal Error Rate (EER%) of the proposed method is 

improved by 31.1% over the static convolutional method CNN 

and by 20.3% over the single-attention dynamic convolutional 

method (DynamicConv). Additionally, the performance of the 

proposed method is enhanced in all other network frameworks. 

These findings demonstrate the effectiveness of the proposed 

method and the importance of considering phoneme variations in 

speaker recognition systems. 

 

Index Terms—Speaker Recognition, Deep Learning, Attention 

Mechanism, Dynamic Convolution 
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I. INTRODUCTION 

HE speaker recognition task aims to identify the speaker 

based on their speech signal. The key to this problem lies in 

extracting the speaker's identity from the speech signal. Initially, 

solutions for the speaker recognition task employed 

GMM-UBM, support vector machines, and joint factor analysis 

[1-3] for acoustic modeling, and the best performance was 

obtained using the GMM-UBM/i-vector approach. However, 

with the emergence of deep learning, DNN-UBM/i-vector [4] 

models that use DNN instead of GMM have shown better 

results. Inspired by this, many researchers have modeled 

speaker recognition tasks as classification tasks using deep 

learning networks to obtain speaker identity features such as 

d-vector, x-vector [5-6], etc. Speaker feature recognition 

networks typically follow a common architecture, beginning 

with preprocessing the acoustic signal to extract acoustic 

features that align more closely with human auditory 

perception. Commonly used acoustic features include MFCC 

features and Log Mel spectrum [7-8]. The acoustic features are 

then input into a deep neural network to extract frame-level 

features for the speaker. These frame-level features are 

subsequently pooled, with options such as mean pooling, 

maximum pooling, and pooling with fused attention, to obtain 

segment-level features[9-10]. Finally, the segment-level 

features are classified by a fully connected layer to obtain the 

final speaker identity features. The extraction of speaker 

frame-level features is a critical element in speaker recognition, 

and researchers have investigated various network architectures, 

such as ResNet, TDNN, CNN-LSTM, and BLSTM-ResNet 

[12-15], to enhance the extraction of these features. 

Speech text is composed of phonemes and acoustic features, 

and text-independent feature extraction is required for 

text-independent speaker recognition. However, recent studies 

have shown that the performance of deep learning-based 

feature extraction networks is significantly affected by 

phonemes [16-18], highlighting the importance of phonemes in 

text-independent speaker recognition tasks. Traditional static 

convolutional neural networks have fixed parameters and may 

struggle to capture the variability in phonemes across different 

speech inputs, which can limit the performance of speaker 

recognition networks. The Adaptive Convolutional Neural 

Network (ACNN) [19-21] provides a solution to the issue of 

fixed convolutional kernel parameters by allowing the network 
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model to dynamically adjust them based on the input. This 

model has been widely applied in computer vision [22-24] and 

natural language processing [25-26], yet current research on its 

use in speaker recognition remains insufficient [27-28]. 

Dynamic convolution is a type of ACNN that captures varying 

phoneme information in different input data by fusing 

information from multiple static convolutions through an 

attention mechanism and dynamically adjusting the 

convolution kernel parameters based on the input data. While 

current dynamic convolutional neural networks are primarily 

used for image classification tasks [29], channel attention is an 

appropriate method to generate the weight matrix of the 

dynamic convolutional kernel. However, since phoneme 

information in speech recognition tasks is more evident in the 

frequency domain, it is insufficient to rely solely on channel 

attention to capture the richer information on phoneme 

variation.  

Based on the analysis presented above, this paper proposes a 

novel dynamic convolutional network for speaker recognition, 

called CSDA-DCNN, which utilizes a dual attention 

mechanism based on channel and spatial attention [30-31]. The 

network replaces the traditional static convolution method with 

dynamic convolution to address the issue of fixed parameters 

after training, which limits the network's ability to adapt to 

phoneme changes in different speakers' speech. Furthermore, 

the proposed dual attention mechanism of channel and spatial 

fusion improves the limitations of single-attention dynamic 

convolutional networks that only use the channel attention 

mechanism. This new approach is more effective for speech 

processing tasks and can capture richer information on 

phoneme change. 

This paper is organized as follows: Part II presents the 

proposed CSDA-DCNN network approach, Part III provides a 

detailed description of the experimental procedure and data 

analysis, and Part IV summarizes the contributions of this 

paper. 

II. PROPOSED METHOD 

The proposed CSDA-DCNN method employs a 

dual-attention mechanism that combines the benefits of both 

channel and spatial attention mechanisms, in order to generate 

dynamic convolution kernels that capture the phonetic 

characteristics of different speakers. This results in speaker 

identity features that contain richer information and lead to 

improved accuracy in the speaker recognition network. The 

overall framework of the model is illustrated in Figure 1. 

 

 
Fig.1.  Overall flow of speaker recognition 

 

The overall framework of the speaker recognition model 

proposed in this paper comprises four main modules, namely 

the pre-processing module, the acoustic feature extraction 

module, the network module, and the scoring judgment 

module. 

The pre-processing module aims to prepare the speaker's 

input speech signal for further analysis. It includes signal 

denoising, pre-emphasis, framing and windowing, and valid 

speech detection. 

The acoustic feature extraction module is responsible for 

extracting effective feature parameters from the pre-processed 

speech signal. As the sampled speech signal is a 

one-dimensional signal in the time domain, it needs to be 

processed using time-domain or frequency-domain analysis 

methods to extract feature parameters that can effectively 

represent the sound information. 

The network module utilizes the proposed CSDA-DCNN 

convolutional network to learn the speaker identity features. 

The model parameters are updated using a loss function, and 

the final extracted feature vector is matched to the speaker's 

identity. 

Finally, the scoring module computes the similarity between 

the extracted speaker identity feature vectors using methods 

such as cosine similarity to determine the identity of the 

speaker. 

A. Network 

In this study, ResNet34[32] was chosen as the baseline 

framework and was improved by replacing its convolutional 

layers with the proposed dual-attention dynamic convolution 

module, as illustrated in Fig 2. The CSDA-DCNN block is the 

core of the proposed dual-attention dynamic convolution 

method, and it has the same structure in Layer2, Layer3, and 

Layer4 as in Layer1, except for the parameters of the 

convolution kernel in each CSDA-DCNN block. 

 

 
Fig.2.  The speaker recognition network framework proposed in this paper 

 

The parameters of the CSDA-DCNN modules in each layer 

and the input and output dimensions are shown in Table I.  
 

TABLE I 

THE NETWORK PARAMETERS OF THE PROPOSED CSDA-DCNN 

Layer Input-Size Output-Size Kernel Stride 

Layer0 256×1×40×300 256×16×20×300 Conv2d(1,16,7) 2×1 

Layer1 256×16×20×300 256×16×20×300 Conv2d(16,16,3) 1×1 

Layer2 256×16×20×300 256×16×10×150 Conv2d(16,32,3) 2×2 

Layer3 256×16×10×150 256×64×5×75 Conv2d(32,64,3) 2×2 

Layer4 256×64×5×75 256×128×5×75 Conv2d(64,128,7) 2×1 
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B. Dual Attention Mechanism Module 

Inspired by the human attentional mechanism, individuals do 

not necessarily see every pixel of an entire image at once when 

viewing an image, but rather focus their attention on specific 

parts of the image based on their needs. Additionally, humans 

learn where to direct their attention when viewing an image in 

the future based on their prior experiences with images. In deep  

learning, the attention mechanism is a mechanism whereby the 

network learns a set of weighting coefficients and dynamically 

adjusts them to emphasize areas of interest while suppressing 

irrelevant background areas. 

1) Channel Attention 

The channel attention mechanism is a commonly used 

method for implementing attention in deep learning. It involves 

assigning different weights to data from different channels to 

emphasize important features and suppress irrelevant ones. 

This is achieved by adding an attention weight parameter to 

each channel. Figure 3 illustrates the implementation of this 

method. 

 

 
Fig. 3.  Channel attention network model 

 

The input data is initially pooled using either the maximum 

or average value method, which reduces the dimensionality 

from WHC   to 11C , with each channel having 

only one corresponding number. It is then passed through a 

fully connected layer and normalized to the range of 0 to 1 

using the Softmax layer. The resulting data can be interpreted 

as the weight of each channel, which is then used to determine 

the degree of emphasis that each channel has on the final output. 

In this paper, the proposed model improves upon the standard 

channel attention mechanism by removing the original Softmax 

layer and normalizing the data after it has been added to the 

corresponding positions of the spatial attention matrix, as 

illustrated in Figure 4. 

 

 
Fig4 Modified channel attention network model 

The channel attention module is calculated as follows: 

 ))()(1,(
,

xAvgPoolkcconvM
inavg

=   (1) 

Where X  is the input data, which is pooled globally 

averaged and then convolved to obtain the attention weight 

parameter for each channel avgM . Parameter inc  is the input 

channel of the data, k  is the number of output channels, which 

is also the number of static convolution kernels that need to be 

set in the final method in this paper, and 1 is the convolution 

kernel size. 

The final matrix of channel attention parameters channelM is 

obtained by activating matrix avgM  with the ReLu function 

and then convolving it: 

 ))()(Re1,,(
avgchannel

MLUkkconvM =  (2) 

Where kk  is the input and output channels of the 

convolution kernel and 1 is the convolution kernel size. 

2) Spatial Attention 

The spatial attention mechanism ends up with a weight 

matrix of dimension WH 1 , which corresponds to the 

weights at each position in space. The input data are pooled in 

the dimension of the channel for the maximum value as well as 

the mean value. The pooled data is reduced from dimension 

WHC   to dimension WH 2  and then convolved 

to dimension WH 1 . The calculation process is shown in 

Figure 5. 

 

 
Fig5 Spatial attention network model 

 

The model proposed in this paper modifies the spatial 

attention mechanism. After calculating the spatial attention 

parameter with dimension WH 1 , it is then flattened by 

the Flatten operation and then convolved to obtain the final 

spatial attention weight parameter. This is shown in Figure 6. 

 

 

Fig6 Modified spatial attention network model 
 

The spatial attention module is calculated as follows. 

The dimension of the input data is reduced to WH 2  

after MaxPool  and AvgPool and then to WH 1  by 

convolution: 

 )))(,)(1,1,( XAvgPoolMaxPoolcconvM ins =  (3) 
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Where the sM  matrix is the matrix of weight parameters for 

each position on the space. 

The sM  matrix is flattened by the Flatten operation to a 

dimension of Tb  and b  is the batch size of the input data, 

after which the convolution operation is performed. 

 )()1,,(
sF

MFlattenkTconvM =  (4) 

Where
FM is the length of the data after spreading, k is the 

number of static convolutional kernels and 1 is the 

convolutional kernel size. 

The 
FM  matrix is activated by the ReLu function and then 

convolved to obtain the final spatial attention weight parameter 

matrix spatialM . 

 )()(Re1,,(a Ftalsp MLukkconvM =  (5) 

Where kk  is the input and output channels of the 

convolution kernel and 1 is the convolution kernel size. 

3) Dual Attention Mechanism 

The network model for the dual-attention mechanism 

module is illustrated in Figure 7, which mainly focuses on the 

calculation of the channel and spatial attention weight 

parameter matrices for the input data, and the utilization of 

these matrices as the fusion matrix for the dynamic convolution 

kernel.  

 

 

Fig.7 Dual attention mechanism network model 

 

After inputting the data, the channel attention weight matrix 

and the spatial attention weight matrix are calculated 

respectively, and the elements are summed to obtain csM . 

 spatialchannelcs
MMM =  (6) 

Where channel
M  is the channel attention weight matrix 

and Spatial
M  is the spatial attention weight matrix. The final 

dynamic convolutional attention weight attentionM  is obtained 

by convolving csM  and then normalizing the output data to the 

interval 0 to 1 by SoftMax. 

 )))(1,,((
csattention

MkkconvSoftMaxM = (7) 

Where kk  is the input and output channels of the 

convolution kernel and 1 is the convolution kernel size. 

C. CSDA-DCNN Network 

The attention mechanism used in the DynamicConv[33] 

approach is GAP+FC+ReLu+FC+Softmax, also known as 

squeeze-and-excitation (SE Net)[34]. The dynamic convolution 

module is shown in Fig 8.  

This paper replaces its single attention approach with the 

dual attention mechanism proposed in this paper. 

 

 
Fig. 8.  Dynamic convolution module  

 

The dual-attention dynamic convolution block designed in 

this paper is shown in Fig 9. It can be seen that the key aspect of 

the method proposed in this paper is the use of a dual-attention 

mechanism to generate dynamic convolutional kernels. The 

input data shown in the figure are dimension of 
WHC inRX


 and the input data are extracted for channel and 

spatial attention separately. The channel attention weight 

parameter extracted by the channel attention module is of 

dimension kb  , b  is the batch size of the input data. k  is 

the number of static convolution kernels in the dynamic 

convolution calculation module. For spatial attention, the data 

is first pooled for maximum value and pooled for mean value, 

and then convolved to obtain a spatial attention weight matrix 

of dimension WH 1 . This data is then subjected to a 

Flatten operation, and in order to obtain the final spatial 

attention parameter, the flattened data is convolved and its 

dimension reduced to kb  . Finally, the weight matrices 

obtained from the channel attention and spatial attention 

modules are summed up at the corresponding positions and 

then normalised to the range 0 to 1 by the Softmax layer, i.e. the 

final attention weight parameter matrix attention
M  is obtained. 

The dynamic convolution module uses the dual attention 

weight matrix calculated in the previous stage to weight and 

fuse multiple static convolution kernels, and the parameter 

matrix of the dynamic convolution kernel is calculated as 

 
=

=
K

k

kk
WxW

1

~
)(

~
  (8) 

Where k
  is the weight assigned to each static 

convolutional kernel and is the parameter matrix for each static 

convolutional kernel. The bias of the dynamic convolution 

kernel is calculated as: 

 k

K

k

k bxb
~

)(
~

1


=

=   (9) 
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Fig.9  Dual-attention dynamic convolution block 

 

Where k
  is the weight assigned to each static 

convolutional kernel and 
k

b
~

is the bias weight of each static 

convolutional kernel. 

The final dynamic convolution kernel is calculated as 

 )( bxWgy T +=  (10) 

Where TW  is the parameter matrix of the dynamic 

convolution kernel and b  is the bias of the dynamic 

convolution kernel. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Dataset 

To verify the effect of phonemes on speaker recognition, the 

TIMIT dataset[35], which is rich in phoneme information, is 

used for this experiment. The dataset captures speech 

information from eight major dialect regions in the United 

States, with a sampling frequency of 16kHz and a total of 6300 

speech items. All speech data were manually segmented and 

labeled at the phoneme level (phone level). These include 3150 

sentences with compact phonemes and 1890 sentences with 

divergent phonemes. 

B. Experimental Details 

1) Pre-processing 

Convolutional neural networks are widely used in image 

recognition tasks, where the input is typically two-dimensional 

data. However, speech signals are one-dimensional signals that 

vary over time. Therefore, to apply convolutional methods to 

speech signal processing tasks, it is necessary to first convert 

the one-dimensional speech signal into a two-dimensional 

signal. Various methods can be used for this purpose, such as 

Meier spectrum and MFCC. In this paper, we choose the Mel 

spectrum as the input signal for the neural network, as it is more 

informative. The processing process of the Mel spectrum is 

shown in Figure 10. Pre-processing the input signal into a 

two-dimensional format enables the convolutional neural 

network to capture information in the spatial range without 

losing information in the temporal domain. The window length 

is 25ms, the step length is 10ms, and the extracted data 

dimension is 40. STFT, which stands for Short-Time Fourier 

Transform, is used to calculate the frequency spectrum of the 

signal and its energy spectrum. 

 

 
Fig 10. Mel spectrum generation process 

 

2) Back-end Scoring and Evaluation Metrics 

In the training phase, the deep learning model is trained 

using a fully connected layer for speaker identification as a 

classification task. The trained model has the ability to extract 

the identity features of the speaker from the speaker's audio 

information to distinguish between different speakers. In the 

validation phase, the final fully-connected layer of the deep 

learning model is removed, and the output vector before the 

fully-connected layer is obtained as the identity features of that 

speaker. Then, the similarity calculation is performed to 

evaluate the performance of the speaker recognition model. 

There are various similarity calculation methods available such 

as Cosine Similarity, PLDA, Two Covariance PLDA [36-38], 

among others. However, for the purpose of this paper, the 

relatively simple cosine similarity calculation method is 

uniformly used as the scoring method. The similarity score can 

be calculated using the following formula. 

 




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 (11) 

Experiments use equal error rate as an evaluation criterion. 

The mean error rate is a common evaluation metric for speaker 

recognition tasks and can be derived from the following 

equation. 

 
)()(

)(

FNNumTPNum

FNNum
FRR

+
=  (12) 

Engineering Letters, 31:2, EL_31_2_41

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 



 
)()(

)(

TNNumFPNum

FPNum
FAR

+
=  (13) 

 FARFRREER ==  (14) 

Where FRR  is the false rejection rate, which is the error 

caused by misidentifying the target speaker as a  non-target 

speaker. FAR  is the false acceptance rate is the error caused 

by discriminating a non-target speaker as the target speaker. 

For a particular voice recognition system, with the error 

acceptance rate as the horizontal coordinate and the error 

rejection rate as the vertical coordinate, the error rate is called 

the equal error rate (EER) by adjusting the threshold so that the 

values of the error acceptance rate and the error rejection rate 

are equal. Obviously, the smaller the value of the equal error 

rate, the better the system performance. 

3) Experimental Environment 

The experimental environment is based on the Pytorch 

framework and is trained on an NVIDIA RTX2080ti graphics 

card without using any data enhancement methods. The 

experimental operating system is ubuntu 18.04. 

C. Experimental Results and Analysis 

1) Static Convolutional Kernel Number Testing  

Since the number of static convolutional kernels has a strong 

relationship with the complexity and accuracy of the model, 

this paper uses CSDA-DCNN convolutional networks for 

experiments with different numbers of convolutional kernels. 

The experimental results are shown in Table II. The best 

performance can be obtained when the number of 

convolutional kernels K=4, and the performance decreases 

when K=6. Therefore, the number of convolutional kernels 

K=4 is chosen for the subsequent experiments and analysis. 

 
TABLE II 

COMPARATIVE ANALYSIS OF THE NUMBER OF STATIC CONVOLUTION 

KERNELS IN THE RESNET-34 FRAMEWORK 

Literature Method 
convolutional 

kernel number 
EER% 

ResNet-34 CSDA-DCNN 2 2.21 

ResNet-34 CSDA-DCNN 4 1.88 

ResNet-34 CSDA-DCNN 6 1.96 

ResNet-34 CSDA-DCNN 8 2.09 

 

2) Speaker Embedding Clustering Visualization Test 

In order to visualize the superiority of the proposed method 

in this paper, we use ResNet-34, DynamicConv-ResNet-34, 

CSDA-DCNN-ResNet-34, respectively, and the output before 

the final fully connected layer of the network as the identity 

feature of this speaker, and use the t-SNE [39] algorithm to 

project the speaker identity feature vector down to the 

two-dimensional plane, and its visualization is shown in Fig 11. 

A total of four speakers with 50 sentences each were used in the 

experiment, for a total of two hundred sentences. The figure 

shows that all four speaker identity features of the network 

using CSDA-DCNN-ResNet-34 are well aggregated, while the 

speaker identity features of the network using 

DynamicConv-ResNet-34 as well as ResNet-34 are all 

relatively farther away from the center. 
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(a) ResNet-34 
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(b) DynamicConv-ResNet-34 
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(c) CSDA-DCNN-ResNet-34 

Fig.11. Visualization of speaker embedding clustering 

 

3) Performance Test of ResNet-34 Network under Different 

Convolutional Methods 

In order to verify the effectiveness of the proposed 

dual-attention dynamic convolution method, this paper 

compares it with two other convolution methods: 

DynamicConv and CSDA-DCNN, as well as ResNet-34, which 

does not use dynamic convolution. The performance of these 

methods is evaluated on the training set, and the results are 

shown in Figure 12. The CSDA-DCNN approach achieved the 

best performance among the three methods. 
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Fig.12. Module training performance 

 

The experimental results on the validation set are presented 

in Table III. The results indicate that the proposed method in 

this paper outperforms ResNet-34 with traditional static 

convolution by 31.1%, and the traditional dynamic convolution 

method (DynamicConv) by 20.3% in terms of accuracy. These 

findings demonstrate that the dynamic convolution method 

utilizing the dual-attention mechanism is more effective in 

capturing phoneme information and improving the 

performance of the speaker recognition system. 

 
TABLE III 

COMPARISON OF THE ACCURACY USING THE PROPOSED CSDA-DCNN, 

AND DYNAMICCONV, CNN IN THE RESNET-34 FRAMEWORK. 

Literature Method EER% 

ResNet-34 - 2.73 

ResNet-34 DynamicConv 2.36 

ResNet-34 CSDA-DCNN 1.88 

 

4) CSDA-DCNN Method Adaptation Test 

To verify the applicability of the proposed dual-attention 

dynamic convolution method in different network frameworks, 

VGG-M[40],is used as the framework and CSDA-DCNN is 

used as the convolution layer. The experimental results on the 

validation set are shown in Table IV.  

 
TABLE IV 

COMPARISON OF THE ACCURACY USING THE PROPOSED CSDA-DCNN, 

AND DYNAMICCONV, CNN IN THE VGG-M AND RESNET-34 FRAMEWORK. 

Literature Method EER%  

ResNet-34 - 2.73 

ResNet-34 DynamicConv 2.36 

ResNet-34 CSDA-DCNN 1.88 

VGG-M - 4.12 

VGG-M DynamicConv 3.78 

VGG-M CSDA-DCNN 3.26 

 

The experimental results indicate that the proposed method 

in this paper outperforms the traditional static convolution 

method by 20.8% and the traditional dynamic convolution 

method (DynamicConv) by 13.9% in terms of accuracy when 

applied to the VGG-M framework. These results demonstrate 

the efficacy and general applicability of the dual-attention 

dynamic convolution method proposed in this study across 

different network frameworks.  

5) Comparative Analysis of the Proposed Method with Other 

Networks 

This paper presents a comparison of the performance of the 

CSDA-DCNN dynamic convolution method with previously 

studied methods. Additionally, the performance of the 

CSDA-DCNN method in several other networks is tested and 

presented in Table V. The experimental results show that the 

proposed method improves the performance of the networks to 

varying degrees compared to other networks. However, it still 

lags behind the current optimal network framework 

ECAPA-TDNN. One possible reason for this is that the double 

attention mechanism introduced in this paper increases the 

number of parameters, which may lead to performance 

degradation due to overfitting. 

 
TABLE V 

COMPARATIVE ANALYSIS OF THE PROPOSED METHOD WITH OTHER 

NETWORKS 

Literature Method EER(%)  
Improvement

(%) 

ResNet-34 - 2.73 - 

ResNet-34 CSDA-DCNN 1.88 31.1 

VGG-M - 4.12  

VGG-M CSDA-DCNN 3.26 20.9 

ResNet-50 - 4.33  

ResNet-50 CSDA-DCNN 3.82 11.8 

Thin Res-Net-34 - 3.11  

Thin Res-Net-34 CSDA-DCNN 2.69 13.5 

GMM-UBM/i-vector - 9.73  

TDNN-UBM - 5.44  

ECAPA-TDNN - 1.45  

 

IV. CONCLUSION 

In this paper, we propose a dynamic convolution method 

with both channel and spatial attention mechanisms to enhance 

the speaker recognition network. Our approach computes 

attention parameters from both channel and spatial perspectives, 

which overcomes the limitations of static convolution in 

capturing phoneme information and the insufficiency of 

traditional dynamic convolution that uses only one attention 

mechanism. Experiments were conducted on the TIMIT dataset, 

and the best results were obtained when the number of 

convolutional kernels was set to 4. We replaced the static 

convolutional kernels in ResNet-34 with CSDA-DCNN and 

DynamicConv for comparison experiments, and the results 

confirmed the effectiveness of our proposed method. However, 

the introduction of the dual-attention mechanism greatly 

increases computational effort. Therefore, future work will 

focus on optimizing the network structure to reduce parameters 

and computation. Additionally, although our method fuses 

channel and spatial attention, the current fusion method is a 

simple summation, and a more sophisticated approach should 

be explored in future research. 
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