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Abstract—The present investigation emphasizes a new at-
tempt at the peristaltic mechanism of Eyring Powell fluid
through a non-uniform channel. The flow is analyzed in the
presence of wall properties under variable liquid properties,
and the mathematical problem for the flow is developed. The
channel walls are subjected to slip conditions with low Reynolds
number, and long wavelength approximations are employed
to simplify the nonlinear governing equations. The nonlin-
ear governing equations are normalized using relevant non-
dimensional parameters, and the solutions are obtained with
the help of the regular perturbation technique. The influence of
pertinent physical parameters of interest (velocity, temperature,
concentration, and streamlines) are represented graphically.
The investigations reveal that the material parameters and
elastic parameters of the Eyring Powell fluid model strongly
affect the velocity and temperature profiles. The model shows
the opposite behaviour in the material parameters A and B in
velocity and temperature profiles.

Index Terms—Eyring Powell Fluid, Wall Properties, Variable
Liquid Properties, Non-Uniform Channel

NOMENCLATURE

a Radius of the channel
b Wave amplitude
c Wave speed
g Acceleration due to gravity
Re Reynolds number
w Radial velocity
u Axial velocity
x Non-dimensional axial distance
y Non-dimensional radial distance
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GREEK SYMBOLS
θ Non-dimensional temperature
ϕ Non-dimensional concentration
δ Wave number
α Inclination angle of the channel
γ̇ Strain rate
λ Wavelength

I. INTRODUCTION

PERISTALSIS is a muscle-controlled flow that resembles
the circulatory system. When a progressive wave of

area passes through a distensible tube, peristalsis flow
occurs. Walls of the medium (tube/channel) are subjected
to contraction and expansion. Peristaltic flow is a natural
flow that uses periodic wavelike sinusoidal oscillations
to carry out its functions. Contents of the vessels are
forced to move forward as they pass along the walls.
This mechanism is essential in understanding the flow of
biofluids such as blood, urine, and tears in the human body.
Peristaltic flow occurs widely in the functioning of the
ureter, bile transport, blood vessels, and so on. Latham [1]
first investigated the mechanism of peristaltic transport of
Newtonian viscous incompressible fluid through the ureter.
Further, Shapiro et al. [2] developed a mathematical model
for peristaltic pumping based on low Reynolds number and
long wavelength approximations for viscous incompressible
fluid flow in a two-dimensional channel. Slip, and heat
transmission was studied by Hayat et al. [3] for peristaltic
flow in an irregular channel. It has been seen that in a
quantitative sense, the velocity and thermal slip parameters
have identical impacts on the pressure rise. The influence of
a radially varying applied magnetic field on the peristaltic
transport of a Carreau-Yasuda fluid via a curved conduit
was shown by Shehzad et al. [4]. The Runge-Kutta fourth-
order technique is used to solve the governing nonlinear
equations under nonlinear boundary conditions. Effects
of various parameters on the variables of interest were
analysed using graphs. According to this study, increasing
the intensity of the applied magnetic field and velocity slip
parameter decreases the maximum fluid velocity. Peristalsis
of Walters-B fluid in a compliant wall channel was studied
by Javed et al. [5] in the presence of velocity and thermal
slip factors. Manjunatha and Rajashekhar [6] conducted
the study of peristaltic transport on Casson fluid with slip
effects. The focus of the study was on the peristaltic blood
transport in an elastic tube and its flow characteristics. It was
seen that the slip and porous parameters had the opposite
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behaviour on flow rate, concluding that flux in a flexible
tube reduces as the slip parameter grows, and increases
as the porous parameter increases. Casson fluid peristaltic
pumping in a heated permeable channel with changeable
fluid characteristics was examined by Manjunatha et al.
[7]. Variable viscosity and slip parameters were studied by
Vaidya et al. [8] in a convectively heated porous channel
for the peristaltic transport of Rabinowitch fluid.

Heat transmission in biological fluids significantly impacts
our knowledge of fluid dynamics. Conduction, radiation,
convection, and evaporation are the four heat exchange
methods used by the body to keep temperature stable. For
these processes to work, conduction must transfer heat from
a high concentration to a low concentration. As a result,
the pace of heat exchange processes varies depending on
the temperature and environmental factors. Based on the
use of heat transfer theory, research was conducted by
Ellahi et al. [9] to determine the influence of heat and mass
transfer on peristaltic transport in non-uniform channels
using rectangular tubes. An investigation of the effects of
heat transfer in the peristalsis-induced flow of a viscous
electrically conducting fluid in an asymmetric channel in
the presence of Hall and Ion-slip effects at the borders was
undertaken by Hussain et al. [10]. The numerical solutions
for the MHD flow of heat transfer of incompressible
second-grade fluid on a stretching sheet channel were
obtained by Faisal and Mubarak [11]. Velocity and thermal
slip were considered in the investigation. Manjunatha et al.
[12] investigated the heat and mass transfer effect on the
peristalsis of Jeffery fluid in a non-uniform porous channel
with variable viscosity and thermal conductivity. Another
study explored the effect of heat transfer on the peristaltic
movement of Casson fluid in an axisymmetric porous tube
by Vaidya et al. [13]. Ahmed et al. [14] examined the
mixed convection peristalsis of hybrid nanomaterial flow
in the thermally active symmetric channel. Rajashekhar
et al. [15] recently established a theoretical model to
trigger electro-osmosis by peristalsis in a microchannel
with changing liquid characteristics and wall properties. For
the series solutions, the perturbation method is used. The
velocity and temperature profiles are enhanced when the
variable viscosity is increased.

Mittra and Prasad [16] investigated the influence of wall
characteristics on peristalsis. An elastic or viscoelastic wall
is addressed in the two-dimensional analysis of peristalsis.
Hayat et al. [17] have created a novel mathematical model
to investigate the influence of heat and mass transfer on
peristaltic flow in a curved channel with compliant walls.
Mustafa et al. [18] studied the peristalsis of nanofluids in
compliant media using long wavelength and low Reynolds
number approximations. With an increase in temperature
and concentration, the power of Brownian motion effects
becomes more pronounced. In addition, when Brownian
motion and thermophoresis parameters rise, the heat transfer
coefficient falls. Mariyam et al. [19] studied the influence
of wall characteristics on the peristalsis of non-Newtonian
fluid. Further, Hina et al. [20] examined the impact of wall
features and heat/mass transmission on the movement of
pseudoplastic fluid along a circular conduit. MHD peristaltic

flow of Eyring Powell nanofluid with convective and noslip
conditions was studied by Nisar et al. [21]. In the curved
channel peristaltic transport of Sisko fluid, variable viscosity
was studied by Tanveer et al. [22]. The perturbation
method is applied to obtain the numerical solutions. This
research shows that increasing viscosity lowers flow velocity
and temperature, whereas increasing viscous dissipation
parameter increases the fluid temperature. The peristaltic
process of Jeffery fluid in a non-uniform porous channel
was studied by Manjunatha et al. [23]. The bolus size grows
as the variable viscosity parameter rises, and so do the fluid
velocity and temperature. Varying transport characteristics
on Casson nanofluids were studied by Prasad et al. [24].
For the solutions, the Keller box approach was used. It
turns out, according to the findings, that increasing viscosity
has the opposite effect on flow velocity and temperature.
The peristaltic flow of Ree-Eyring fluid across a uniform
conduit with variable liquid characteristics was studied by
Rajashekhar et al. [25]. There was a noticeable improvement
in velocity and creation of trapped bolus as the temperature
rose due to the changing viscosity and thermal conductivity.
Electro-osmotic peristaltic flow in a microchannel with
varying liquid characteristics was studied by Rajashekhar et
al. [26] in depth. Streamlines and fluid temperature were
solved using the perturbation method. It was found that
increasing the variable viscosity positively affected fluid
velocity and temperature, whereas increasing the variable
thermal conductivity positively affected liquid temperature.

The Eyring Powell model was developed by Powell
and Eyring [27]. Based on the theory of gas dynamics
rather than actual data, this model is more appropriate
than other non-Newtonian models. This model reduces
Newtonian flow characteristics in both high and low shear
rates. By examining this model, Akbar and Nadeem [28]
were the first to investigate the influence of heat and mass
transfer on the peristaltic flow of Eyring Powell fluid.
Standard perturbation and fire techniques were used to
evaluate analytical and numerical solutions. Abbasi et al.
[29] also studied Eyring Powell fluid model peristaltic
transport using long wavelength and low Reynolds number
approximations. Hina [30] investigated the peristaltic
transport of Eyring Powell fluid in a complaint wall
channel with heat/mass transfer. An investigation of Eyring
Powell fluid flow in a curved channel was conducted by
Farooq et al. [31]. Recently, Elniel et al. [32] investigated
Eyring Powell fluid MHD flow on an inclined porous plate
in the presence of shear stress for both lift and draining flow.

To the author’s knowledge, peristaltic transport of Eyring
Powell fluid under the impact of varying liquid characteristics
and wall properties through the inclined non-uniform channel
has not been explored based on the literature described
above.To bridge this knowledge gap, current work has been
done. the nonlinear governing equations are simplified under
long wavelength and low Reynolds number approximations.
In addition, the classical perturbation technique is used to
solve these equations concerning heat transport and the
Eyring Powell fluid with changeable liquid properties. The
graphical representation is used to demonstrate the influence
of model parameters.
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II. FORMULATION OF THE PROBLEM

Consider an incompressible viscous fluid flowing through
an inclined non-uniform channel. Non-Newtonian Eyring
Powell Fluid governs the flow. The varying viscosity and
variable thermal conductivity are taken into account. The
equations governing the flow are written as follows:
∂u′

∂x′
+
∂w′

∂y′
= 0, (1)

ρ

[
∂u′

∂t′
+ u′

∂u′

∂x′
+ w′ ∂u

′

∂y′

]
= −∂p

′

∂x′
+
∂τ ′x′x′

∂x′
+
∂τ ′x′y′

∂y′

+ ρg sinα, (2)

ρ

[
∂w′

∂t′
+ u′

∂w′

∂x′
+ w′ ∂w

′

∂y′

]
=− ∂p′

∂y′
+
∂τ ′x′y′

∂x′
+
∂τ ′y′y′

∂y′

+ ρg cosα, (3)

ρCp

[
∂T ′

∂t′
+ u′

∂T ′

∂x′
+ w′ ∂w

′

∂y′

]
= τ ′x′y′

(
∂u′

∂x′
+
∂w′

∂y′

)
+k1

[
∂

∂x′

(
k(T ′)

∂T ′

∂x′

)
+

∂

∂y′

(
k(T ′)

∂T ′

∂y′

)]
+τ ′x′x′

∂u′

∂x′
+ τ ′y′y′

∂w′

∂y′
,

(4)[
∂C ′

∂t′
+ u′

∂C ′

∂x′
+ w′ ∂C

′

∂y′

]
=
DKT

Tm

[
∂2T ′

∂(x′)2
+

∂2T ′

∂(y′)2

]
+D

[
∂2C ′

∂(x′)2
+

∂2C ′

∂(y′)2

]
, (5)

where u′, w′ are velocity components in radial and axial
directions respectively. ρ is the fluid density, p′ is the
pressure, τ ′x′x′ , τ ′x′y′ , τ ′y′y′ are extra stress components, while
k1, T ′, Cp denotes mass diffusivity coefficient, temperature
and the specific heat at constant volume respectively.

The problem’s boundary conditions are as follows:

ψ =
F

2
,
∂2ψ′

∂y′
= 0,

∂T ′

∂y′
= 0,

∂C ′

∂y′
= 0 at y′ = 0, (6)

∂ψ′

∂y′
+ β1τ

′
x′x′ = −c, T ′ + β2

∂T ′

∂y′
= T ′, C ′ + β3

∂C ′

∂y′
= C ′

at y′ = H ′ = l(x′) + bsin

(
2π

λ
(x′ − ct′)

)
, (7)

where H ′ is the non-uniform wave in which l(x′) is the
non-uniform radius, b′ is the wave amplitude, λ is the
wavelength, c is the wave propagation speed and t′ is the
time. Introducing the dimensionless quantities:

x =
x′

λ
, y =

y′

a
,w =

w′

c
, u =

λu′

ca
, t =

ct′

λ
, τxx =

aτ ′x′x′

cµ0
,

τxy =
aτ ′x′y′

cµ′
0

, τyy =
aτ ′y′y′

cµ0
, δ =

a

λ
, p =

a2p′

cλµ0
, Re =

acρ

µ0
,

θ =
T ′ − T ′

0

T1 − T0
, F =

νc

ga′2
, µ′

0 =
µ0

µ
, ψ =

ψ′

ac
,E1 =

−τa3

λ3µ0c
,

E2 =
ma3c

λ3µ0
, E3 =

ca3

λ3µ0
, E4 =

ma3

λ5µ0c
, E5 =

Ha3

λµ0c
,

Ec =
c2

δT0
, P r =

µCp

k1
, Br = PrEc, ν =

µ0

ρ
, ϵ =

b

a
,

h =
H ′

a
= 1 +mx+ ϵsin(2π(x− t)), (8)

µ(y) = 1− α1y, k(θ) = 1 + α2θ,

Fig. 1: Geometry of the physical model.

Using equation (8) in equations (1-7) and by using the small
Reynolds number and large wavelength approximations, we
obtain the non-dimensional governing equations of the form:
∂p

∂x
=
∂τxy
∂y

+
sinα

F
, (9)

∂p

∂y
= 0, (10)

∂

∂y

(
k(θ)

∂θ

∂y

)
+Brτxy

∂2ψ

∂y2
= 0, (11)

∂2ϕ

∂y2
+ ScSr

∂2θ

∂y2
= 0, (12)

where Br is Brinkman number and τxy is the constitutive
equation of Eyring Powell fluid given as

τxy = (µ(y) +B)
∂2ψ

∂y2
− A

3

(
∂2ψ

∂y2

)3

, (13)

The non-dimensional boundary conditions are denoted by

ψ =
F

2
,
∂2ψ

∂y2
= 0,

∂θ

∂y
= 0,

∂ϕ

∂y
= 0 at y = 0, (14)

∂ψ

∂y
+ β1τxx = −1, θ + β2

∂θ

∂y
= 1, ϕ+ β3

∂ϕ

∂y
= 1

at y = h = 1 +mx+ ϵsin(2π(x− t)), (15)

where β1, β2, and β3 are slip parameters for velocity,
temperature, and concentration respectively.

The viscosity varies across the thickness of the channel
wall is given by µ(y) = 1−α1y, for α1 << 1, where α1 is
the coefficient of variable viscosity.

The varying thermal conductivity with temperature is
defined as k(θ) = 1 + α2θ, for α2 << 1, where α2 is the
coefficient of variable thermal conductivity.

III. SOLUTION METHODOLOGY

The equations (9) and (11) are nonlinear in nature. Con-
sider equation (9). Let P = ∂p

∂x and f = sinα
F . On integrating

equation (9), we get

τ = (P − f)y, (16)

Substituting equation (13) in the above equation, we obtain
a nonlinear equation. Similarly, on integrating equation (11),
a nonlinear equation is obtained. As the analytical solution
for nonlinear expression is tedious, the series solution using
the perturbation technique is introduced.
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Perturbation technique:

To solve the streamline function and temperature expres-
sion, the series perturbation technique is applied by using the
equations below:

ψ = ΣAnψn, (17)
θ = ΣAnθn, (18)

Ignoring terms of order A2 and above in equation (17),
we obtain a streamline function as

ψ = ψ0 +Aψ1, (19)

The zeroth order streamline equation with boundary condi-
tions is given by

(P − f)y = (1− α1y +B)
∂2ψ0

∂y2
,

ψ0 =
F

2
,

∂2ψ0

∂y2
= 0 at y = 0 and (20)

∂ψ0

∂y
+ β1(1− α1y +B)

∂2ψ0

∂y2
= −1 at y = h,

The first order streamline equation with boundary conditions
is given by

(1− α1y +B)
∂2ψ1

∂y2
− 1

3
(
∂2ψ0

∂y2
)3 = 0,

ψ1 = 0,
∂2ψ1

∂y2
= 0 at y = 0 and (21)

∂ψ1

∂y
+ β1

(
(1− α1y +B)

∂2ψ0

∂y2
− 1

3

(
∂2ψ0

∂y2

)3
)

= 0

at y = h,

Similarly, by ignoring A2 and above terms in equation
(18), we obtain temperature expression as,

θ = θ0 +Aθ1, (22)

The zeroth order temperature equation with boundary condi-
tions is given by

∂θ0
∂y

+ α2θ0
∂θ0
∂y

+D1 = 0,

∂θ0
∂y

= 0 at y = 0 and (23)

θ0 + β2
∂θ0
∂y

= 1 at y = h,

The first order temperature equation with boundary condi-
tions is given by

∂θ1
∂y

+ α2θ0
∂θ1
∂y

+ α2θ1
∂θ0
∂y

+D2 = 0,

∂θ1
∂y

= 0 at y = 0 and (24)

θ1 + β2
∂θ1
∂y

= 0 at y = h,

The equations (20), (21), (23), and (24) are nonlinear;
hence we apply double perturbation technique to obtain the
series solution for streamline and temperature equation as
follows.

ψi = Σαj
1ψij where 0 ≤ i ≤ n, 0 ≤ j ≤ n, (25)

θi = Σαj
2θij where 0 ≤ i ≤ n, 0 ≤ j ≤ n, (26)

Ignoring higher order terms, like O(α2
1), O(α2

2) and above,
the final expressions for streamlines, and temperature are
obtained as follows.
The streamline equations obtained from equation (25) are,

ψ0 = ψ00 + α1ψ01, (27)
ψ1 = ψ10 + α1ψ11, (28)

Substituting equations (27) and (28) in equation (19), the
expression for streamline is obtained as,

ψ = ψ00 + α1ψ01 +Aψ10 +Aα1ψ11, (29)

where

ψ00 =
My3

6(1 +B)
+ y

(
−1− Mh2

2(1 +B)
− η1Mh

)
+
F

2

ψ01 =

(
My4

12(1 +B)2
− Mh3

3(1 +B)2
y

)
ψ10 =

(
M3y5

60(1 +B)4
− M3h4

12(1 +B)4
y

)
ψ11 =

(
4M3y6

90(1 +B)5
− 4M3h5

15(1 +B)5
y

)
Similarly, the following temperature expression is obtained

by using equation (26),

θ0 = θ00 + α2θ01, (30)
θ1 = θ10 + α2θ11, (31)

Substituting equations (30) and (31) in equation (22), the
expression for temperature is obtained as,

θ = θ00 + α2θ01 +Aθ10 +Aα2θ11, (32)

where

θ00 = 1 +A1 −A2 + β2A3

θ01 = A5 −A6 +A7 −A8 +A9 −A10 +A2A4 −A1A4

+A11 −A12 + β2(A13 +A14 +A15 +A16 +A3A4)

θ10 = A17 −A18 + β2A19

θ11 = −(A1 +A4)(A17 +A20) + (A2 +A4)(A18 +A20)

+ β2(A19A2 +A18A3 +A20A3 +A19A4)

The analytical solution for velocity is obtained by using the
relation,

u =
∂ψ

∂y

u =
M(y2 − h2)

2(1 +B)
− η1Mh− 1 + α

M(y3 − h3)

3(1 +B)2

+A
M3(y4 − h4)

12(1 +B)4
+Aα

4M3(y5 − h5)

15(1 +B)5
(33)

where

M = P − f,

P = E1
∂3h

∂x3
+ E2

∂3h

∂t2∂x
+ E3

∂2h

∂t∂x
+ E4

∂5h

∂x5
+ E5

∂h

∂x
The analytical solution for concentration is obtained by
solving the equation (12). The solution is given as follows,

ϕ =1− ScSr[G1 +AG2 + α2(A4G1 +G3) +Aα2A20G1

+Aα2(A4G2 +G4)] + ScSr[G5 + α2(A4G5 +G7)

+ α2(A20G5 +A4G6 +G8)] + β3ScSr[G9 +AG10

+ α2(A4G9 +G11) + α2(A20G9 +A4G10 +G12)]
(34)
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IV. RESULTS AND DISCUSSIONS

In this section, the pre-eminent objective is to interpret
the influence of material parameters, slip conditions, variable
liquid properties, inclination angle, non-uniform parameters,
and wall properties on velocity, temperature, concentration,
and streamlines have been discussed. MATLAB 2022a pro-
gramming is used to calculate the impact of the above
parameter with the help of graphs.

A. Velocity Profiles

Fig.2 and Fig.3 depicts the variation of fitting parame-
ters of velocity profiles. Fig.2(a) shows that axial velocity
increases with an increase in the Eyring Powell parameter
A, while in Fig.2(b), the opposite behaviour is seen for the
material parameter B. Fig.2(c)-(d) shows an enhancement
in the velocity profile for variable viscosity and velocity
slip parameters which indicates that variable viscosity co-
efficient and velocity slip parameter are indispensable in
observing the velocity profile. The velocity profile has an
increasing behaviour when the angle of inclination increases,
as shown in Fig.2(e), and has a similar effect to the rise
in non-uniform parameter (see Fig.2(f)). Fig.3(a) depicts
the variation of velocity profiles for variation in amplitude
ratio. As the amplitude ratio increases, the velocity also
improves. In Fig.3(b), increasing variation in wall tension and
mass characterisation parameters increases the velocity in the
axial direction. The increase in the wall-damping parameter
has the opposite effect on the velocity profiles. A similar
effect is seen in the case of wall rigidity and wall elasticity
parameter. The velocity profiles is a decreasing function
for increasing wall rigidity parameters and increasing wall
elasticity parameter.

B. Temperature Profiles

Fig.4 and Fig.5 illustrates the variation of parameters of
temperature profiles. Fig.4(a) shows that the temperature
increases with an increase in the Eyring Powell parameter
A, while in Fig.4(b), the opposite behaviour is observed for
the material parameter B. Fig.4(c)-(d) shows a negligible
increase in the temperature profile for variable viscosity
while increasing variable thermal conductivity decreases the
temperature profiles. The graph indicates that the variable
viscosity coefficient has not much effect on the temperature
of the fluid. Still, the varying thermal conductivity parameter
is vital in observing the temperature profiles. It is noticed
that the fluid temperature rises when the angle of inclination
increases as seen in Fig.5(a) and has a similar effect to
the rise in non-uniform parameter (see Fig.5(b)). Fig.5(c)
has been drawn to analyse the effect of thermal slip over
the temperature. It shows that the increase in temperature
as the thermal slip parameter increases. A considerable
enhancement in the temperature can be observed in the case
of an increase in Brinkman number (see Fig.5(d)). Fig.5(e)
shows that a higher amplitude ratio enhances the temperature
profiles. Fig.5(f) shows that an increasing variation in wall
tension and mass characterisation parameters increases the
temperature in the axial direction. The increase in the wall-
damping parameter has the opposite effect on the temperature
profiles. A similar behaviour is seen in the case of wall rigid-
ity and wall elasticity parameters. The temperature profile

decreases due to the increase in wall rigidity parameter and
wall elasticity parameter.

C. Concentration Profiles
This subsection explains the effects of pertinent parameters

over the concentration, which are represented graphically in
Fig. 6 and Fig.7. Fig.6(a) shows that the concentration profile
decreases with an increase in the Eyring Powell parameter
A. At the same time, the opposite behaviour is observed
for the material parameter B (see Fig.6(b)). Fig.6(c) shows
that increasing variable thermal conductivity diminishes the
concentration profiles. Fig.6(d) shows the rise in concen-
tration with a decrease in the thermal slip parameter. A
similar outcome is seen in Fig.6(e). i.e., as the concentration
slip parameter increases, a reduction in the concentration
profiles can be observed. There is a noticeable decrease in
the concentration profile when the inclination angle increases
in Fig.6(f). A significant change in the concentration can
be observed in case of the Brinkman number, as shown in
Fig.7(a). The concentration profile decreases with an increase
in Brinkman number. Similar behaviour is noticed in the
case of Schmidt number, and Soret number. Increasing these
values reduces the concentration profiles, as seen in Fig.7(b)
and Fig.7(c) respectively. In Fig.7(d), while increase in wall
tension and mass characterisation parameters decrease the
concentration of the fluid particles in the axial direction,
increase in the wall-damping parameter has the opposite
impact on the concentration profiles. A similar effect is seen
in the case of wall rigidity and wall elasticity parameter. The
concentration profile increases due to the increase in wall
rigidity parameter and wall elasticity parameter.

D. Trapping phenomenon
The most important phenomena in the peristalsis is Trap-

ping. This phenomena occurs during the peristalsis when few
of its streamlines gets closed resulting in the formulation
of boluses which circulates internally and move forward
with the speed of the peristaltic wave. These streamlines
are represented in Fig.8-12. Fig.8 illustrates the variation
in streamlines for various values of fluid parameter A.
The bolus has grown in size for an increment in A. Fluid
parameter B exhibits the opposite tendency in Fig.9 as a rise
in from B reduces the number of boluses. The streamlines
for changing the coefficient of variable viscosity are shown
in Fig.10. The bolus size grows as variable viscosity does.
Fig.11 depicts the variation for the velocity slip parameter.
The number of boluses increases for an increase in the ve-
locity slip parameter. Fig.12 shows the effect of several wall
characteristics in the formation of bolus. Fig.12(a) represents
effect of different wall parameters for specific values. The
size of the bolus grows as the wall tension parameter rises,
as shown in Fig.12(b). As the mass characteristic parameter
increases, the number of formation of boluses also increases
(see Fig.12(b) and Fig.12(c)). However, in Fig.12(d), the
bolus size shrinks as the wall-damping parameter value rises.
A similar trend is seen in Fig.12(e), where the greater value
of wall rigidity results in fewer trapped boluses. The size
of the bolus formed has been significantly reduced for an
increase in the wall elasticity parameter. (see Fig.12(f)). This
shows that wall characteristics plays an important role in the
formation of the bolus.
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Fig. 2: Variation of velocity profiles when E1 = 0.1, E2 = 0.04, E3 = 0.045, E4 = 0.002, E5 = 0.04, A = 0.2, B = 2,
x = 0.2, F = 2, t = 0.1, α = π

4 , α1 = 0.02, β1 = 0.02, ϵ = 0.3,m = 0.05.
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Fig. 3: Variation of velocity profiles when E1 = 0.1, E2 = 0.04, E3 = 0.045, E4 = 0.002, E5 = 0.04, A = 0.2, B = 2,
x = 0.2, F = 2, t = 0.1, α = π

4 , α1 = 0.02, β1 = 0.02, ϵ = 0.3,m = 0.05.

Fig. 4: Variation of temperature profiles when E1 = 0.1, E2 = 0.04, E3 = 0.045, E4 = 0.002, E5 = 0.04, A = 0.2, B = 2,
x = 0.2, F = 2, t = 0.1, α = π

4 , Br = 1, α1 = 0.02, α2 = 0.02, β2 = 0.02, ϵ = 0.3,m = 0.05.
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Fig. 5: Variation of temperature profiles when E1 = 0.1, E2 = 0.04, E3 = 0.045, E4 = 0.002, E5 = 0.04, A = 0.2, B = 2,
x = 0.2, F = 2, t = 0.1, α = π

4 , Br = 1, α1 = 0.02, α2 = 0.02, β2 = 0.02, ϵ = 0.3,m = 0.05.
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Fig. 6: Variation of concentration profiles when E1 = 0.1, E2 = 0.04, E3 = 0.045, E4 = 0.002, E5 = 0.04, A = 0.2,
B = 2, x = 0.2, F = 2, t = 0.1, α = π

4 , Br = 1, Sc = 1, Sr = 1, α1 = 0.02, α2 = 0.02, β2 = 0.02, β3 = 0.02, ϵ = 0.3,
m = 0.05.
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Fig. 7: Variation of concentration profiles when E1 = 0.1, E2 = 0.04, E3 = 0.045, E4 = 0.002, E5 = 0.04, A = 0.2,
B = 2, x = 0.2, F = 2, t = 0.1, α = π

4 , Br = 1, Sc = 1, Sr = 1, α1 = 0.02, α2 = 0.02, β2 = 0.02, β3 = 0.02, ϵ = 0.3,
m = 0.05.

Fig. 8: Variation of streamlines for (a) A = 0.2 (b) A = 0.4
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Fig. 9: Variation of streamlines for (a) B = 1.8 (b) B = 2.2

Fig. 10: Variation of streamlines for (a) α1 = 0.01 (b) α1 = 0.04

Fig. 11: Variation of streamlines for (a) β1 = 0.00 (b) β1 = 0.03
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Fig. 12: Variation of streamlines for (a) E1 = 0.1, E2 = 0.04, E3 = 0.045, E4 = 0.002, E5 = 0.04 (b) E1 = 0.11,
E2 = 0.04, E3 = 0.045, E4 = 0.002, E5 = 0.04 (c) E1 = 0.11, E2 = 0.05, E3 = 0.045, E4 = 0.002, E5 = 0.04

(d) E1 = 0.11, E2 = 0.05, E3 = 0.065, E4 = 0.002, E5 = 0.04 (e) E1 = 0.11, E2 = 0.05, E3 = 0.065, E4 = 0.003,
E5 = 0.04 (f) E1 = 0.11, E2 = 0.05, E3 = 0.065, E4 = 0.003, E5 = 0.10

Engineering Letters, 31:2, EL_31_2_42

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 



V. CONCLUSION

A non-uniform channel is considered in our initial in-
vestigation to examine the peristaltic flow of an Eyring
Powell fluid while taking slip, variable viscosity, and variable
thermal conductivity into account. The current study explains
the movement of chyme into the gastrointestinal system and
blood flows through small arteries, where fluid viscosity
changes depending on wall thickness. Following are the
preliminary results from the current model:

• Eyring Powell fluid parameters show opposite behaviour
for velocity, temperature, and concentration profiles.

• The variable viscosity enhance both temperature and
velocity profiles.

• The temperature profiles are improved by increasing
Brinkman number, whereas the concentration profiles
exhibit opposite behaviour.

• Variable thermal conductivity decreases both tempera-
ture and concentration profiles.

• Velocity slip parameters improves the number of trapped
boluses.
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