
 

  
 Abstract—Clean energy has taken center stage in discussions 

about how to ensure that humanity has a sustainable future 

when fossil resources are depleted. Wind energy is also playing 

a bigger and bigger part in the energy supply as a clean, 

renewable energy source. Hence, the use of wind energy is 

significantly impacted by an accurate and appropriate wind 

speed prediction system. The non-linear wind speed prediction 

in this research is handled by a master-slave prediction model 

based on a convolutional neural network and long-short 

memory (CNN-LSTM) network and an improved Pelican 

Optimization Algorithm BP neural network (IPOABP). In this 

model, CNN-LSTM is used to obtain a prediction sequence for 

each subsequence, producing a smoother feature sequence. A 

BPNN BP (Back-Propagion Neural Network) is then trained 

using the reconstructed sequence, and the reconstructed 

sequence is processed by inverse empirical modal 

decomposition (EMD) for the prediction sequence. Hence, the 

use of wind energy is significantly impacted by an accurate and 

appropriate wind speed prediction system. The non-linear wind 

speed prediction in this research is handled by a master-slave 

prediction model based on a convolutional neural network and 

long-short memory (CNN-LSTM) network and an improved 

Pelican Optimization Algorithm BP neural network (IPOABP). 

In this model, CNN-LSTM is used to obtain a prediction 

sequence for each subsequence, producing a smoother feature 

sequence. A BPNN BP (Back-Propagion Neural Network) is 

then trained using the reconstructed sequence, and the 

reconstructed sequence is processed by inverse empirical modal 

decomposition (EMD) for the prediction sequence. 

(RMSE=0.0596, MAPE=0.8923, MAE=0.0481) were obtained 

as minimum values from experiments on 3 different datasets. 
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I. INTRODUCTION 

he 21st century's tremendous economic growth has been 

matched by an increase in energy usage. Wind power is 

one of the least expensive ways to produce electricity, 

therefore today energy is recognized as a key component 

determining the economic development of nations all over 

the world [1,2]. China added 71.67 GW of new wind power 

capacity, bringing its installed capacity to 338.31 GW, or 

40.4% of the total installed capacity worldwide [3,4]. 

However, because wind speed is so unpredictable and 

volatile, it is crucial for wind farms to have a reliable 

mechanism for predicting wind speed [5,6]. 

After decades of updates and iterations, numerous 

researchers have developed a number of efficient techniques, 

primarily physical techniques, statistical techniques, in order 

to increase wind speed predicting accuracy, artificial 

intelligence approaches and hybrid models were used. 

Broadly speaking, there are three types of wind speed 

forecasts: long-term, medium-term, and short-term [7,8]. 

The coordination of power dispatch and the use of short-

term wind speed forecasts as a tool to maintain the security 

and stability of the power system are both crucial [9,10]. The 

most effective data pre-processing technique is suggested in 

an enhanced fully aggregated empirical modal 

decomposition using adaptive white noise and a multi-

objective dragonfly algorithm for managing the fluctuation 

and stochasticity of wind speed series data is described in 

the review [11]. Most existing prediction models disregard 

the significance of data pre-processing and are sensitive to 

the constraints of a single model, resulting in poor forecast 

accuracy. ICCEMDAN is used to divide the original wind 

speed into many series and then discard high frequencies 

before reconstructing the windspeed. The new combined 

model effectively overcomes the constraints of the single 

model to produce precise and consistent prediction results 

by considering both the linear and non-linear aspects of the 

series [12]. The trend component is predicted using 

CNNGRU, and the detail component is predicted using SVR. 

In Article [13], the time-series coupling information in the 

data is mined using a one-dimensional convolutional neural 

network. The article rarely takes the turbulent component of 

the wind into account compared to earlier projections of 

mean wind speed. The literature [14] uses a correlation 

analysis-based strategy for choosing time-delay features in 

order to produce superior structural predictors. A large 
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improvement in prediction accuracy may be shown by 

contrasting the performance with widely used competitors 

like ANN, SVR, and ELM. According to this framework, 

WPD divides the initial wind speed sequence into a number 

of sub-layers, and CEEMDAN further divides all sub-layers 

into several IMF (intrinsic modal functions). Finally, three 

neural network models are used to forecast the deconstructed 

wind speed data: BP, RBF, and GRNN. A mixture model is 

proposed in the press using grey relational theory and wind 

speed profiles [15,16] as a way to benefit from each 

individual prediction model and enhance wind power 

forecasting. To estimate the weights of each independent 

model, different wind speed segments and comparable wind 

speed frequencies are taken into consideration. The wind 

speed frequency is considered. This case study demonstrated 

that mixture forecasting systems have wider utility for very 

short-term wind output forecasting. (15 minutes in advance) 

[17,18]. 

Deep learning has recently attracted the attention and 

favor of many academics due to its widespread use in a 

variety of sectors and major benefits. Particularly, in many 

sectors, LSTM, a type of recurrent neural network (RNN), 

outperforms conventional techniques. By using an optimized 

recursive generalized learning system (ORBLS), sample 

entropy (SE), an extended completely ICEEMDAN, and a 

broadened temporal convolutional network, Article [19] 

presents an innovative hybrid model with the purpose of 

improving the precision of ultra-short-term wind speed 

prediction. A CNN, an LSTM model, and a new, strong 

approach to improving WSF are presented in article [20]. 

The proposed hybrid technique is composed of two primary 

components: feature encoding, LSTM autoencoder-based 

downscaling, and convolutional LSTM-based prediction. 

The LSTM autoencoder minimizes the computational load 

of the predictive convolutional LSTM technique in the first 

stage by removing the uncertainty present in the raw wind 

speed data. Next, in the 2nd phase, the best characteristics 

are extracted using CNN, and the wind speed is predicted 

using LSTM. Suggested hybrid model outperforms other 

models used in one-step to five-step forecasting. A novel 

spatio-temporal correlation model (STCM) based on CNN-

LSTM is suggested in research [21] for use in the 

forecasting of wind power over an extremely short period of 

time. Reconstructing the raw meteorological variables at 

various historical time points at various locations within the 

target wind farm into the model's input window represents a 

novel method of data reconstruction. The study's [21] CNN-

LSTM-based STCM is relevant to wind farms that may 

gather meteorological data at various places. In order to 

predict short-term offshore wind speeds, the article [22] 

evaluates six different deep learning-based models: CNN, 

superimposed LSTM, bidirectional LSTM, CNN-LSTM, 

multilayer perceptron, and two-dimensional convolutional 

LSTM. Few researches have expanded the challenge to two-

dimensional wind planes; previous studies have mostly 

concentrated on single-location forecasting. This paper uses 

a mix of a CNN autoencoder and an LSTM to present a 

unique deep learning model for two-dimensional regional 

wind speed prediction. A significant estimate of the spatial 

wind speed distribution in a two-dimensional wind farm is 

provided by the overall MAE value of the present model, 

which decreases to 0.35 m/s and is 32.7%, 28.8%, and 

18.9% different from predictions made using the persistent, 

simple ANN, and LSTM models. 

This research provides a deep learning method and an 

improved heuristic optimization to raise the level of 

accuracy of the modelled predictions, so that wind speed 

predictions are more accurate and work better. The 

following are this paper's main contributions: (1) The data 

are pre-processed and post-processed by integrating SSA, 

CEEMDAN, and invert-EMD, considering the features of 

wind speed data. Inverse empirical modal decomposition is 

used to recreate the prediction subsequences that were 

derived from the primary predictor (invert-EMD). (2) Deep 

knowledge and BPNN inspired algorithms based on the 

optimization of a principle slave prediction model is created. 

A better BP network is used by the predictor to produce 

secondary predictions of invert-EMD reconstructed 

sequences after building a principal model based on CNN-

LSTM. (3) An IPOA is suggested to optimize the weight 

parameters of the BP network in order to prevent the 

network from succumbing to local optimization. (4) Five 

distinct models were tested on three datasets of 15-minute 

mean wind speeds in order to confirm the efficiency of the 

modules' functions and the success of the overall method. A 

comparison of the models' predicted outcomes led to some 

findings. 

II. PROPOSED MODEL 

Two methods for forecasting short-term wind speed are 

suggested in this paper: a deep learning-based master-slave 

prediction model and a BP neural network adjusted by 

heuristic algorithms. The model is made up of the IPOABP, 

CNN-LSTM data pre-processing, and CNN-LSTM data 

post-processing. The stages for model prediction are 

described below. 

1) The initial data on primary wind speed needs to be 

collected in order to denoise the primary wind speed and 

split the primary wind speed series into subseries. The data 

pre-processing component is then created by combining SSA 

and CEEMDAN. The data pre-processing component will be 

clearly detailed in Chapter 3. 

2) Following denoising using SSA, the wind speed 

sequence is divided into two parts: training and testing. To 

get the final prediction results, 80% of the denoised wind 

speed sequence is used as the training set and the remaining 

20% as the BPNN test set. 

3) Using CEEMDAN approach, training set was separated 

into multiple sub-series, and each sub-series was then split 

into training sets 1 and 2. 

4) Fuzzy on can be used to determine the time complexity 

of each component (FE), and intrinsic modal function 

components (IMF) are then combined to shape a new 

subsequence, using the spearman collinearity ratio. 

5) The CNN-LSTM network is utilized as the master 

prediction, and thus for each subsequence. Training is 

performed on training set 1 and testing is performed on 

training set 2. The test sequences of the training set 2 

subsequences are then obtained in CNN-LSTM network. 

6) Using inverse EMD as data post-processing, the 

predicted sequences of each subsequence are reconstructed 
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and a reconstructed sequence can be obtained by inverse 

EMD. 

7) IPOA-BP is used to perform the next step of prediction 

on the reconstructed sequences to complete the final 

prediction results. 

8) The hybrid prediction model combining CNN-LSTM 

and the IPOA-BP network is evaluated on the test set to get 

the final test results. Six unique models are compared in this 

study to assess the predicted capability of the proposed 

model, and section 4 outlines the evaluation criteria for 

doing so. 

III. METHODOLOGY 

Data pre-processing, master predictor (CNN-LSTM), data 

post-processing, and slave predictor are the four parts of the 

model indicated above (IPOA-BPNN). This chapter will 

describe the proposed model and the algorithmic part in 

detail. 

A. Data per-processing 

1) Singular Spectrum Analysis (SSA) 

SSA is a somewhat popular technique for analyzing and 

predicting event Series using non-linear time sequence 

fishery data. Its base is the singular value decomposition of a 

matrices built from time periods, which allows the 

deconstruction of trends, oscillatory components, and noise 

from a time series.[24].  

SSA has a fairly wide application to time series since it 

does not need the assumption of a parametric model or 

smoothness requirements[25]. Consists of two parts: 

decomposition and reconstruction. 

a) Decomposition 
Equation (1) shows how the initial wind speed sample 

size is turned into input tensors into a matrix, which is 
composed of a vector of dimension yi=(x1,…,xi+L-1). 

 

1 2
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K

L L N

x x x

x x x
Y

x x x

+
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= 



 (1) 

L stands for the embed window length L=N-L+1. 
Calculate the singular values of the matrices YYT, Di, and 

the left-hand odd matrix, where the odd ratio and its 
vegetation are provided by Eq. (2) and Eq., respectively (3) 

 1 2 ... dY Y Y Y= + + +  (2) 

 
1 i i iy C D=  (3) 

Where, d is the matrix YYT number of ranks. 

b)  Reconstruction 
Grouping: This phase separates matrix Y into d 

submatrices in order to discover the most valuable signal 
components. The m-matrix with singular deviations higher 
than 0 is the part of the preliminary wave speed series that 
expresses the long-term tendency; the submatrix of variance 
formed by these R={r1,…,rm} component matrices are given 
as 1, and relevant long-term tendency factor matrix is 
YR=Yr1+Yr2+…+Yrm, the sequence for each matrix is 

indicated by the number Yr1 、 Yr2... Yrm. The cycle 

concludes with the noise component of the original wind 
speed. 
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Fig.1 Three sets of original wind speeds 
 

Reconstruction: The noise element will be altered to a 
spurious time series Xnoise, which can be realised by the 
formulation. At the same time, the matrix Yp will be 
converted to an adequate wind speed timeseries 
XR={Xr1,…,Xrm} by means of diagonal averaging (4). After 
application of SSA processing, the result of the original 
wind speed time series may be seen in the equation (5) 

 

 

, 1

1

, 1

1

1

, 1

1

1
1

1

1

1

i

m k m

m

i

ri m k m

m

N k

m k m

m i k

y i l
i

y y l i k
l

y k i N
N i



− +

=



− +

=

− +


− +

= −


 




=  



 
− +







  (4) 

 
1 2 ...N r r rm noiseX X X X X= + + + +   (5) 

Where, Parameters l=min(L,K), k=max(L,K). 
When it comes to the data pre-processing phase, window 

length and The amount of parity r of the reconfigured sign, 
in addition to the selection of the two parameters to be 
determined in the phases described earlier, are all very 
important factors. The combination of the prior relationship 
of the empty formulation to the real data structure of this 
study is depicted in Figure 5; the SSA denoising outcome of 
the wind speed time sequence is displayed in Fig.2, and the 
choice of variables and their relative values are indicated in 
TABLE I below. Figure 5: The combination of the prior 
empirical formulae with the real data structure of this study. 

 

TABLE I  
SSA PARAMETERS AND VALUES 

Parameter name Value 

Window length L 8 

singular values number r 4 

characteristic value r1 98.16% 

characteristic value r2 0.9596% 

characteristic value r3 0.3632% 

characteristic value r4 0.1514% 

 

2) CEEMDAN 

3) The EEMD and CEEMD decomposition methods reduce 

Elimination of modal blending in EMD breakdown by 

adding pairs of impaired Gaussian white noise to the ribbon 
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decomposed signal. Nevertheless, the eigenmode 

components formed from these two signals always include 

some residual white noise, which has an effect on the signals' 

further analysis and processing[26]. 

 

 
 
Fig.2 . De-noised windspeed with SSA 

 

To address these issues, TorresME et al. (2011) 

introduced of Noise CEEMDAN method, an unique signal 

decomposition approach.[27].  

CEEMDAN, in contrast to EEMD, focuses on dissecting 

time series into IMFs (intrinsic mode functions), and it 

employs two strategies to decrease residual noise: 

a) Adding the EMD decomposition containing the 

auxiliary noise signal directly to raw signal. 

b) The discretization of EEMD and CEEMD is an integral 

mean of the obtained modal variables after the empirical 

modal factorization, while the classification of CEEMDAN 

is an entire mean of the acquired IMF components after the 

first stage of computing, to yield the final first-order IMF 

content, and then replicate the above routine for the 

residuals. The issue of moving white noise from higher to 

lower frequencies has now been resolved quite satisfactorily.  

The first one is to change the adjunctive noise, the second 

is a change in the break-up course, which is a better solution 

to the phenomenon of modal mixing that exists in empirical 

modal decomposition (EEMD)[28]. The specific analysis is 

described as follows. The principle is shown in Fig.3. 

Principle of CEEMDAN algorithm as shown below: 

Let E(•) be the eigenmode decomposition i eigenmode 

component was derived following EMD decomposition and 

by CEEMDAN decomposition is 

(1) Adding Gaussian white noise to the decomposition 

signal y(t) yields the new signal ( ) ( 1) ( )q jy t v t+ − , The 

formula is shown in equation (6). Where， q=1,2.  

The first-order component of the new signal's EMD 

decomposition is obtained eigenmodal component C1. 

 
1( ( ) ( 1) ( )) ( )q j j jE y t v t C t r+ − = +  (6) 

(2) The first characteristic modular component of the 

CEEMDAN deck is acquired by equally dividing the N 

outcome modular components. As shown in equation (7). 

 

Start

Add K times Gaussian white noise to the 

sequence to form a sequence of K

Iteration according to the formula

Each of the K sequences is processed separately 

according to the formula

Output modal functions

Meeting the stopping conditions

End

Y

N

 
Fig.3 The CEEMDAN implementation process 

 

 1 1

1

1
C ( ) ( )

N
j

j

t C t
N =

=   (7) 

(3) Calculate the residuals using equation (8) after 

deleting the 1st modal component： 

 1 1( ) ( ) ( )r t y t C t= −  (8) 

(4) The first feature mode segment D1 of the EMD 

factorization can be derived from the novel signal by adding 

positive and negative matched Gaussian white noise to the 

new signal. The new signal is then used as a carrier for the 

CEEMDAN decomposition: 

 
2 1

1

1
( ) ( )

N
j

j

C t D t
N =

=   (9) 

(5) After deleting the 2nd modal component, determine 

residuals. 

 2 1 2( ) ( ) ( )r t r t C t= −  (10) 

(6) Repeat the technique outlined above until the 

remaining signal is a function that is univocal and cannot be 

further profiled. The algorithm then finishes, K eigenmodal 

components are obtained, original signal y(t) is decomposed 

as: 

 
1

( ) ( ) ( )
K

k k

k

y t C t r t
=

= +  (11) 

 

4) Fuzzy entropy (FE) 

When estimating the sophistication of a time series, one of 

the criteria assessed is FE. The FE measures the magnitude 

of the probability of a new pattern being generated, 

analogous to the physical meanings of AE and SE; the larger 

the value of the measure, the greater the likelihood of a new 

format being generated, and thus the greater the series' 

complexity[29], the structure of FE is shown in Fig.7. 

The steps for implementing fuzzy entropy are as follows: 

Given an time series, [u(1), u(2),…,u(N)] time series in N-

dimensional. Determine the similarity tolerance limit r and 
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the phase space dimension m(m<N-2). and reconstruct the 

phase space as shown in equation (12):  

 

Naive

y
t

h
t

h
t-1

x
t

 

Fig.4  CNN framework diagram 
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The fuzzy affiliation function introduced in this paper, is 

shown in equation (13).  

 2
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Where, r is the similarity tolerance limit. For i=1,2,…N-

m+1, calculate equation（14）: 
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m
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Where, 1,2,..., 1j N m= − + , .j i  
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d
m 

ij  is the maximum absolute distance between the window 

vectors ( )X i  and ( )X j . The calculation formula is shown in 

equation (15). 

For each i , find the average to obtain: 
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Defining ( )m r as: 
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The FE of the original time series is: 

 1( , ) lim[ln ( ) ln ( )]m m

N
FuzzyEn m r r r+

→
=  −   (18) 

For a restricted data set, the fuzzy upper bound is calculated 

as: 

 1( , , ) [ln ( ) ln ( )]m mFuzzyEn m r N r r+=  −   (19) 

B. CNN-LSTM model   

1) Convolutional Neural Networks (CNN) 

a) Concepts of Convolutional Neural Networks 

Convolutional neural networks are one of the most 

successful applications of deep learning techniques (CNNs). 

These include convolutional neural networks in 1D, 2D, and 

3D [30]. Three-dimensional CNN are often used for the 

discrimination of optical images and video data, whereas 

two-dimensional CNN are often employed for imagery 

verification text recognition in one-dimensional 

convolutional neural networks.[31]. 
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Fig.5  Data transfer process 
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Fig.6 LSTM framework diagram 

Engineering Letters, 31:2, EL_31_2_43

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 



 

X1 X2 ... Xn

Xk

X1

...

m-dimensional vector

Xi=

[x(i),x(i+1), ,x(i+m-1)]

X2

k=n-m+1

Xi=

[x(i),x(i+1), ,x(i+m-1)

Xj=

[x(j),x(j+1), ,x(j+m-1)- =dij

Calculate the distance between 

each sequence and k sequences, 

and tabulate dij

Average of all affiliations except 

itself

 

 

 

 

 m=m-1,repeat  - 

Φm+1(t) Φm(t) 

 
Calculating fuzzy entropy：
FuzzyEn=lnΦm(t) -lnΦm+1(t) 

Fig.7  Flowchart of FE implementation 

 

b) Convolutional neural network structure 

Typically, CNN have the following layers. 

Convolutional layers: The convolutional layers of a CNN 

are made up of a number of convolutional units, the 

arguments of each involution unit are revised using back 

propagation. To extract multiple properties from input data, 

convolutional procedures are performed. After The first 

convolutional layer, which may only pick up some lower-

level functions, such as edges, lines and corners, a higher 

layered network may repeatedly extract more intricate 

characteristics from the low-level input. 

Excitation layer: the output of the convolutional layer is 

mapped in a non-linear fashion utilizing well-known 

excitation functions like as the Sigmoid, Tanh, and ReLU 

functions. Rapid convergence and straightforward gradient 

detection are hallmarks of a typical ReLU excitation 

function for a CNN. 

Pooling layer: The pooling layer, which is located 

between two convolutional layers and has two functions, is 

as follows: 1) To reduce the dimensionality of feature vector 

that is generated by the convolutional layer as well as the 

number of training parameters; 2) To lower the amount of 

noise that is sent and to only save the most crucial picture 

data. 

Generally speaking, there are two general types of pooling: 

Max Pooling: We will take maximum value in the sliding 

scale window.  

Average Pooling: We will take average of all numbers in 

the sliding widget 

2) long short-term memory (LSTM) 

The primary goal of LSTM, a distinct kind of RNN, is to 

Solving the grade vanishing and gradient exposure problem 

in long sequential coaching [32]. Simply said, it outperforms 

traditional RNNs in longer sequences. Figures 4 and 6 

demonstrate how the two differ from one another. 

In LSTM, where the passed-on changes extremely slowly 

and the tc  output often represents the value of the passed-on 

from the prior state, the th  in RNN is identical to the tc . 

Fig.6 depicts the LSTM's internal structure. 

 

a) Structure of the LSTM 

Splicing vectors multiplied by a texture of weights to 

produce the three states zf, zi, and zo, which are then use 

sigmoid activated features as threshold state conversion to 

values between 0 and 1. A tanh activation function 

transforms z into a number between -1 and 1. (tanh is used 

here because it is intended to be applied as entry data and 

not as a gating sign.). 
 

b) Three phases within the LSTM 

First phase: The forgetting phase: the forgetting gate. This 

stage is a period of partial obliviousness to the input from 

the earlier node. In simple terms, this stands for "forget the 

not-so-important and keep in mind the vital". Specifically, 

the zf (f for forget) is computed as a forgetting gate, and the 

ct
 controls what needs to be kept and what needs to be 

forgotten from the previous state. 

Second phase: input gate stage of a selective memory. 

This stage ‘remembers’ just some of the inputs from earlier 

stages. The choice of input xt is the major concern. The more 

significant portions are recorded, while the less significant 

portions are recorded less. The previously computed z 

represents the current input. zi chooses the gating signal to 

be used (i for information). The outcome of these two phases 

is combined to produce the ct that will be transferred to the 

next state, which is represented by the first equation in the 

above figure. 

The third step is the output gate phase. Which will be 

utilized as the current state’s output will be decided at this 

step. The zo is generally used to regulate it. Moreover, the co 

from the earlier phase is deflated (varied by a tanh activation 

function). The output y(t) is often finally acquired by the ht 

variation, much like a typical RNN. 

 

3) CNN-LSTM 

In this investigation, a CNN-LSTM net was utilized as the 

principal prediction period. With CNN, the danger of 

overfitting is effectively decreased, and it excels in feature 

extraction and generalization.  

This research proposes a 1-separated convolutional level 

(conv1D chunks) to further exploit pre-processed input from 
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the LSTM, which is used as the primary predictor. LSTM 

provides one output at each time step, ability to treat 1D 

time chains and yield results. during several experiments, the 

activation feature of the LSTM layer was defined as a 

sigmoid factor, while the activation function of each 

convolutional layer is identified as PreLU. Moreover, zero 

padding is employed to maintain the same dimensionality 

between the convolutional layers' input and output[33]. 

Each subsequence of training set 1 is for train CNN-

LSTM, and each subsequence of training set 2 is used to test 

it. The output of CNN-LSTM will be the prediction 

outcomes for each subsequence of the training set 2. In 

section IV, forecast accuracy will be judged based on MAE, 

RMSE and MAPE between the feed and CNN-LSTM 

forecast. The predictions will also be rebuilt using invert-

EMD. 

C. Data post-processing 

Inverse EMD is the same as reversing EMD, and the 

execution flow of inverse EMD is depicted in Fig. 9 

displayed. Inverse EMD is used as a Data post-processor, 

rebuild subseries of CNN-LSTM predictions. 
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Fig.8 Reconstructed wind speed sequence 

 

Each sequence's share of the set is evaluated according to 

the magnitude of the frequency threshold to determine 

whether the sequence meets the reconstruction conditions. 

As observed in Fig. 8, the training set 2 predicted sequence, 

also known as the reconstructed sequence in this research, is 

the outcome of the inverse EMD.  

D. The subordinate prediction model 

1) Pelican Optimization Algorithm (POA) 

The Pelican Optimization Algorithm (POA), developed in 

2022 by Pavel Trojovský and Mohammad Dehghani, models 

pelicans' natural hunting behavior[34]. 

The pelican is a huge bird that can grab and swallow 

anything because to its enormous neck pouch and long beak. 

The bird loves to live moving masse in colonies of hundreds 

of other pelicans, they often hunt jointly, dropping down 

from a height of 10 to 20 meters when they see their victims. 

The basic idea behind program is that POA mimics the 

two stages of pelican assault and hunting behavior. 

Invert-EMD

Input: IMFs ,the ranges of frequency[flow , fup].

Calculate the proportion Pi of each IMF in the whole.

Define the threshold T snd reconstruction sequence X=[]

If Pi<T, add this IMF into X.

Output :reconstruction sequence 

End
  

Fig.9 Workflow diagram for invert-EMD 

 

a. Approaching prey (global search phase) 

The pelican locates its prey in the first phase and then 

heads in that direction. Modelling this pelican tactic allows 

for a sweep of the search universe and takes advantage of the 

proposed POA's exploratory capabilities to find new areas of 

the search space. An important aspect of the POA refers to 

the prey's placement being randomly derived in the search 

space, which enhances the spatial aspects of the precise 

search problem resolved. The model in equation (20) below 

simulates the aforementioned idea as well as the pelican's 

approach to its prey's position statistically. 

 1
, ,

,

, ,

( ), ;

( ), ;

i j j i j p iP

i j

i j i j j

x rand p I x F F
x

x rand x p else

+  −  
= 

+  −

  (20) 

I is an arbitrary integral number that can be either taken as 

1 or 2. When I = 2, the shifts of each entity can be added, 

causing it to visit a new zone of the search space. Where pj 

is the hunter's position in dimension j and Fp is its value of 

the goal factor. 

b. Surface flight (local search phase) 

The second step took place when the pelican came to the 

top of the water, unfurling its wings, and lifts the fish into its 

neck pouch. By using this tactic, the pelican catches more 

fish in the assault area, and by simulating this behavior, 

proposed POA may converge to more advantageous 

locations in hunting region, improving local search 

capabilities and the capacity to utilize the POA. The 

behavior of the pelican during the search is mathematically 

depicted in equation (21) as follows: From a mathematical 

perspective, the algorithm must checkpoint near pelican's 

location to converge to a nicer place： 

 2

, , ,(1 ) (2 1)
P

i j i j i j

t
x x R rand x

T
= +  −   −    (21) 

Where: t is the number of iterations and R=0.2 is a 

constant; is the maximum number of iterations. 

2) Differential evolution 

Based on evolutionary concepts like genetic algorithms, 

Rainer Storn and Kenneth Price suggested differential 
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evolution (DE) in 1997[35]. It is basically a multi-objective 

optimization algorithm (MOEAs) for the purpose of finding 

the overall optimum solution in a multi-dimensional space. 

The continuous variable is the optimization variable. [36]. 

 

 

Fig.10 . Pre-processed results for dataset 1 

 

The procedure for the method is indicated below: 

a) Initialization of the population: In most cases, it is done 

so in a haphazard manner within a predetermined area in 

order to locate Maximal value of f(x) at the superior border 

of the region [a, b]. After this has been accomplished, The 

preliminary values are treated purely as a continuous spread 

of [a, b]. 

b) Variational operation: the difference is reflected in this 

phase by picking any three distinct values for x1, x2, and x3 

from the existing solution. This is done such that the new 

solution is written as x0=x1+F*(x1+x2), where F is the 

variational factor. 

c) Intersection operation: exchange of part of the 

settlement; a crossover element must be assigned. 

d) Processing of bounds: after variances and intersections, 

the join may be placed outside the desired range; you may 

hence choose to substitute values according to the endpoints 

of the interval, or you may even select a result that is within 

the limit of the ranges. If the join is outside of the required 

interval, then you must handle the boundary in one of two 

ways. 

e) Operation of selection: Evaluate the goodness of a 

resolution using an assessment filter, for instance by locating 

the minimum level of the flow and then feeding the closure 

into the function. The lesser the value, the more likely it is 

that the quality of the settlement is high and the more likely 

it is to be checked for IPOA-BP. 

To address its shortcomings in global search, the 
difference optimization algorithm is offered as an 
enhancement to the Pelican optimization algorithm, A group 
intelligence-based optimization algorithm informed by 

pelican tracking strategies. Meanwhile, the initial threshold 
is the threshold point between the concealed and export 
layers in the BP neural network, which is extremely sensible 
to the link weights between the neurons in the input, 
concealed and export layers. Nevertheless, The starting 
weapons and triggers of the BP neural network are chosen 
stochastically, despite the fact that these factors have a 
considerable effect on the capacity of the product. to make 
accurate predictions. Optimizing the BP neural network's 
initial weights and thresholds using IPOA helps make the 
network less restrictive and the prediction model more 
accurate. Figure 11 depicts the three-dimensional structure 
of IPOA-BP.  

 

Training data and test data

Determining the structure of BP

Get optimal weights and thresholds

Training BP

Forecasting

IPOA parameter setting

Population initialization 

Iter=0

Calculate the fitness of particles

Updata position of particles

Iter= iter+1

Iter>Itermax

 

Fig.11  The structure of IPOA-BP 
In addition, parameters have a role in determining the 

prediction accuracy, making it equally important to choose 

appropriate parameters. The proposed model parameters 

presented in TABLE II are based on extensive 

experimentation and earlier empirical formulations. 

 
TABLE II  

PARAMETER INITIALIZATION 

Parameter name Value 

Number of iterations 100 

Population size 30 

Evolution times 30 

Number of input layer nodes 5 

Number of hidden layer nodes 11 

Number of output layer nodes 1 

 

A series of tests comparing the benchmark functions 

before and after the modified Novel algorithms were 

formulated to test the potency of the IPOA algorithm as 

suggested in this study. TABLE III displays the actual test 

functions that were run. Each of the F1-F4 benchmark 

functions stands for a unique concept: The accuracy of this 

approach to optimization is primarily checked using two 

features, F1 and F2, which are separable for unimodal 

variables (US) and non-separable for unimodal variables 

(UN). The functions F3 and F4 are polymodal detachable 

and polymodal non-detachable respectively. [37]. 

These problems were selected to test the algorithm's 

capacity to identify global optimization since they are non-

linear and feature local optima. The experimental results for 

the benchmark function are displayed in iterative 

comparison graphs for each test function in Fig.12–15. 
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Fig.12  convergence graphs of the benchmark function F1 
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Fig.13  convergence graphs of the benchmark function F2 
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Fig.14   convergence graphs of the benchmark function F3 
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Fig.15   convergence graphs of the benchmark function F4 

TABLE IV displays the mean, standard deviation, 

worst, and best values of the output values of the four 

benchmark functions employed to statistically examine the 

performance of search strategy, keeping in mind stochastic 

character of the algorithm utilized. 

It is easy to show that IPOA is superior in both 

convergence speed and convergence accuracy compared to 

POA by comparing their respective convergence curves 

under four distinct benchmark test functions. Moreover, as 

shown in TABLE IV, the enhanced Pelican optimization 

method improves upon the original Pelican optimization 

algorithm in terms of optimization accuracy (by 51.6%) and 

stability (by 46.3%). 
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TABLE IV  
PERFORMANCE COMPARISON of ALGORITHMS 

Benchmark function simulation results 

Function Algorithm MEAN STDEV BEST WORST 

F1 POA 3.3421E-04 4.4556E-05 2.5548E-47 0.0425 

 IPOA 3.3745E-07 7.0254E-11 6.2548E-69 0.0118 

F2 POA 0.0625 0.0278 2.4815E-04 0.8077 

 IPOA 0.0338 0.0145 1.6818E-06 0.5255 

F3 POA 3.5698E-04 0.0267 4.5692E-04 0.0347 

 IPOA 5.4421E-12 0.0197 1.3841E-06 0.0145 

F4 POA 2.6481E-03 7.1854E-04 8.1917E-16 0.0589 

 IPOA 5.1278E-07 6.6157E-07 3.5618E-25 0.02468 

 

IV. RESULT IN ANALYSIS 

A. Description of wind speed data 

The analysis used 15-minute data on average wind speeds 

gathered from a wind park in Jiangsu Province. The data are 

monthly measurements of Wind speed captured in real time 

at the same point in order to simplify comparison and obtain 

regularity. 

The IPOA-BP model was trained using the first 1800 

values as the training set for a CNN-LSTM predictor and 

then validated using the obtained prediction sequences. The 

last 200 values serve as a test set for the final prediction, and 

These outputs were used to estimate the usefulness of the 

suggested model. 

B. Data pre-processing results 

The input wind speed is preprocessed in the hybrid model 

using SSA and CEEMDAN, which performs operations 

including denoising and decomposition. Figure 10 displays 

the data before to processing. To generate the fuzzy entropy 

values of each IMF component, 500 sets of Gaussian white 

noise with a non-standard variance of 0.2 were applied. 

Overlaying and recombining the components with 

considerable correlation and above led to the FE-IMF, and 

the computational scale was lowered to prevent error 

buildup from over-decomposition. 
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Fig.16 . Prediction results of the model in dataset 1 

C. Performance evaluation indicators 

Researchers have devised and used a wide variety of 
measures for measuring performance in published works. 
The same four error criteria—MAE, MSE, RMSE, and 
MAPE—have been used to evaluate the precision of wind  

 

TABLE V  
THE PERFORMANCE EVALUATION INDEX 

Index Meaning Formula 
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speed forecasts. TABLE V explains what they signify and 
how to precisely calculate them. 

Where yi represents the factual values, iy  represents the 

anticipated values, and n represents the predicted amount of 

wind speed. Positive and negative prediction errors may be 

mutually cancelled if MAE and RMSE have the same 

amplitude. The degree of variability in the underlying data 

can be estimated by the MSE; the lower the MSE score, the 

more precise the predictive model. MAPE has high 

resilience since it the differences between actual and 

predicted amounts are not only inspected, but also the 

wireless link between the erroneous and real figures. The 

model's performance is connected to the metrics, with lower 

metrics indicating higher performance. 

D. Prediction results and comparative analysis 

The forecast results of the model put forward in this 

research are shown in Figures 16-18. This is done before 

comparing the results to those of other models. T clarify the 

utility of the models that have been suggested, six extremely 

typical prediction models, including SSA-ARIMA, SSA-

Elman, SSA-CNN-LSTM-POA-BP, SSA-PSO, and LSTM, 

as well as the proposed models themselves, have been 

chosen for assessment and analysis in this work. The final 

prediction result is determined by taking average value 

obtained from 10 separate executions of each model. This is 

done because the process of making predictions using neural 

network prediction models is subject to a certain amount of 

random interference, which means that the results will not be 

the same for each operation. 

The accuracy of the models' predictions was evaluated 

using one of four distinct fundamental metrics, and the 

results of those evaluations are shown in Tables VI-VIII, 

below. 

As shown in the TABLE Ⅵ-Ⅷ  

a) Neural network models such as SSA-LSTM, SSA-

CNN-LSTM, and intelligent algorithm optimized SSA-PSO-

BPNN achieve performance metrics that are much superior 
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than those of SSA-ARIMA and SSA-Elman models. This is 

in comparison to standard single models. For illustration, the 

Model has a MAPE of 0.89% in dataset 2, which is much 

lower than the 3.08% that SSA-ARIMA and Elman both 

achieve. 

For sample, in dataset 1, the MSE, MAE, MAPE, and 

RMSE of the model in this article were 0.0031, 0.0481, 

0.8923%, and 0.0596, respectively, whereas the SSA-PSO-

BPNN had MSE, 0.492, 0.9143%, and 0.0618. The four 

values of performance indicators achieved by the present 

study's model are below the limits reached by the preceding 

two deep learning brands. In practice, suggested hybrid 

model offers a high level of dependability. 
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Fig.17 . Prediction results of the model in dataset 2 
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Fig.18 . Prediction results of the model in dataset  

 

b) For the three experimental datasets, the hybrid model 

outperformed the single model in terms of predictive 

performance. In dataset 3, for example, the MAPE and 

RMSE of the SSA-LSTM model were 4.45% and 0.316, 

respectively, whereas the SSA-CNN-LSTM values were 

4.098% and 0.281. Moreover, the SSA-CNN-LSTM model's 

LSTM runtime was around double that of the SSA-CNN-

LSTM model. 

This suggests that the present hybrid approach, which 

includes data pre-processing, data breakdown, and 

intelligent algorithm optimization, is more dependable in 

terms of boosting prediction accuracy. In this study, SSA- 

CNN-LSTM model picked as dominant predictor because to 

its comprehensiveness. 

c) The prediction model developed in this research 

outperforms the SSA-PSO-BPNN optimized using the 

particle swarm method in terms of accuracy. This occurrence 

shows that utilizing a profound learning network as the 

prime predictor may increase the prediction model's 

performance. 
TABLE VI  

FORECASTING ERROR CRITERIA OF DIFFERENT MODELS FOR DATASET 1 

model MAE MAPE MSE RMSE 

Proposed 0.0471 0.8913 0.0035 0.0592 

SSA-POABP 0.0491 0.9144 0.0035 0.0617 

SSA-PSOBP 0.0497 0.9437 0.0034 0.0604 

SSA-CNN-LSTM 0.0494 0.9258 0.0032 0.0622 

SSA-LSTM 0.0742 1.7194 0.0085 0.0945 

SSA-Elman 0.2048 3.0842 0.0731 0.0608 

SSA-ARIMA 0.1661 3.0802 0.0441 0.2100 

 

d) The lower the index value for the wind speed 

projection model, the greater the model capability. Despite 

the fact that the metrics of SSA-PSO-BPNN in dataset 3 are 

poorer than the models in this study, such as MAPEs of 

1.135% and 1.892% for the models in this paper and SSA-

PSO-BPNN, predictive precision and stable model in this 

article are better than the models in the comparison. Also, 

the model's indicator values are lower. This occurrence 

suggests that the model is capable of meeting the standards 

for high accuracy in wind speed predictions. 

e) In terms of accuracy performance indicators, the 

model's indicator values derived on the three data sets have a 

fluctuation range of less than 0.2, shows that the model has a 

high broadening power and can be adapted to different wind 

velocity data sets. 

V. CONCLUSION 

Improving the reliability and consistency of wind speed 

predictions is the primary goal of this experiment, this 

research proposes a hybrid model based on SSA, 

CEEMDAN, fuzzy entropy, invert-EMD, CNN-LSTM, and 

IPOA to optimize the BP neural network. To increase data 

quality, the model employs SSA for data pre-processing and 

noise reduction on raw wind speed data acquisition at 15-

minute headways. The experimental findings suggest that 

SSA may enhance data quality and lower final prediction 

error after denoising.  

 
TABLE VII  

FORECASTING ERROR CRITERIA OF DIFFERENT MODELS FOR DATASET 2 

model MAE MAPE MSE RMSE 

Proposed 0.0787 2.0234 0.0095 0.0957 

SSA-POABP 0.0823 2.1211 0.0108 0.1062 

SSA-PSOBP 0.0933 2.2744 0.0218 0.1154 

SSA-CNN-LSTM 0.1045 2.45653 0.0375 0.1538 

SSA-LSTM 0.0952 2.3521 0.0325 0.1527 

SSA-Elman 0.6085 16.250 0.5862 0.7653 

SSA-ARIMA 0.2657 6.7858 0.1174 0.3424 

 

CEEMDAN was used to denoise the data and yield IMF 

ingredients with various qualities. The denoised raw wind 

speed data were separated into numerous sub-series, with 

CNN-LSTM serving as the primary predictor for each.
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To rebuild the sub-series, data post-processing was built 

using invert-EMD. The sub-predictor IPOA-BPNN is 

utilized to train the reconstructed sequences, and the 

prediction sequences acquired from the main predictor are 

used to complete the final wind speed prediction. To create a 

hybrid predictor, the model incorporates the strengths of 

deep learning algorithms and classical artificial neural 

networks, while raw wind speed data is processed using data 

mining methods to increase data quality. 

TABLE VIII  

FORECASTING ERROR CRITERIA OF DIFFERENT MODELS FOR DATASET 3 

model MAE MAPE MSE RMSE 

Proposed 0.052 1.135 0.006 0.078 

SSA-POABP 0.059 1.254 0.0073 0.083 

SSA-PSOBP 0.106 1.892 0.024 0.184 

SSA-CNN-LSTM 0.216 4.098 0.079 0.281 

SSA-LSTM 0.234 4.450 0.092 0.303 

SSA-Elman 0.714 11.889 0.735 0.857 

SSA-ARIMA 0.201 5.136 0.129 0.374 

 

Using three wind speed datasets, five different models 

were examined, including the suggested models SSA-PSO-

BP, SSA-ARIMA, SSA-POABP, SSA-Elman, and SSA-

LSTM. The performance histograms in Fig.19-21 show 

that:(1) the suggested models exhibit good prediction 

accuracy. The MAPE of the three datasets, for example, is 

under 2%, while the MSE is lower than 0.06. (2) The 

principle-dependent forecast policy depicted in this research 

permitted the model to leverage more data aspects and attain 

improved prediction accuracy. For illusions, in set 3, model's 

MAPE and RMSE are 1.135% and 0.078, respectively. The 

signal CNN-LSTM model's MAPE and RMSE are 4.098% 

and 0.281, respectively. (3) By removing noise from the row 

wind speed sequence of the data, the wind curve is smoothed 

out and anomalies are eliminated to some degree pre-

processing. (4) The model has a high level of stability and 

generalizability. The MSE discrepancy between the three 

sets is less than 0.03 m/s, the RMSE difference is lower than 

0.02 m/s, and the MAPE variation is lower than 1%, based 

on the preference matrix of the three data sets. (5) The 

model beat the other five prediction models in terms of 

stability, directionality, and variability. Finally, the 

fundamental advantage of the approach suggested in this the 

findings are that it incorporates the merits of both CNN and 

LSTM algorithms. Most present approaches are concerned 

with maximizing the weight parameters of classic neural 

networks rather than extracting the major aspects of wind 

speed data. 

Our future research will concentrate on multi-feature 

forecasting. (1) To develop individual prediction models, we 

will propose a recent revolutionary deep learning technique 

like GAN and bidirectional LSTM. (2) We will fine-tune the 

model's structure. (3) Adding CNN-LSTM input eigen 

volume for projecting wind speed data based on several 

climatic factors such as temperature, height, humidity and 

wind direction. (4) To test model's flexibility, we will apply 

it to different kinds of data. 
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