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Abstract—The grey wolf optimizer (GWO) is an efficient

meta-heuristic algorithm inspired by hunting mechanism of
grey wolf. Although it has successfully solved many engineering
problems, it still suffers form premature convergence and poor
precision in some cases. This paper presents a hybrid grey wolf
optimization algorithm (HGWO) with enhanced exploration
and exploitation. In order to boost the efficacy of GWO, a new α,
β and δ wolf selected method based on random subgroup
strategy is proposed and two new global search formulas are
designed to enhance the exploration ability. Meanwhile, the
concept of greedy wolf is introduced into HGWO to enhance the
exploitation ability. Greedy wolf has no hierarchy concept, and
only hunting around the most valuable prey to obtain the
maximum profit. A nonlinear factor is designed to control the
number of greedy wolves to balance the exploration and
exploitation. In order to investigate the effectiveness of the
proposed HGWO, it was compared with GWO, CGWO (a
varint of GWO) and some recently developed algorithms on
CEC2017 benchmark functions and four engineering problems.
Statistical tests were also employed to investigate the
significance of the results. Experimental results and statistical
tests demonstrate that the performance of the proposed HGWO
is significantly better than that of GWO and other comparison
algorithms.

Index Terms— Grey wolf optimizer, Random subgroup
strategy, Greedy wolf, Nonlinear factor

I. INTRODUCTION
he process of finding optimal parameters of a given
problem to fulfill all design requirements while

considering the lowest possible cost is referred to as an
optimization [1]. Optimization problems are widespread in
scientific computing and engineering applications and
different optimization problems expect to achieve alternative
and optimization solutions through appropriate optimization
methods [2]. Nowadays, some optimization problems can not
be solved well or efficiently, so developing new optimization
algorithms with stronger adaptability and better performance
is a crucial and challenging research task. Meta-heuristics
have received widespread attention over the past few decades
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due to their simplicity, flexibility and derivation-free [3,4]. A
variety of meta-heuristics based on diverse natural-based
phenomena and philosophies, such as Genetic Algorithm
(GA, 1975) [5], Particle Swarm Optimization (PSO, 1995)
[6], Gravitational Search Algorithm (GSA, 2009) [7] , Firefly
algorithm (FA, 2010) [8], Bat algorithm (BA, 2013) [9], Grey
wolf Optimizer (GWO, 2014) [10], Tree Seed Optimization
Algorithm (TSA, 2015) [11], Whale Optimization Algorithm
(WOA, 2016) [12], Owl Search Algorithm (OSA, 2018) [13],
Henry Gas Solubility Optimization (HGSO, 2019) [14] and
Harris Hawks Optimization (HHO, 2019) [15], Artificial
Ecosystem-based Optimization (AEO, 2019) [16], Chamel
Swarm Algorithm (CSA, 2021) [17] and, have been proposed
and successfully applied in many fields.
GWO is a population-based algorithm inspired by hunting

mechanism of grey wolf. Due to its simple principle, fast
running speed, easy implementation and high efficiency[10].
In recent years, some progress has been made in the
theoretical research and engineering application of GWO.
GWO has a wide range of applications, such as multi-layer
perceptron (MLP) training [19], pattern recognition [20],
reliable planning of safe smart grid power system [21], path
planning of unmanned combat vehicles [22], energy
consumption Prediction [23], ontroller parameter tuning [24],
flow shop scheduling and feature selection[25]. Although the
above applications are successful, like other meta-heuristic
algorithms, GWO also suffers from premature convergence
and poor precision in solving some complex optimization
problems [26]. Hence, some researchers have concerned to
alleviate theses shortcomings through improving the standard
GWO. Since 2014, some variants have been proposed to
enhance the performance of GWO. Rodrigue et al. proposed
a new GWO with hierarchical operator and an improved
GWO with fuzzy logic, respectively [27, 28]. Heidari and
Pahlavani proposed an efficient GWO with Lévy flight (LF)
and greedy selection strategies [26]. Joshi and Arora
proposed an enhanced grey wolf optimizer with a better
hunting mechanism to balance exploration and exploitation
[29]. Lu et al. proposed a new grey wolf optimizer with
cellular topological structure[4] and named CGWO. In
CGWO, each wolf has its own topological neighbors, and
interactions among wolves are restricted to their neighbors,
which favors exploitation of CGWO. In this study, chaos
theory is combined with GWO, and various chaotic maps are
used to adjust key parameters.
From the above variants, it is evident that the main

direction for improving GWO is to balance exploration and
exploitation, so that the algorithm has sufficient local optimal
escape potential and improves convergence accuracy. This is
consistent with the improvement direction of other meta
heuristic algorithms. Researchers addressed this issue by
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suggesting different methods. Lévy flight [31 to 34], cellular
topology structure [33,35,36], chaos theory [37, 38], adaptive
weight strategy [39], dynamic opposite learning [40 to 42],
heterogeneous comprehensive learning [41, 42], multi
subpopulaiton strategy [42,44], enhance search mechanism
[47 to 48], and hybrid strategy [35,49] are considered
potential approaches. These methods have been successfully
applied to many variants of meta heuristic algorithms, such as
GA, PSO, BA, GSA, WOA, OSA, HGSO, and CSA. Inspired
by these methods, an efficient HGWO algorithm with hybrid
strategy is proposed in this paper. In HGWO, a new α, β and
δ wolf selected method based on random subgroup and two
new global search formulas are designed to enhance the
exploration. The concept of greedy wolf is introduced to
enhance the exploitation. A nonlinear factor is designed to
control the number of greedy wolves to balance the
exploration and exploitation in different search stages. The
proposed HGWO is evaluated and compared with GWO,
CGWO and some recently developed meta heuristic
algorithms on CEC2017 benchmark functions and four
engineering optimization problems. Statistical tests were also
employed to investigate the significance of the results.
This paper is organized as follows: standard GWO is

introduced in Section Ⅱ. The detailed presentation of the
proposed HGWO is described in Section Ⅲ. Section Ⅳ
provides parameter settings and CEC2017 benchmark
functions. The comparative experiments and statistical
analysis results are also provided in Section Ⅳ. In Section Ⅴ,
the proposed HGWO is applied to solve four classical
engineering problems. Finally, section VI reports on the main
concluding observations and future work.

II. AN OVERVIEW OF GWO ALGORITHM

Grey Wolf Optimizer (GWO) was proposed by S.
Mirjalilli in 2014. It is a metaheuristic algorithm inspired by
the social hierarchy and hunting strategies of the grey wolf.
To establish a social hierarchy of wolves, the grey wolves are
classified into four kinds of wolf according to the fitness
value. The best wolf (solution) in GWO is denoted as the
alpha (α). Similarly, the second and third best wolves are beta
( β ) and delta ( δ ), respectively. The rest of wolves are
considered to be omega ( ω ). In GWO, the hunting
(optimization) is guided by α, β and δ . The ω wolves obey
these three wolves[4,10]. The main behaviors of grey wolves
during hunting include encircling prey, hunting prey and
attacking prey.

A. Encircling prey
To mathematically model encircling behavior of grey

wolves encircle their prey when hunting, the formulas are
defined as follows:

)()( tXtXCD p
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where t is the current iteration,
pX
 is the position of the prey,

)(tX
 is the position of a grey worf, A


and C

 are coefficient
vectors and calculated as follows:
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where 1r

and 2r


are random vectors in [0, 1], and the

component of a decreases linearly from 2 to 0 during
iteration [10].

B. Huntting
During the hunting process of grey wolves, the location of

the prey (optimum) is unknown. To simulate the hunting
behavior of grey wolves, GWO assumes that the α, β, and δ
wolves have better knowledge about the potential location of
the prey. Therefore, the three best wolves are used to guide
the other wolves to update their positions. In hunting process,
the position update formula of a grey wolf in iteration t+1is
defined as follows:
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Where 1X

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

and 3X


is affected by the position of α, β and

δ wolves, respectively. According to (1), D
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C. Attacking prey
The grey wolves finish the hunting by attacking the prey

when it stops moving. To mathematically model attacking the
prey, the value of vector A


is decreased with the change of

a . When the random values of A


are in [-1, 1], the next
position of a search agent can be in any position between its
current position and the position of the prey. The GWO
algorithm allows its search agents to update their positions
based on the location of α, β, and δ, and attack towards the
prey[10]. The encircling mechanism shows exploration to
some extent.

D. Search for prey
The grey wolves diverge from each other to search for prey

and converge to attack prey. In order to mathematically
model the behavior of divergence, GWO utilizes A


with

random values greater than 1 or less than -1 to oblige the
search agent to diverge from the prey. This emphasizes
exploration and allows the GWO algorithm to search globally.
Another vector C

 that favors exploration provides random
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weights for prey to stochastically emphasize or deemphasize
the effect of prey, which can help to improve exploration and
avoid local optimum [10]. For more detailed explanation of
GWO, one can refer to [10].

III. THE PROPOSED HGWO ALGORITHM

The standard GWO tends to be locally optimal and
stagnant in some cases, resulting in premature convergence.
To relive the above mentioned concerns, this paper proposed
an improved HGWO algorithm. In HGWO, a new α, β and δ
wolf selected method based on random subgroup and two
new global search formulas are designed to enhance the
exploration. The concept of greedy wolves is introduced to
enhance the exploitation. The detailed description of HGWO
is as follows.

A. Leader wolves selected based on random subgroup
As mentioned above, the hunting is guided by α, β and δ

in GWO. For some complex optimization problems, in the
early stage of the iterative search, the three best wolves may
gather in a small region, causing other wolves to quickly
move towards this region. In this case, the diversity of the
population will be lost rapidly, and the algorithm will fall into
local optimum. To avoid this case as much as possible, this
paper proposes a random subgroup strategy to select the α, β
and δ wolf. The random subgroup is composed of S%
individuals randomly selected from the whole wolves. S is a
parameter that needs to be determined manually in advance.
Random subgroup can help to improve the local search
ability since a wolf in random subgroup only interacts with
part of the wolves for exploitation. Meanwhile, information
diffusion mechanism contributes to exploration[4]. The
attraction to the first three best solutions is weaker in random
subgroup strategy, which can avoids local optimum. In
addition, random subgroup strategy in GWO is easy to be
implemented due to its simple mechanism.
The flow chart of the proposed random subgroup strategy

is shown in Fig. 1. It can be seen from Fig.1 that the selection
of the three best wolves is restricted to the subgroup in each
iteration. This can help each wolf to perform exploitation
inside the subgroup. Meanwhile, the overlapping region

provide a migration mechanism from one subgroup to
another. It can spread the information of each wolf to the
whole wolves, which is conducive to exploring the whole
search space.

B. Two new global search formulas
Random subgroup strategy in HGWO can slow down the

premature of the algorithm, but also reduce the convergence
speed. To alleviate this contradiction, this paper designs two
global search formulas in HGWO, as shown in (8) and (9).
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 are calculated by (5) and (6). The first

global search formula in (8) is the same as the GWO
algorithm. The difference is that the α, β and δ wolf are
selected by random subgroup strategy.
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Where p
iX


is the personal best solution of the ith wolf

obtained so far; gX


is the global best solution obtained so far;

c1=2.5-2t/T, c2=0.5+2t/T, T is the maximum number of
iteration. pr

 and gr
 are random vectors in [0, 1], and D is the

dimension of the problem to be optimized.
It can be seen from (9) , as t increases, the value of c1

decreases and the value of c2 increases. The location of grey
wolf is increasingly not influenced by its personal best
solution, but by the global best solution. The algorithm will
gradually converge.
In HGWO, two global search formulas are switched

through the following strategies. HGWO algorithm firstly
executes (8) to search for prey. If the global best solution is
not updated in the latest L iterations, it indicates that the
algorithm has trapped in local optimum. At this point, the
algorithm switches to (9) to help the algorithm jump out of
the local optimum, and vice versa.

Fig.1. The flow chart of the proposed random subgroup strategy
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C. Greedy wolves for local search
The global search formulas proposed in the above

subsection are helpful to enhance the exploration ability of
HGWO. But this can weaken the exploitation ability. To
improve the convergence accuracy of the algorithm (i.e.
local search ability), this paper proposes a concept of greedy
wolf to enhance the exploitation. Greedy wolf have no
hierarchy concept, and only hunt around the most valuable
prey to obtain the maximum profit. According to the
behavior of greedy wolf, the local search formula is design
as follows:
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Where θ is a random number in [0,1]; fix() is a function of
rounding towards zero; D is the dimension size of the search
space; randperm(D) returns a vector containing a random
permutation of the integers 1: D. )( is the probability
density function of standard normal distribution with mean
value of 0 and standard deviation of 1; The value of  is
defined in (11); η is a attenuation coefficient, The value of η
is defined in (12).
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Where Xmax and Xmin are upper bound and lower bound of
D-dimensional search space, respectively. rand(1,D)
represents a D-dimensional random number in [0,1].
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Where the value of η refers to the characteristic curve of
quick opening valve, and R=30 [51];
It can be seen form (10), (11) and (12), the greedy wolves

move randomly around the current best wolf, and with the
increase of t, the value of η becomes smaller and smaller, the
movement range of the greedy wolf becomes narrower, so
the search accuracy gradually improves.

To better balance the exploration and exploitation of
HGWO in different search stages, a nonlinear factor is
designed in (13) to control the number of greedy wolves.

))-10(-exp(-1)(
T

tTt  (13)

Where ω(t) is an iteration dependent parameter and used to
control the number of greedy wolves. For each grey wolf, if
τ>ω(t) ( τ is a randomly number in [0,1]), the wolf becomes
greedy wolf, and search the prey according to (10),
otherwise it performs a global search according to (8) or (9).
In the early and middle stages of the search, the value of

ω(t) is close to 1, the number of greedy wolves is very small,
which can avoid premature convergence. In the later stage,
ω(t) decreases rapidly and finally equals 0, the number of
greedy wolves increases rapidly, which will help to improve
the final convergence accuracy.

D. Framework of HGWO algorithm
To clearly show the structure of the proposed HGWO, the

pseudocodes is listed in Algorithm 1. The pseudocodes can
intuitively help understand the program framework of
HGWO.

Algorithm 1: HGWO algorithm

Task: Obtain the optimal solution of the problem to be solved.
Input: Initialize Parameters: Wolves size N, Dimension D, Maximum Function Evaluations maxFEs, Maximum iteration number T, Allowable Position
Boundary [Xmin, Xmax], parameter S and L.
Output: Output the optimal Solution.

Initialize: t=1, flag=0, random initialize the whole wolves, calculate the fitness of each grey wolf, record personal best solution p
iX


and its fitness Fbi,

global best solution gX


and its fitness Fg. Select α, β and δ wolf through random subgroup strategy .
(1) While ( t<T)
(2) for each grey wolf i=1,2,…, N
(3) If τ>ω(t)
(4) The wolf becomes greedy wolf, and execute the search strategy by using (10)
(5) Else
(6) If flag==0;
(7) Execute the search strategy by using (8)
(8) Else
(9) Execute the search strategy by using (9)
(10) End If
(11) End If

(12) Calculate the fitness of the ith grey wolf; Update p
iX


and Fbi, gX


and Fg according to greedy selection.
(13) End for
(14) Update α, β and δ wolf through random subgroup strategy .
(15) If The value of Fg has not become better in latest L iterations
(16) flag=1;
(17) else
(18) flag=0;
(19) End If
(20) t=t+1;
(21) End while

(21) Output: Optimal solution gX


and its fitness Fg.
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IV. EXPERIMENTS

In this section, experimental comparative study and
statistical analysis are carried out to examine the efficiency,
effectiveness and stability of the proposed HGWO algorithm.
To make a fair comparison, all experments are implemented
in MATLAT 2018a and conducted on the PC with i5-8250U
CPU@1.80GHz, 16GB RAM under Microsoft Windows 10
operating system.

A. Benchmark functions
To measure the performance of the proposed HGWO, the

CEC2017 benchmark functions [52] will be used for
verification. The CEC2017 benchmark functions consist of
30 functions with four types. Due to the instability of f2 in
high dimensions, f2 is deleted in this article. The reserved
functions are unimodal functions (f1 and f3,), simple
multimodal functions (f4 to f10), hybrid functions (f11 to f20)
and composition functions (f21 to f30), respectively. Different
types of functions can comprehensively and effectively test
the optimization ability and stability of an algorithm.

B. Parameters selection of HGWO
In HGWO algorithm, the parameters S and L need to be
determined in advance. These two parameters affect the
performance of the algorithm. S affects the strength of
information exchange of random subgroups, while L
determines the switching frequency of two global search
formulas. In this subsection, we designed 12 kinds of
parameter combinations to study the impact of parameters
on the performance of HGWO. See Table Ⅰ for detailed
parameter combinations. In order to determine appropriate
parameters of HGWO algorithm from Table Ⅰ, this paper
compare the performance of the algorithm in each parameter
combination on 10 selected functions from CEC2017
benchmark functions. These functions include unimodal
functions (f1), simple multimodal functions(f5 and f9), hybrid
functions (f12, f13, f16 and f20), and composition functions (f21,
f24 and f30). The dimensions of these functions are randomly
selected from 10, 30, 50 and 100. See Table Ⅱ for the
information of these functions. The parameter settings of
HGWO are as follows: populations size N is 50, maximum
evaluations maxFEs is 1×106, maximum Iterations T is 2000,

and each algorithm independently runs 30 times for each test
function. The performance of HGWO with 12 kinds of
parameter combinations is list in Table Ⅲ . In Table III,
"total rank" is the cumulative result of "rank", and "rank" is
the ascending sorting result of the average value of the
optimization results obtained by HGWO for each test
function. The smaller the "total rank" value, the better the
comprehensive optimization ability of the HGWO algorithm
under this parameter combination. It can be seen from Table
Ⅲ that HGWO has best comprehensive performance under
P1 parameter combination. Although this parameter
combination may not be optimal, it is the best of the 12
optional parameters. Therefore, we choose S=25, L=5 as the
initial parameter of HGWO.

TABLE I
DIFFERENT PARAMETER COMBINATION OF HGWO ALGORITHM

NO. Parameter combination S L
1 P1 25 5
2 P2 25 10
3 P3 25 15
4 P4 50 5
5 P5 50 10
6 P6 50 15
7 P7 75 5
8 P8 75 10
9 P9 75 15
10 P10 95 5
11 P11 95 10
12 P12 95 15

TABLE Ⅱ
FUNCTIONS FOR PARAMETERS SELECTION OF HGWO

Type f(x) Dimension
Unimodal functions f1 100

Simple multimodal functions
f5 50
f9 10
f12 30

Hybrid functions
f13 10
f16 100
f20 50
f23 30

Composition functions
f28 100
f30 10

TABLEⅢ
THE PERFORMANCE OF HGWO WITH 12 KINDS OF PARAMETER COMBINATIONS

Index f(x)
Parameter combinations

P1 P1 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Rank

f1 1 6 2 11 3 4 5 9 7 12 8 10
f5 3 2 1 6 4 5 9 8 7 11 12 10
f9 5 4 3 1 8 6 2 7 9 10 11 12
f12 1 5 2 4 8 3 6 11 9 10 12 7
f13 1 10 4 9 8 6 11 2 3 7 12 5
f16 5 12 1 2 9 8 6 7 3 11 10 4
f20 5 3 2 1 8 4 9 10 6 12 11 7
f23 1 2 3 6 5 4 9 7 8 10 12 11
f28 2 11 6 1 5 4 3 9 7 12 10 8
f30 4 12 7 1 3 11 10 2 6 9 5 8

Total Rank — 28 67 31 42 61 55 70 72 65 104 103 82
Final Rank — 1 7 2 3 5 4 8 9 6 12 11 10
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C. Qualitative comparison between GWO and HGWO
To show the difference of HGWO and GWO, this paper

compared them qualitatively from the aspects of population
diversity and convergence curve on a multimodal Function
(f10) and a composition Function (f28) in CEC2017. The 3D
figures of the two functions are shown in Fig.2. To observe
and compare the results more intuitively, the dimension is
set to 2, the maximum iteration number T is set to 200, the
population size is set to 20, and the diversity index of the
population is defined and shown as (14).





N

i

g
i XtXsqrt

N
tersityD

1
))((1)(iv (14)

Where N is population size, Xi(t) is the positon of ith wolf at
iteration t, Xg is the current best solution.
The results of qualitative comparison between HGWO

and GWO are graphically shown in Fig. 3 to Fig.6.
For function f10, it can be seen intuitively from Fig.3 that,

compared with GWO algorithm, the population distribution
of HGWO is more dispersed in the whole search space.
Therefore, it has more opportunities to search the potential
global optimal region. From Fig.4 (a), it can be seen that in
the early and middle stages of the iterative search, the
population diversity of HGWO is stronger than that of GWO.
While in the late stage, the population diversity of HGWO is
worse than that of GWO. This indicates that HGWO has
stronger exploration ability in the early and middle stages of

the iterative search, and is not easy to fall into local optimum.
In the late stage, HGWO's exploitation ability become
strong, making it easy to obtain more accurate solutions.
From Fig. 4 (b), it can be seen that HGWO has faster
convergence speed and better convergence accuracy than
that of GWO, and it can obtain the optimal solution of
function f10. But GWO algorithm trapped in a local optimum.
For function f28, from Fig.5 and Fig.6, we can also get
similar analysis results. For complex function, HGWO also
has better global search ability and search accuracy than that
of GWO .
From the above two examples, we can infer that the

strategies proposed in HGWO has a better ability to balance
the exploration and exploitation. In the early and middle
stages of iterative search, HGWO has more opportunities to
jump out of local optimum and search potential global
optimum regions. In the late stage, the exploitation ability of
HGWO is significantly enhanced, which is conducive to
obtaining more accurate solutions. Therefore, the improved
strategies of HGWO are effective, and the algorithm is more
suitable for solving complex optimization problems.

D. Quantitative comparison with other algorithms
To verify the superiority of the proposed HGWO, this

paper compares HGWO with GWO, CGWO (A recently
variant version), and some newly developed optimization
algorithms, including OSA, HHO, HGSO, AEO, CSA and
WSO. The parameter configuration for all comparison
algorithms is based on the recommendations of the
corresponding references and lists in Table Ⅳ.

(a) f10 (b) f28
Fig.2. 3D figures of f10 and f28

(b) GWO (b) HGWO
Fig.3. Population distribution of GWO and HGWO on f10
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(a) Population diversity (b) Convergence curves
Fig.4. Comparison of population diversity and convergence curves between HGWO and GWO on f10

(a) GWO (b) HGWO
Fig.5. Population distribution of GWO and HGWO on f28

(a) Population diversity (b) Convergence curves
Fig.6. Comparison of population diversity and convergence curves between HGWO and GWO on f28

TABLE Ⅳ
PARAMETERS SETTINGS OF THE ALGORITHMS USED IN THE COMPARISONS

Algorithm Reference Year Parameters
GWO [10] 2014 a decreases linearly from 2 to 0
CGWO [4] 2018 C25 Cellular Automata, a decreases linearly from 2 to 0
OSA [13] 2018 βmax = 1.9, βmin =0, β = βmax−t (βmax − βmin )/T
HHO [15] 2019 E=2*(1 − t/T )
HGSO [14] 2019 T = 298.15k, l1= 5E-02, l2 = 100, l3 = 1E-02
AEO [16] 2020 a=(1-t/T)*rand;
CSA [17] 2022 rho=1.0; c1=2.0, c2=1.80, gamma=2.0, alpha = 4.0, beta=3.0
WSO [18] 2022 pmin=0.5, pmax=1.5, a0=6.250, a1=100, a2=0.0005
HGWO Present Present S=25, L=5, a decreases linearly from 2 to 0

The common parameters of all the algorithms are as
follows: populations size N is set to 50, maximum

evaluations maxFEs is set to 1×106, maximum iterations T is
set to 2000, and each algorithm independently runs 30 times

Engineering Letters, 31:3, EL_31_3_01

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



for each test function. To more effectively verify the
performance of HGWO, we conducted comparative
experiments on the dimensions of 30, 50, and 100,
respectively. HGWO and other algorithms listed in Table Ⅳ
are compared with numerical experiments on the CEC2017
benchmark functions. 29 test functions have been test and
the comparison results are listed in Table Ⅴ, Table Ⅵ and
Table Ⅶ. Meanwhile, the “Total rank” and “Final rank” of
all algorithms are given at the end of Table Ⅴ, Table Ⅵ and
Table Ⅶ, respectively. Where “Mean”,“Std” and “Best”
indicate the average, the standard deviation, and the best
solution over 30 runs, respectively. The smaller the “Mean”
value of an algorithm, the better the ability to avoid local
optimum and approach the optimal solution. The smaller the
“Std” value of an algorithm, the more stable the performance
of the algorithm. The smaller the “Best” value, the better the
ability to approach the optimal solution. “Rank” is sorted in
ascending order of ”Mean”, and the “Total rank” is the
cumulative result of “Rank”. The smaller the ”Total rank”,
the better the overall performance in of an algorithm. The
“Final rank” is sorted in ascending order of “Total rank”.
The best solution of each function is marked in bold in the
three Tables. As shown in Table V, Table VI and Table VII,
the proposed HGWO is obviously superior to GWO, CGWO
and other comparison algorithms, no matter in which
dimension.
For the “Mean” values of all test functions, HGWO

obtains 14 best results and 9 second best results in 30
dimension, obtains 15 best and 7 second best results in 50
dimension, and obtains 17 best and 7 second best results in
100 dimension. In all dimensions, the “Final Rank” of
HGWO is 1, and the value of “Total Rank” is significantly
better than that of other algorithms. Meanwhile, The "Total
rank" value of HGWO is stable in different dimensions,
which indicates that the proposed HGWO algorithm has
good stability. By comparing HGWO and GWO separately,
we find that except for the "Mean" value of f6-D30, f10-D30
and f16-D50, the "Best" value of f6-D50, f10-D50, and
f10-D100, HGWO algorithm outperforms GWO algorithm.
In other words, For most test functions, HGWO algorithm is
superior to GWO algorithm.
In summary, the improved strategies, i.e., random

subgroup strategy, two new global search formulas and the
concept of greedy wolf, are satisfactory and competitive for
enhancing the performance of GWO.

E. Statistic analysis
In order to make a more scientific comparison of all

comparison algorithms in a statistical sense, the results of
experiments were rigorously analyzed from a mathematical
perspective. In this section, two non parametric statistical
methods including Friedman test [53] and Wilcoxon signed
rank test [54, 55] are employed to analyze the experimental
results.
Firstly, the Friedman test was implemented. The mean

rank of all comparison algorithms and the corresponding p-
values are listed in Table Ⅷ. It can be seen from Table
Ⅷ , the p-value of different dimensions calculated by
Friedman test are 4.8998e-34, 6.0919e-35 and 8.1920e-36,
respectively. Since the p-Value is less than 0.05, we believe
that the statistical results are significant. The mean ranks of
HGWO are 1.8333, 1.8667, and 1.8000 in 30, 50 and 100

dimension, which are significantly lower other algorithms.
Combined with the conclusion that HGWO is superior to
other comparative algorithms from the above numerical
experiments, Friedman test further confirms that the
advantages of HGWO are significant.
Secondly, Wilcoxon signed rank test is used for pairwise

comparison to determine which algorithm has better
statistical performance. In Wilcoxon signed rank test, the
value of significance level α is set to 0.05. Table Ⅸ, Table
Ⅹ and TableⅪ respectively show the Wilcoxon signed rank
test results of the “Mean”, ”Std” and ”Best” in the numerical
experimental of all test functions in different dimensions.
Where ‘R+’ represents the sum of ranks for the problems in
which the proposed HGWO outperforms the other
comparison algorithm and ‘R-’ represents the sum of ranks
for the opposite. ‘+’ represents that the proposed HGWO
outperforms the comparison algorithm. ‘−’ represents the
proposed HGWO algorithm is worse than the comparison
algorithm. ‘=’ represents that there is no significant
statistical difference between the two algorithms. The last
row of Table Ⅸ, Table Ⅹ and TableⅪ shows the total
counts in the (+/ = /−) format. It can be seen from the three
tables that HGWO has significant advantages in terms of
search ability and stability compared with other comparison
algorithms, no matter in which dimension.
Therefore, in a statistical sense, the comprehensive

performance of HGWO is obviously superior to GWO,
CGWO and other comparison algorithms.

F. Convergence comparisons on the selected functions
Convergence curve is an intuitive way to observe the

convergence rate and accuracy of an algorithms. Eight
functions are chosen (f1-D50, f5-D30, f8-50, f9-D100, f12-D30,
f19-D100, f24-D50, and f26-D100) and the convergence curves
of all comparison algorithms are plotted in Fig.7. It can be
seen from Fig.7 that the proposed HGWO has obvious
advantages in convergence rate and precision for most
functions. It is worth noting that the proposed HGWO
obtains better solutions than most comparison algorithms in
the early or middle stages of the iterative search, and exceeds
most comparison algorithms at the end of the iterative search.
By comparing HGWO with GWO, we can also find that the
convergence rate and accuracy of HGWO are obviously
improved. It indicates that HGWO has stronger ability to
jump out of local optimum and obtain better search results
than GWO.

TABLE Ⅷ
MEAN RANKS OF DIFFERENT ALGORITHMS OBTAINED BY FRIEDMAN TEST

ON ALL TEST FUNCTIONS

Algorithms
Ranked in different dimensions

30 50 100
AEO 3.7333 3.5000 3.0667
HHO 5.5000 5.0333 4.7667
CSA 7.0333 7.0000 7.0333
OSA 8.8667 8.8667 8.8333
WSO 2.8667 3.6000 4.2333
HGSO 7.2000 7.6000 7.7333
GWO 4.3667 4.4667 4.4000
CGWO 3.6000 3.0667 3.1333
HGWO 1.8333 1.8667 1.8000
p-value 4.8998e-34 6.0919e-35 8.1920e-36

Engineering Letters, 31:3, EL_31_3_01

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



TABLE Ⅴ
COMPARATIVE RESULTS OF THE COMPARISON ALGORITHMS ON THE CEC2017 BENCHMARK FUNCTIONS(D=30)

f(x) Index AEO HHO CSA OSA WSO HGSO GWO CGWO HGWO
f1 Mean 4.6292E+03 1.2251E+07 7.9787E+09 5.3819E+10 5.2220E+07 1.3529E+10 1.3321E+09 6.3729E+08 4.5194E+03

Std 4.7168E+03 2.5552E+06 6.9714E+09 7.4801E+09 1.4363E+08 3.4044E+09 1.2102E+09 7.4506E+08 6.5798E+03
Best 1.2045E+02 7.8893E+06 7.2141E+08 4.1802E+10 2.1618E+03 6.4584E+09 4.6128E+07 1.1313E+07 1.0077E+02
Rank 2 3 7 9 4 8 6 5 1

f3 Mean 4.3899E+02 1.0560E+04 7.3310E+04 9.1151E+04 1.6641E+04 4.7221E+04 3.3966E+04 2.8178E+04 3.2370E+02
Std 1.5509E+02 4.1532E+03 1.2147E+04 4.5417E+03 4.9077E+03 7.7295E+03 7.6887E+03 1.0595E+04 3.8347E+01
Best 3.0938E+02 5.1031E+03 4.8889E+04 7.0452E+04 9.2882E+03 3.3995E+04 1.2672E+04 9.6508E+03 3.0005E+02
Rank 2 3 8 9 4 7 6 5 1

f4 Mean 4.9869E+02 5.3022E+02 2.9740E+03 1.1716E+04 5.0966E+02 2.0106E+03 6.0439E+02 5.3380E+02 5.0189E+02
Std 2.3972E+01 2.7122E+01 9.9037E+03 1.6492E+03 2.9646E+01 4.7767E+02 8.2244E+01 2.5672E+01 4.3961E+01
Best 4.5856E+02 4.7302E+02 5.8228E+02 8.1255E+03 4.4835E+02 1.2211E+03 5.0763E+02 5.0667E+02 4.0000E+02
Rank 1 4 8 9 3 7 6 5 2

f5 Mean 6.7277E+02 7.2966E+02 7.3339E+02 9.3428E+02 5.9868E+02 8.0876E+02 6.0744E+02 5.7527E+02 5.4464E+02
Std 3.3209E+01 2.6454E+01 5.1337E+01 1.5374E+01 2.6476E+01 1.6428E+01 3.8836E+01 2.7200E+01 1.2853E+01
Best 6.0945E+02 6.5825E+02 6.4423E+02 8.9538E+02 5.4912E+02 7.7120E+02 5.4050E+02 5.3833E+02 5.2686E+02
Rank 5 6 7 9 3 8 4 2 1

f6 Mean 6.3784E+02 6.6239E+02 6.6827E+02 6.8891E+02 6.1544E+02 6.6563E+02 6.0549E+02 6.0351E+02 6.0790E+02
Std 8.6117E+00 6.7974E+00 9.2690E+00 8.4176E+00 8.6762E+00 6.8748E+00 2.7987E+00 1.5108E+00 2.3257E+00
Best 6.2547E+02 6.4942E+02 6.4261E+02 6.7599E+02 6.0591E+02 6.5139E+02 6.0218E+02 6.0153E+02 6.0462E+02
Rank 5 6 8 9 4 7 2 1 3

f7 Mean 1.0786E+03 1.2456E+03 1.1637E+03 1.4571E+03 9.6089E+02 1.1391E+03 8.7702E+02 8.2435E+02 7.8570E+02
Std 8.7749E+01 6.1182E+01 7.5297E+01 4.2561E+01 8.0777E+01 4.3560E+01 4.4794E+01 3.1898E+01 1.7539E+01
Best 9.2199E+02 1.1220E+03 1.0298E+03 1.2978E+03 8.2644E+02 1.0537E+03 8.0619E+02 7.6646E+02 7.6573E+02
Rank 5 8 7 9 4 6 3 2 1

f8 Mean 9.4409E+02 9.6996E+02 1.0250E+03 1.1374E+03 8.7941E+02 1.0543E+03 8.7811E+02 8.7039E+02 8.3804E+02
Std 2.5502E+01 2.4375E+01 5.1701E+01 3.0920E+01 1.8383E+01 2.0639E+01 3.5491E+01 2.9254E+01 1.1684E+01
Best 8.8824E+02 9.2650E+02 9.3526E+02 1.0793E+03 8.4478E+02 1.0092E+03 8.4124E+02 8.4020E+02 8.2487E+02
Rank 5 6 7 9 4 8 3 2 1

f9 Mean 4.3906E+03 6.7836E+03 6.9751E+03 1.1472E+04 3.9723E+03 6.7095E+03 1.8110E+03 1.2025E+03 1.1445E+03
Std 1.0339E+03 8.8664E+02 2.5849E+03 1.1345E+03 1.0423E+03 9.5277E+02 6.1327E+02 2.7323E+02 1.0923E+02
Best 2.5212E+03 5.0833E+03 3.6074E+03 8.9795E+03 2.2053E+03 4.6253E+03 1.1153E+03 9.5268E+02 9.1830E+02
Rank 5 7 8 9 4 6 3 2 1

f10 Mean 4.8711E+03 5.3920E+03 6.9135E+03 8.8007E+03 6.5639E+03 7.1770E+03 4.3226E+03 3.6332E+03 4.4369E+03
Std 5.7277E+02 6.8706E+02 8.1736E+02 4.3924E+02 2.0397E+03 4.7158E+02 1.0754E+03 5.7271E+02 6.8129E+02
Best 3.8732E+03 4.2986E+03 5.5617E+03 7.8319E+03 2.7143E+03 6.2789E+03 2.9656E+03 2.6488E+03 3.2401E+03
Rank 4 5 7 9 6 8 2 1 3

f11 Mean 1.2392E+03 1.2702E+03 2.3941E+03 1.0785E+04 1.2573E+03 3.3783E+03 1.5863E+03 1.4076E+03 1.1995E+03
Std 5.6562E+01 5.2918E+01 8.9863E+02 1.4435E+03 5.9040E+01 6.5644E+02 4.9058E+02 1.3429E+02 3.4106E+01
Best 1.1551E+03 1.1684E+03 1.4584E+03 8.1966E+03 1.1732E+03 2.0426E+03 1.2420E+03 1.2012E+03 1.1528E+03
Rank 2 4 7 9 3 8 6 5 1

f12 Mean 2.3433E+05 1.1667E+07 3.8388E+08 1.4825E+10 1.3517E+06 1.3999E+09 5.6640E+07 5.8403E+07 1.6108E+05
Std 2.6572E+05 8.3106E+06 3.6405E+08 2.3682E+09 1.4041E+06 5.1686E+08 6.7149E+07 1.0416E+08 2.9288E+05
Best 3.4385E+04 2.0280E+06 3.4145E+07 1.1417E+10 1.5848E+05 6.1601E+08 3.7987E+06 3.7625E+06 2.8358E+04
Rank 2 4 7 9 3 8 5 6 1

f13 Mean 2.0662E+04 4.7777E+05 3.7203E+07 5.0804E+09 6.6182E+03 4.6458E+08 2.4632E+07 7.9089E+06 2.0117E+04
Std 2.1695E+04 2.9795E+05 4.8527E+07 9.5713E+08 6.0251E+03 1.4872E+08 5.0306E+07 2.7113E+07 1.4533E+04
Best 1.8751E+03 1.9629E+05 7.5463E+04 2.6581E+09 1.5377E+03 1.8784E+08 1.9216E+04 2.6757E+04 3.9617E+03
Rank 3 4 7 9 1 8 6 5 2

f14 Mean 3.6647E+03 1.0763E+05 6.8575E+05 2.1069E+07 1.5526E+03 4.8273E+05 2.4228E+05 7.9912E+04 4.3893E+04
Std 2.8920E+03 1.0459E+05 6.3218E+05 1.0273E+07 6.1466E+01 2.7558E+05 2.8217E+05 8.8190E+04 1.1263E+05
Best 1.4664E+03 2.8876E+03 2.1624E+04 2.6448E+06 1.4700E+03 1.6879E+05 2.7754E+03 3.3136E+03 1.8880E+03
Rank 2 5 8 9 1 7 6 4 3

f15 Mean 6.7073E+03 6.9762E+04 8.2994E+05 8.3858E+08 1.7403E+03 4.8475E+06 3.7855E+05 1.3441E+05 5.1093E+03
Std 6.9125E+03 4.5876E+04 1.3879E+06 3.9009E+08 1.1469E+02 2.4754E+06 5.8747E+05 2.9576E+05 3.5602E+03
Best 1.7750E+03 2.9031E+04 2.5741E+04 6.5137E+08 1.5944E+03 9.6590E+05 1.6966E+04 1.2405E+04 1.6357E+03
Rank 3 4 7 9 1 8 6 5 2
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CONTINUED TABLE Ⅴ
f(x) Index AEO HHO CSA OSA WSO HGSO GWO CGWO HGWO
f16 Mean 2.7660E+03 3.2724E+03 3.5304E+03 5.8263E+03 2.1299E+03 3.8906E+03 2.4428E+03 2.3287E+03 2.2238E+03

Std 2.5663E+02 3.7149E+02 5.2740E+02 6.9341E+02 1.9172E+02 2.5699E+02 2.7434E+02 2.2007E+02 3.0141E+02
Best 2.1467E+03 2.2423E+03 2.7758E+03 4.7395E+03 1.7415E+03 3.2972E+03 1.9609E+03 1.7921E+03 1.7471E+03
Rank 5 6 7 9 1 8 4 3 2

f17 Mean 2.2533E+03 2.4639E+03 2.5200E+03 8.1238E+03 1.8511E+03 2.4990E+03 1.9293E+03 1.9647E+03 1.8644E+03
Std 2.0232E+02 2.8171E+02 3.5620E+02 3.8819E+03 7.6027E+01 1.3273E+02 1.3440E+02 1.2713E+02 9.4049E+01
Best 1.8796E+03 2.0193E+03 2.1354E+03 4.1312E+03 1.7624E+03 2.2348E+03 1.7562E+03 1.7950E+03 1.7451E+03
Rank 5 6 8 9 1 7 3 4 2

f18 Mean 6.7837E+04 1.2471E+06 4.3502E+06 1.1524E+08 1.3879E+04 3.0696E+06 1.0460E+06 1.0485E+06 1.2872E+05
Std 3.9406E+04 1.2956E+06 5.3569E+06 1.0461E+08 1.3873E+04 1.3044E+06 1.7714E+06 1.6099E+06 7.9159E+04
Best 1.0535E+04 7.0951E+04 1.9761E+05 1.4209E+07 2.8644E+03 9.2803E+05 5.5624E+04 6.3525E+04 3.2713E+04
Rank 2 6 8 9 1 7 4 5 3

f19 Mean 1.1790E+04 2.9284E+05 1.6199E+07 4.8315E+08 1.9973E+03 1.5844E+07 1.6772E+06 3.7492E+05 6.0228E+03
Std 1.0910E+04 2.2607E+05 1.4342E+07 3.0271E+08 5.1228E+01 4.7989E+06 6.2680E+06 6.2118E+05 3.9342E+03
Best 1.9865E+03 2.5660E+04 6.6106E+05 1.6979E+08 1.9205E+03 4.1994E+06 7.5447E+03 3.7141E+03 2.0827E+03
Rank 3 4 8 9 1 7 6 5 2

f20 Mean 2.5344E+03 2.8173E+03 2.6605E+03 3.0554E+03 2.2068E+03 2.6616E+03 2.3522E+03 2.3002E+03 2.2510E+03
Std 2.0494E+02 1.8943E+02 2.0145E+02 1.7484E+02 1.0914E+02 8.6787E+01 1.0304E+02 8.5224E+01 9.0715E+01
Best 2.1433E+03 2.4380E+03 2.3636E+03 2.7728E+03 2.0850E+03 2.4696E+03 2.2368E+03 2.1986E+03 2.1018E+03
Rank 5 8 6 9 1 7 4 3 2

f21 Mean 2.4627E+03 2.5588E+03 2.5404E+03 2.7469E+03 2.3804E+03 2.5601E+03 2.3896E+03 2.3643E+03 2.3423E+03
Std 3.6607E+01 5.1790E+01 6.2437E+01 4.4414E+01 2.7101E+01 3.3917E+01 3.2271E+01 1.5380E+01 1.2941E+01
Best 2.3861E+03 2.4504E+03 2.4273E+03 2.6649E+03 2.3313E+03 2.4610E+03 2.3521E+03 2.3372E+03 2.3236E+03
Rank 5 7 6 9 3 8 4 2 1

f22 Mean 5.0476E+03 6.2636E+03 4.8823E+03 9.8025E+03 2.3969E+03 3.8525E+03 4.5620E+03 3.8874E+03 2.6400E+03
Std 2.1708E+03 2.2778E+03 2.3922E+03 4.6595E+02 1.5912E+02 3.8699E+02 1.9018E+03 1.5143E+03 1.0504E+03
Best 2.3000E+03 2.3189E+03 2.6032E+03 9.0571E+03 2.3005E+03 2.8782E+03 2.4414E+03 2.3869E+03 2.3000E+03
Rank 7 8 6 9 1 3 5 4 2

f23 Mean 2.8032E+03 3.1618E+03 2.9433E+03 3.6669E+03 2.7875E+03 3.1316E+03 2.7687E+03 2.7207E+03 2.7052E+03
Std 4.0895E+01 9.6533E+01 8.4685E+01 1.6941E+02 3.8590E+01 7.2480E+01 4.5267E+01 2.1164E+01 1.7134E+01
Best 2.7367E+03 2.9393E+03 2.7650E+03 3.3924E+03 2.7197E+03 2.9998E+03 2.7157E+03 2.6802E+03 2.6753E+03
Rank 5 8 6 9 4 7 3 2 1

f24 Mean 2.9661E+03 3.4256E+03 3.0961E+03 3.8627E+03 2.9509E+03 3.3344E+03 2.9487E+03 2.8833E+03 2.8802E+03
Std 4.1861E+01 1.5469E+02 6.0222E+01 1.7566E+02 4.4092E+01 6.8621E+01 7.3503E+01 4.3062E+01 2.6477E+01
Best 2.8948E+03 3.1704E+03 2.9898E+03 3.4800E+03 2.8954E+03 3.2023E+03 2.8573E+03 2.8508E+03 2.8404E+03
Rank 5 8 6 9 4 7 3 2 1

f25 Mean 2.9057E+03 2.9281E+03 3.2689E+03 4.4897E+03 2.9359E+03 3.3396E+03 2.9584E+03 2.9609E+03 2.9047E+03
Std 2.1530E+01 2.0911E+01 1.7531E+02 2.3101E+02 3.0935E+01 6.8858E+01 2.6262E+01 2.6885E+01 1.6564E+01
Best 2.8841E+03 2.8865E+03 2.9722E+03 4.0657E+03 2.8845E+03 3.1983E+03 2.9198E+03 2.9221E+03 2.8843E+03
Rank 2 3 7 9 4 8 5 6 1

f26 Mean 5.3578E+03 7.4643E+03 7.1302E+03 1.1779E+04 4.9648E+03 6.7166E+03 4.7620E+03 4.4510E+03 4.1831E+03
Std 1.0888E+03 7.5250E+02 1.4147E+03 7.5083E+02 1.4848E+03 4.7886E+02 4.7125E+02 3.1703E+02 2.1130E+02
Best 2.8000E+03 5.3585E+03 4.2372E+03 1.0183E+04 2.8773E+03 5.8002E+03 4.1041E+03 4.0539E+03 3.8019E+03
Rank 5 8 7 9 4 6 3 2 1

f27 Mean 3.2476E+03 3.3678E+03 3.4155E+03 4.5994E+03 3.2513E+03 3.7332E+03 3.2414E+03 3.2398E+03 3.2311E+03
Std 2.9833E+01 6.4871E+01 1.0749E+02 4.6324E+02 2.7761E+01 1.0017E+02 2.0682E+01 1.5760E+01 1.2245E+01
Best 3.2112E+03 3.2634E+03 3.3175E+03 3.7751E+03 3.2108E+03 3.4996E+03 3.2148E+03 3.2137E+03 3.2124E+03
Rank 4 6 7 9 5 8 3 2 1

f28 Mean 3.2156E+03 3.2660E+03 3.6599E+03 6.4064E+03 3.2777E+03 4.0956E+03 3.3958E+03 3.3802E+03 3.2398E+03
Std 2.0182E+01 1.9129E+01 2.2115E+02 5.0254E+02 3.5243E+01 2.1780E+02 4.8497E+01 9.8177E+01 8.6326E+01
Best 3.1944E+03 3.1954E+03 3.4237E+03 5.5748E+03 3.2058E+03 3.8234E+03 3.3065E+03 3.2641E+03 3.1000E+03
Rank 1 3 7 9 4 8 6 5 2

f29 Mean 4.0224E+03 4.4028E+03 4.8956E+03 7.7021E+03 3.6171E+03 4.9492E+03 3.7702E+03 3.6334E+03 3.7366E+03
Std 2.5746E+02 3.0194E+02 4.4350E+02 9.6870E+02 1.3167E+02 2.2126E+02 1.8799E+02 1.3036E+02 1.6271E+02
Best 3.6811E+03 3.8662E+03 4.1244E+03 6.1791E+03 3.3815E+03 4.5163E+03 3.5196E+03 3.4760E+03 3.4954E+03
Rank 5 6 7 9 1 8 4 2 3

f30 Mean 1.6638E+04 2.0945E+06 3.4743E+07 3.2960E+09 1.0092E+04 7.6621E+07 5.2916E+06 5.8430E+06 7.0697E+05
Std 1.1198E+04 1.1183E+06 2.3463E+07 1.0260E+09 3.3315E+03 2.8056E+07 4.4655E+06 3.5284E+06 1.1149E+06
Best 6.4690E+03 3.1117E+05 5.3611E+06 1.8029E+09 5.5765E+03 4.4071E+07 1.0002E+06 6.4501E+05 1.4413E+04
Rank 2 4 7 9 1 8 5 6 3

Total Rank 107 160 206 261 81 211 126 103 50
Final Rank 4 6 7 9 2 8 5 3 1
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TABLE Ⅵ
COMPARATIVE RESULTS OF THE COMPARISON ALGORITHMS ON THE CEC2017 BENCHMARK FUNCTIONS(D=50)

f(x) Index AE HHO CSA OSA WSO HGSO GWO CGWO HGWO
f1 Mean 2.7891E+04 6.3532E+07 2.5700E+10 1.0326E+11 6.7298E+09 4.4256E+10 5.7136E+09 3.3726E+09 2.7181E+03

Std 7.1701E+04 9.3246E+06 1.1954E+10 8.2874E+09 5.3114E+09 7.1915E+09 2.1622E+09 1.8125E+09 3.8817E+03
Best 2.6546E+03 4.9706E+07 6.7706E+09 8.8785E+10 4.3141E+07 2.8153E+10 2.0907E+09 5.4799E+08 1.3283E+02
Rank 2 3 7 9 6 8 5 4 1

f3 Mean 2.0238E+04 5.0965E+04 1.9425E+05 2.4178E+05 8.0244E+04 1.4695E+05 8.4775E+04 6.9751E+04 1.5097E+04
Std 3.7997E+03 1.1677E+04 5.2628E+04 2.8113E+04 1.6440E+04 1.4848E+04 1.4368E+04 1.2691E+04 4.9192E+03
Best 1.2712E+04 2.7523E+04 1.2686E+05 1.9088E+05 6.2128E+04 1.1197E+05 5.6854E+04 4.5068E+04 3.6119E+03
Rank 2 3 8 9 5 7 6 4 1

f4 Mean 5.6032E+02 6.7778E+02 4.0518E+03 3.7582E+04 8.1206E+02 8.1793E+03 1.2258E+03 7.9171E+02 5.8025E+02
Std 5.5015E+01 5.8714E+01 2.3831E+03 4.5838E+03 1.9408E+02 2.1826E+03 4.6639E+02 1.1770E+02 6.0594E+01
Best 4.4567E+02 5.8497E+02 1.3279E+03 2.5494E+04 6.8630E+02 4.1932E+03 5.9823E+02 6.6958E+02 4.7198E+02
Rank 1 3 7 9 5 8 6 4 2

f5 Mean 8.3590E+02 8.9259E+02 1.0350E+03 1.2032E+03 7.4715E+02 1.0832E+03 7.0465E+02 6.5881E+02 6.0285E+02
Std 5.4601E+01 3.0920E+01 9.2051E+01 3.4998E+01 3.8318E+01 2.4349E+01 5.2839E+01 2.8303E+01 2.1580E+01
Best 7.5474E+02 8.4737E+02 8.7287E+02 1.1327E+03 6.6420E+02 1.0298E+03 6.3747E+02 6.0206E+02 5.5572E+02
Rank 5 6 7 9 4 8 3 2 1

f6 Mean 6.5410E+02 6.7180E+02 6.8046E+02 7.0404E+02 6.3324E+02 6.8340E+02 6.1608E+02 6.0861E+02 6.1565E+02
Std 7.0885E+00 4.6346E+00 9.4881E+00 3.4835E+00 8.5621E+00 3.8961E+00 3.4564E+00 3.4566E+00 2.7792E+00
Best 6.3386E+02 6.5990E+02 6.6723E+02 6.9675E+02 6.1741E+02 6.7497E+02 6.1053E+02 6.0343E+02 6.1053E+02
Rank 5 6 7 9 4 8 3 1 2

f7 Mean 1.5355E+03 1.8092E+03 1.7950E+03 2.0467E+03 1.2939E+03 1.6136E+03 1.0841E+03 9.6932E+02 9.2055E+02
Std 1.4849E+02 1.0038E+02 1.4403E+02 5.5125E+01 9.0895E+01 7.7258E+01 8.0123E+01 4.4107E+01 4.2790E+01
Best 1.2762E+03 1.5482E+03 1.4771E+03 1.8734E+03 1.1848E+03 1.5116E+03 9.3001E+02 8.8993E+02 8.4987E+02
Rank 5 8 7 9 4 6 3 2 1

f8 Mean 1.1451E+03 1.1767E+03 1.2906E+03 1.4852E+03 1.0283E+03 1.4035E+03 1.0110E+03 9.6514E+02 8.8706E+02
Std 4.8761E+01 3.1418E+01 9.8849E+01 4.2626E+01 4.3499E+01 3.0910E+01 2.6290E+01 3.5118E+01 1.7314E+01
Best 1.0408E+03 1.1211E+03 1.1330E+03 1.3833E+03 9.6420E+02 1.3013E+03 9.4949E+02 9.0032E+02 8.5870E+02
Rank 5 6 7 9 4 8 3 2 1

f9 Mean 1.1306E+04 2.3246E+04 2.3712E+04 3.9716E+04 1.7478E+04 2.9237E+04 7.7552E+03 4.3125E+03 2.4157E+03
Std 1.7165E+03 2.8300E+03 6.6165E+03 3.9842E+03 3.1493E+03 2.5306E+03 4.3286E+03 2.4285E+03 7.3691E+02
Best 8.1580E+03 1.7892E+04 1.1484E+04 3.3869E+04 1.2343E+04 2.3167E+04 1.9704E+03 1.7061E+03 1.5821E+03
Rank 4 6 7 9 5 8 3 2 1

f10 Mean 8.1767E+03 9.1507E+03 1.2837E+04 1.5091E+04 1.0591E+04 1.3421E+04 9.5248E+03 6.9317E+03 6.8760E+03
Std 9.0689E+02 9.4175E+02 1.3193E+03 5.0930E+02 3.8593E+03 6.8531E+02 3.7840E+03 2.5876E+03 8.3463E+02
Best 6.4899E+03 7.2952E+03 1.0378E+04 1.4291E+04 4.7116E+03 1.0648E+04 4.1970E+03 5.2320E+03 5.6257E+03
Rank 3 4 7 9 6 8 5 2 1

f11 Mean 1.3216E+03 1.5269E+03 7.9011E+03 2.4298E+04 1.7471E+03 6.8181E+03 4.5130E+03 2.8576E+03 1.2641E+03
Std 4.3281E+01 8.0018E+01 2.6983E+03 2.6323E+03 5.4235E+02 1.4410E+03 2.0438E+03 1.2228E+03 2.8284E+01
Best 1.2454E+03 1.3877E+03 5.2191E+03 1.7693E+04 1.3999E+03 4.6238E+03 1.6028E+03 1.4170E+03 1.1985E+03
Rank 2 3 8 9 4 7 6 5 1

f12 Mean 3.2828E+06 1.0492E+08 3.3096E+09 8.2709E+10 3.3327E+07 1.2851E+10 1.2261E+09 4.7534E+08 9.3242E+05
Std 2.2227E+06 5.5841E+07 3.2621E+09 1.3284E+10 3.9013E+07 3.3164E+09 1.2997E+09 6.9277E+08 6.4909E+05
Best 7.8397E+05 2.7846E+07 5.3668E+08 6.1964E+10 5.4284E+06 8.4140E+09 3.7023E+07 3.0880E+07 1.4432E+05
Rank 2 4 7 9 3 8 6 5 1

f13 Mean 1.6717E+04 3.1225E+06 3.3437E+08 5.6042E+10 1.4365E+04 2.9916E+09 1.5802E+08 7.2748E+07 9.6852E+03
Std 1.4338E+04 2.4163E+06 4.1811E+08 9.4491E+09 1.3493E+04 1.0110E+09 1.2160E+08 1.0018E+08 3.9442E+03
Best 3.3980E+03 7.2710E+05 1.4966E+07 3.6533E+10 4.0367E+03 1.4075E+09 6.6629E+04 2.3393E+05 3.9108E+03
Rank 3 4 7 9 2 8 6 5 1

f14 Mean 4.4451E+04 7.3591E+05 2.6244E+06 1.4529E+08 6.6603E+03 5.2090E+06 9.2232E+05 7.0717E+05 5.0389E+04
Std 4.3563E+04 3.9273E+05 2.1598E+06 1.0197E+08 1.9560E+04 2.2402E+06 9.5813E+05 5.6415E+05 4.9055E+04
Best 2.7026E+03 1.3930E+05 4.6495E+05 2.0096E+07 1.6022E+03 6.9755E+05 8.3565E+04 4.5689E+04 9.6965E+03
Rank 2 5 7 9 1 8 6 4 3

f15 Mean 1.4073E+04 4.2573E+05 6.1255E+07 8.4694E+09 5.3348E+03 4.1992E+08 1.7264E+07 4.2228E+06 7.5228E+03
Std 7.4798E+03 1.3832E+05 1.2879E+08 2.2766E+09 4.1421E+03 2.0075E+08 2.2194E+07 1.0944E+07 5.7128E+03
Best 2.3253E+03 2.0585E+05 4.6262E+04 6.6392E+09 2.0097E+03 1.8151E+08 2.1132E+04 1.7023E+04 2.1503E+03
Rank 3 4 7 9 1 8 6 5 2
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CONTINUED TABLE Ⅵ
f(x) Index AEO HHO CSA OSA WSO HGSO GWO CGWO HGWO
f16 Mean 3.5614E+03 4.0956E+03 4.7006E+03 9.7146E+03 2.9252E+03 5.6131E+03 2.8284E+03 2.7330E+03 2.8676E+03

Std 4.5212E+02 5.1016E+02 6.8813E+02 1.6390E+03 2.7054E+02 4.1207E+02 2.7327E+02 3.1991E+02 3.7510E+02
Best 2.6018E+03 3.4051E+03 3.4013E+03 6.3640E+03 2.3181E+03 4.2137E+03 2.3232E+03 2.1806E+03 1.9643E+03
Rank 5 6 7 9 4 8 2 1 3

f17 Mean 3.3132E+03 3.5774E+03 3.9964E+03 1.3072E+04 2.5898E+03 4.0912E+03 2.8750E+03 2.7035E+03 2.7407E+03
Std 4.2647E+02 2.8451E+02 4.1133E+02 5.5709E+03 2.0764E+02 3.6094E+02 4.3348E+02 3.5084E+02 2.6183E+02
Best 2.6996E+03 2.9872E+03 3.1507E+03 6.5553E+03 2.2306E+03 3.3314E+03 2.1826E+03 2.1466E+03 2.2609E+03
Rank 5 6 7 9 1 8 4 2 3

f18 Mean 2.3764E+05 3.6516E+06 1.5439E+07 2.8115E+08 8.5150E+04 1.8550E+07 9.8543E+06 3.2294E+06 2.8293E+05
Std 1.9419E+05 3.0306E+06 1.3286E+07 9.8216E+07 5.2190E+04 9.1339E+06 1.7512E+07 2.0686E+06 1.8205E+05
Best 4.5791E+04 1.6809E+05 1.5222E+06 1.6313E+08 3.7682E+04 4.9923E+06 4.2752E+05 2.5131E+05 7.3470E+04
Rank 2 5 7 9 1 8 6 4 3

f19 Mean 2.2187E+04 7.6100E+05 7.8606E+08 3.2608E+09 1.6542E+04 2.3606E+08 1.9706E+06 1.2340E+06 1.5248E+04
Std 1.3154E+04 4.1153E+05 2.8467E+09 8.5577E+08 1.0332E+04 7.9111E+07 1.4323E+06 1.3841E+06 9.9650E+03
Best 2.3592E+03 8.2603E+04 1.8216E+06 2.2143E+09 2.1120E+03 1.0416E+08 2.2534E+05 1.2168E+05 2.0840E+03
Rank 3 4 8 9 2 7 6 5 1

f20 Mean 3.4776E+03 3.4599E+03 3.6373E+03 4.2350E+03 2.4708E+03 3.6529E+03 2.8524E+03 2.9119E+03 2.8020E+03
Std 3.5336E+02 2.6286E+02 3.6959E+02 2.5731E+02 2.9717E+02 1.9574E+02 3.4821E+02 2.5155E+02 3.0933E+02
Best 2.7857E+03 3.0151E+03 3.0776E+03 3.5583E+03 2.1884E+03 3.2478E+03 2.4827E+03 2.4663E+03 2.3147E+03
Rank 6 5 7 9 1 8 3 4 2

f21 Mean 2.6526E+03 2.8558E+03 2.8446E+03 3.2694E+03 2.5355E+03 2.9030E+03 2.5267E+03 2.4527E+03 2.3870E+03
Std 8.6063E+01 1.0005E+02 1.0177E+02 1.0384E+02 4.6315E+01 3.6606E+01 8.7360E+01 3.8654E+01 1.9602E+01
Best 2.5084E+03 2.7010E+03 2.6925E+03 3.1173E+03 2.4469E+03 2.8139E+03 2.4162E+03 2.3854E+03 2.3460E+03
Rank 5 7 6 9 4 8 3 2 1

f22 Mean 1.0190E+04 1.1146E+04 1.4141E+04 1.6630E+04 9.8605E+03 1.2005E+04 9.9215E+03 8.1369E+03 8.7717E+03
Std 9.6435E+02 9.3400E+02 1.6313E+03 6.1772E+02 4.4810E+03 3.1867E+03 2.9733E+03 1.0031E+03 1.0092E+03
Best 8.2555E+03 9.2295E+03 1.0976E+04 1.5374E+04 2.8839E+03 7.0447E+03 6.6024E+03 6.3085E+03 5.8062E+03
Rank 5 6 8 9 3 7 4 1 2

f23 Mean 3.1663E+03 3.7541E+03 3.4591E+03 4.4880E+03 3.1217E+03 3.8076E+03 3.0253E+03 2.8930E+03 2.8541E+03
Std 8.9211E+01 1.7580E+02 1.1870E+02 1.7521E+02 7.2808E+01 1.6123E+02 1.1322E+02 3.6965E+01 3.8448E+01
Best 2.9954E+03 3.3961E+03 3.2804E+03 4.1602E+03 2.9626E+03 3.5218E+03 2.8849E+03 2.8371E+03 2.8009E+03
Rank 5 7 6 9 4 8 3 2 1

f24 Mean 3.2448E+03 4.1940E+03 3.7105E+03 5.2143E+03 3.3321E+03 4.1243E+03 3.1644E+03 3.0559E+03 3.0454E+03
Std 8.7385E+01 2.7224E+02 4.7397E+02 2.8762E+02 1.1028E+02 1.1279E+02 1.2349E+02 3.8717E+01 6.2945E+01
Best 3.0916E+03 3.7295E+03 3.1911E+03 4.5370E+03 3.1627E+03 3.9023E+03 3.0227E+03 2.9853E+03 2.9585E+03
Rank 4 8 6 9 5 7 3 2 1

f25 Mean 3.0904E+03 3.1781E+03 7.5189E+03 1.3735E+04 3.4658E+03 6.8885E+03 3.4550E+03 3.3730E+03 3.1852E+03
Std 2.5736E+01 4.2386E+01 8.6211E+03 1.9312E+03 2.1129E+02 1.0120E+03 1.2943E+02 2.1082E+02 6.6178E+01
Best 3.0291E+03 3.1087E+03 3.9692E+03 1.1092E+04 3.1680E+03 5.1347E+03 3.2821E+03 3.1197E+03 3.0983E+03
Rank 1 2 8 9 6 7 5 4 3

f26 Mean 7.6860E+03 1.0022E+04 1.0698E+04 1.6767E+04 9.0068E+03 1.1703E+04 6.5398E+03 5.6186E+03 5.1852E+03
Std 3.1654E+03 1.8220E+03 1.7338E+03 7.9390E+02 2.0257E+03 9.3537E+02 1.0022E+03 4.6035E+02 3.2607E+02
Best 2.9072E+03 4.8104E+03 7.7981E+03 1.5248E+04 4.7371E+03 1.0135E+04 5.6063E+03 4.9062E+03 4.7179E+03
Rank 4 6 7 9 5 8 3 2 1

f27 Mean 3.5567E+03 4.2555E+03 4.0779E+03 7.7750E+03 3.6379E+03 5.3702E+03 3.5738E+03 3.4927E+03 3.4961E+03
Std 1.1402E+02 3.4683E+02 3.1004E+02 9.0008E+02 1.4108E+02 2.4060E+02 8.1794E+01 7.4777E+01 7.1268E+01
Best 3.3760E+03 3.5115E+03 3.5937E+03 5.8105E+03 3.3844E+03 4.8828E+03 3.4067E+03 3.3874E+03 3.4116E+03
Rank 3 7 6 9 5 8 4 1 2

f28 Mean 3.3516E+03 3.4321E+03 5.9054E+03 1.3068E+04 3.9590E+03 7.0487E+03 4.2298E+03 3.8544E+03 3.4077E+03
Std 3.1478E+01 5.0515E+01 1.0112E+03 1.6367E+03 2.4932E+02 5.3184E+02 4.1927E+02 2.4977E+02 5.9867E+01
Best 3.3003E+03 3.3327E+03 4.3700E+03 1.0332E+04 3.4915E+03 6.1423E+03 3.6246E+03 3.4658E+03 3.3255E+03
Rank 1 3 7 9 5 8 6 4 2

f29 Mean 4.8095E+03 5.6241E+03 2.0515E+04 1.9677E+05 4.3222E+03 7.8400E+03 4.5862E+03 4.2251E+03 4.4294E+03
Std 3.4894E+02 4.9463E+02 6.5346E+04 3.4115E+05 3.1845E+02 6.3101E+02 3.0708E+02 2.7412E+02 2.8407E+02
Best 4.3011E+03 4.5622E+03 6.4814E+03 3.5011E+04 3.8251E+03 6.9455E+03 4.0986E+03 3.8182E+03 3.9515E+03
Rank 5 6 8 9 2 7 4 1 3

f30 Mean 2.6336E+06 2.7522E+07 4.5183E+08 8.2551E+09 1.4863E+06 7.1055E+08 1.0202E+08 7.1373E+07 5.8360E+07
Std 1.8910E+06 5.9951E+06 2.0618E+08 2.4007E+09 5.8657E+05 1.5181E+08 3.4318E+07 1.5014E+07 2.1007E+07
Best 1.0182E+06 1.6974E+07 8.3626E+07 5.7453E+09 8.8617E+05 3.1070E+08 4.9723E+07 4.2071E+07 1.9668E+07
Rank 2 3 7 9 1 8 6 5 4

Total Rank 100 146 205 261 103 223 129 87 51
Final Rank 3 6 7 9 4 8 5 2 1
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TABLEⅦ
COMPARATIVE RESULTS OF THE COMPARISON ALGORITHMS ON THE CEC2017 BENCHMARK FUNCTIONS(D=100)

f(x) Index AEO HHO CSA OSA WSO HGSO GWO CGWO HGWO
f1 Mean 2.1249E+07 6.2725E+08 1.4644E+11 2.5396E+11 5.6330E+10 1.5929E+11 3.5473E+10 2.3214E+10 4.0613E+03

Std 9.5872E+06 9.6687E+07 2.5176E+10 1.2385E+10 9.8236E+09 1.4559E+10 9.9092E+09 8.9235E+09 4.3494E+03
Best 1.0795E+07 4.1021E+08 1.1070E+11 2.2753E+11 3.9008E+10 1.2459E+11 1.8002E+10 9.5741E+09 1.3475E+02
Rank 2 3 7 9 6 8 5 4 1

f3 Mean 1.9921E+05 2.2669E+05 4.7121E+05 3.6902E+05 2.3512E+05 3.2331E+05 2.4612E+05 2.4943E+05 2.1090E+05
Std 3.3986E+04 1.7115E+04 1.5245E+05 7.3748E+03 2.6810E+04 1.0188E+04 2.2568E+04 2.6202E+04 3.9102E+04
Best 1.5581E+05 1.9817E+05 3.2536E+05 3.5106E+05 1.7780E+05 3.0064E+05 2.1219E+05 1.9474E+05 1.5067E+05
Rank 1 3 9 8 4 7 5 6 2

f4 Mean 9.3442E+02 1.1582E+03 3.0510E+04 1.0512E+05 4.4670E+03 3.3069E+04 3.5782E+03 2.3978E+03 8.9073E+02
Std 9.2176E+01 9.6609E+01 9.0900E+03 1.3076E+04 1.1233E+03 6.1093E+03 8.0525E+02 4.1876E+02 1.1983E+02
Best 7.9478E+02 9.6535E+02 1.1816E+04 8.8745E+04 2.8265E+03 2.2166E+04 2.3610E+03 1.5017E+03 6.3075E+02
Rank 2 3 7 9 6 8 5 4 1

f5 Mean 1.3354E+03 1.5380E+03 1.9323E+03 2.1129E+03 1.2359E+03 1.8998E+03 1.0981E+03 1.0019E+03 7.9951E+02
Std 7.0845E+01 5.6289E+01 1.2269E+02 4.4953E+01 6.4716E+01 5.1127E+01 4.2049E+01 5.0421E+01 5.7256E+01
Best 1.2158E+03 1.4229E+03 1.6304E+03 2.0126E+03 1.1073E+03 1.7781E+03 1.0135E+03 9.0505E+02 7.2088E+02
Rank 5 6 8 9 4 7 3 2 1

f6 Mean 6.6149E+02 6.8193E+02 6.9456E+02 7.1333E+02 6.5310E+02 6.9981E+02 6.3484E+02 6.2242E+02 6.2938E+02
Std 3.8743E+00 4.2181E+00 8.3585E+00 4.3215E+00 3.5441E+00 3.3874E+00 5.4740E+00 3.8674E+00 4.8133E+00
Best 6.5234E+02 6.6757E+02 6.7598E+02 7.0473E+02 6.4681E+02 6.9173E+02 6.2664E+02 6.1607E+02 6.2107E+02
Rank 5 6 7 9 4 8 3 1 2

f7 Mean 3.1098E+03 3.7121E+03 3.7572E+03 4.0409E+03 2.7956E+03 3.5012E+03 1.8675E+03 1.6564E+03 1.6304E+03
Std 1.8271E+02 7.7099E+01 2.6843E+02 4.9504E+01 2.0015E+02 1.2034E+02 1.2375E+02 1.0724E+02 1.5264E+02
Best 2.7152E+03 3.5432E+03 3.3439E+03 3.9590E+03 2.5157E+03 3.1457E+03 1.6564E+03 1.4404E+03 1.3723E+03
Rank 5 7 8 9 4 6 3 2 1

f8 Mean 1.7626E+03 1.9705E+03 2.2038E+03 2.6004E+03 1.5746E+03 2.3356E+03 1.4372E+03 1.2896E+03 1.1173E+03
Std 9.7566E+01 5.9189E+01 1.3116E+02 5.6246E+01 5.8727E+01 5.6982E+01 1.6444E+02 3.9013E+01 7.1173E+01
Best 1.5899E+03 1.8193E+03 1.8949E+03 2.5178E+03 1.4823E+03 2.1947E+03 1.2649E+03 1.2201E+03 9.9899E+02
Rank 5 6 7 9 4 8 3 2 1

f9 Mean 2.4931E+04 5.2458E+04 7.1129E+04 7.9196E+04 5.9964E+04 7.2331E+04 3.6999E+04 2.1651E+04 7.3193E+03
Std 1.0590E+03 5.3750E+03 1.3445E+04 5.2493E+03 5.1748E+03 3.6973E+03 9.1670E+03 8.5876E+03 1.6385E+03
Best 2.2188E+04 4.3203E+04 5.1272E+04 6.8842E+04 5.1712E+04 6.2410E+04 1.4693E+04 9.4592E+03 4.9456E+03
Rank 3 5 7 9 6 8 4 2 1

f10 Mean 1.7048E+04 2.0968E+04 2.7559E+04 3.2347E+04 2.1863E+04 2.9396E+04 1.7709E+04 1.4219E+04 1.4561E+04
Std 2.1323E+03 1.7549E+03 1.7328E+03 7.6491E+02 7.1761E+03 1.2727E+03 5.3399E+03 1.6773E+03 1.6315E+03
Best 1.2405E+04 1.8007E+04 2.5150E+04 3.0923E+04 1.4291E+04 2.6025E+04 1.3763E+04 1.1784E+04 1.1669E+04
Rank 3 5 7 9 6 8 4 1 2

f11 Mean 3.9775E+03 1.0672E+04 1.3424E+05 4.1224E+05 2.9674E+04 1.4222E+05 4.4843E+04 3.5671E+04 2.7157E+03
Std 7.1828E+02 2.9979E+03 3.3681E+04 1.1328E+05 8.1025E+03 1.5029E+04 1.3081E+04 1.0469E+04 1.1228E+03
Best 2.7246E+03 6.4851E+03 7.2618E+04 2.3771E+05 1.7062E+04 1.1257E+05 1.3082E+04 1.6199E+04 1.9211E+03
Rank 2 3 7 9 4 8 6 5 1

f12 Mean 5.5700E+07 5.9452E+08 3.9740E+10 1.9925E+11 4.1111E+09 6.4315E+10 7.4565E+09 4.1697E+09 2.7444E+07
Std 3.8306E+07 1.6489E+08 5.3915E+10 1.5554E+10 2.5376E+09 1.2948E+10 4.4675E+09 3.2916E+09 3.6856E+07
Best 1.8283E+07 2.8535E+08 9.7075E+09 1.7135E+11 8.3056E+08 4.1883E+10 1.7732E+09 1.0886E+09 2.2711E+06
Rank 2 3 7 9 4 8 6 5 1

f13 Mean 1.6727E+04 9.3127E+06 2.8406E+09 4.6895E+10 6.7042E+07 1.0859E+10 9.6720E+08 3.6407E+08 1.4888E+04
Std 8.1801E+03 3.3476E+06 1.6097E+09 5.3437E+09 1.5792E+08 2.7748E+09 1.4264E+09 4.4270E+08 5.7071E+03
Best 7.4162E+03 5.4239E+06 3.5832E+08 3.5496E+10 6.3052E+04 6.1547E+09 1.6123E+06 4.0567E+05 7.6156E+03
Rank 2 3 7 9 4 8 6 5 1

f14 Mean 4.6709E+05 2.8755E+06 1.8883E+07 4.9142E+07 5.9233E+05 2.1846E+07 6.3909E+06 5.2444E+06 1.0955E+06
Std 1.7005E+05 8.9152E+05 1.1467E+07 1.8828E+07 4.7898E+05 3.9683E+06 3.5346E+06 3.2345E+06 2.0259E+06
Best 2.0146E+05 1.4435E+06 4.2658E+06 2.5999E+07 1.3873E+05 1.1941E+07 1.5493E+06 1.1284E+06 1.4298E+05
Rank 1 4 7 9 2 8 6 5 3

f15 Mean 1.0866E+04 2.3316E+06 6.4782E+08 2.4594E+10 1.4230E+04 2.8457E+09 6.8641E+07 9.0781E+07 6.5618E+03
Std 1.1159E+04 7.0567E+05 8.1433E+08 3.7855E+09 7.8009E+03 6.5335E+08 1.1314E+08 1.4078E+08 3.5414E+03
Best 3.2711E+03 8.8842E+05 4.5747E+07 1.7426E+10 3.2212E+03 1.4299E+09 6.8890E+04 6.5834E+04 1.9316E+03
Rank 2 4 7 9 3 8 5 6 1
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CONTINUED TABLEⅦ
f(x) Index AEO HHO CSA OSA WSO HGSO GWO CGWO HGWO
f16 Mean 6.3189E+03 7.4704E+03 1.2515E+04 2.6265E+04 6.1750E+03 1.3344E+04 6.1046E+03 5.2949E+03 5.3495E+03

Std 8.6254E+02 6.6353E+02 3.7117E+03 2.6924E+03 6.6611E+02 1.0245E+03 1.1644E+03 5.2379E+02 6.8678E+02
Best 4.7826E+03 6.1310E+03 8.8378E+03 2.1516E+04 5.2911E+03 1.0989E+04 4.7045E+03 4.2256E+03 4.4042E+03
Rank 5 6 7 9 4 8 3 1 2

f17 Mean 5.8809E+03 6.4971E+03 1.1679E+04 2.1342E+07 5.6723E+03 2.2800E+04 4.9452E+03 4.4058E+03 4.7941E+03
Std 5.6000E+02 6.7756E+02 1.0418E+04 2.0105E+07 7.1236E+02 1.3210E+04 5.8053E+02 5.9904E+02 4.4165E+02
Best 4.8933E+03 5.4969E+03 6.1259E+03 9.2673E+05 4.7581E+03 9.9938E+03 4.0545E+03 3.4757E+03 3.7864E+03
Rank 5 6 7 9 4 8 3 1 2

f18 Mean 8.6782E+05 4.1221E+06 1.7673E+07 1.2381E+08 6.0110E+05 3.0133E+07 6.5930E+06 4.8624E+06 6.3659E+05
Std 3.7076E+05 1.4944E+06 1.1752E+07 8.6988E+07 3.4837E+05 7.8232E+06 4.8066E+06 3.8154E+06 2.8541E+05
Best 3.7322E+05 1.6103E+06 5.2555E+06 3.1472E+07 1.9571E+05 1.6766E+07 1.5886E+06 1.4171E+06 2.1215E+05
Rank 3 4 7 9 1 8 6 5 2

f19 Mean 8.3892E+03 9.1203E+06 4.2591E+08 2.7108E+10 5.2184E+04 3.2777E+09 1.0994E+08 7.0792E+07 5.4412E+03
Std 5.7689E+03 4.8543E+06 3.0254E+08 3.0666E+09 7.8620E+04 9.9534E+08 1.4873E+08 7.4117E+07 3.3483E+03
Best 2.7482E+03 3.0117E+06 1.0508E+08 2.2624E+10 5.6225E+03 1.2479E+09 5.2538E+06 7.5415E+06 2.5540E+03
Rank 2 4 7 9 3 8 6 5 1

f20 Mean 5.5625E+03 6.0868E+03 6.7821E+03 7.7640E+03 5.0666E+03 7.1657E+03 5.1157E+03 5.0339E+03 4.8657E+03
Std 6.3494E+02 4.4464E+02 7.2948E+02 3.3631E+02 1.3460E+03 2.4925E+02 1.0376E+03 1.2028E+03 5.5177E+02
Best 4.4333E+03 5.2179E+03 5.5869E+03 6.9943E+03 3.4544E+03 6.6605E+03 3.5807E+03 3.5928E+03 3.7329E+03
Rank 5 6 7 9 3 8 4 2 1

f21 Mean 3.2750E+03 4.0336E+03 4.0659E+03 4.7954E+03 3.2441E+03 4.1618E+03 2.9206E+03 2.8528E+03 2.6540E+03
Std 1.4221E+02 1.9154E+02 2.6871E+02 1.9937E+02 9.1794E+01 1.5322E+02 5.7023E+01 1.1462E+02 5.7382E+01
Best 3.0354E+03 3.6219E+03 3.6000E+03 4.4014E+03 3.0807E+03 3.7908E+03 2.8013E+03 2.6651E+03 2.5768E+03
Rank 5 6 7 9 4 8 3 2 1

f22 Mean 2.0693E+04 2.4334E+04 3.1699E+04 3.4828E+04 2.7634E+04 3.2330E+04 2.1524E+04 1.7795E+04 1.7631E+04
Std 1.9022E+03 1.2080E+03 2.4788E+03 8.9622E+02 7.2214E+03 8.5674E+02 6.6434E+03 3.5211E+03 1.2389E+03
Best 1.7687E+04 2.1239E+04 2.7986E+04 3.3056E+04 1.1547E+04 3.0150E+04 1.5733E+04 1.2997E+04 1.4740E+04
Rank 3 5 7 9 6 8 4 2 1

f23 Mean 3.6816E+03 5.1856E+03 4.7200E+03 7.3982E+03 3.7789E+03 5.9325E+03 3.5072E+03 3.3507E+03 3.1456E+03
Std 1.1503E+02 2.8623E+02 3.3569E+02 5.1471E+02 1.6618E+02 2.3741E+02 6.7195E+01 7.9868E+01 5.7335E+01
Best 3.4594E+03 4.7245E+03 4.1323E+03 6.4554E+03 3.6096E+03 5.3853E+03 3.3958E+03 3.2402E+03 3.0518E+03
Rank 4 7 6 9 5 8 3 2 1

f24 Mean 4.4193E+03 6.6290E+03 6.0819E+03 1.1803E+04 4.7906E+03 8.6501E+03 4.1213E+03 3.9031E+03 3.7577E+03
Std 1.9165E+02 4.3515E+02 4.1628E+02 8.3032E+02 1.8344E+02 7.4658E+02 2.0462E+02 1.2363E+02 1.8751E+02
Best 4.0164E+03 5.6136E+03 5.1554E+03 9.8586E+03 4.5603E+03 6.8380E+03 3.9092E+03 3.6375E+03 3.5012E+03
Rank 4 7 6 9 5 8 3 2 1

f25 Mean 3.5843E+03 3.8247E+03 1.3459E+04 2.6508E+04 6.2580E+03 1.3509E+04 5.7636E+03 5.1605E+03 3.8181E+03
Std 6.6393E+01 1.1537E+02 2.6782E+03 1.9161E+03 7.2001E+02 1.5206E+03 6.7316E+02 4.3634E+02 1.6314E+02
Best 3.4302E+03 3.6360E+03 1.0874E+04 2.2928E+04 5.2821E+03 1.0578E+04 5.0273E+03 4.5440E+03 3.5462E+03
Rank 1 3 7 9 6 8 5 4 2

f26 Mean 2.0792E+04 2.5934E+04 3.0318E+04 5.0327E+04 2.6618E+04 3.6371E+04 1.4408E+04 1.2466E+04 1.0089E+04
Std 4.4787E+03 3.5014E+03 4.3111E+03 2.4338E+03 2.5457E+03 2.6149E+03 1.6196E+03 1.0636E+03 9.1086E+02
Best 4.9014E+03 1.0027E+04 2.1007E+04 4.5190E+04 2.2845E+04 3.2270E+04 1.1766E+04 1.0594E+04 8.6484E+03
Rank 4 5 7 9 6 8 3 2 1

f27 Mean 3.8507E+03 4.6195E+03 5.4189E+03 1.5472E+04 4.0477E+03 8.9338E+03 4.0670E+03 3.8232E+03 4.1218E+03
Std 1.9055E+02 5.2823E+02 6.6452E+02 1.9286E+03 2.0408E+02 8.7387E+02 1.4097E+02 9.5249E+01 2.4598E+02
Best 3.6010E+03 3.9387E+03 4.4193E+03 1.0388E+04 3.7169E+03 7.5939E+03 3.7599E+03 3.6100E+03 3.7286E+03
Rank 2 6 7 9 3 8 4 1 5

f28 Mean 3.7018E+03 3.8203E+03 1.7082E+04 2.6912E+04 8.9170E+03 1.9652E+04 8.1478E+03 6.7241E+03 4.1923E+03
Std 5.9204E+01 8.2053E+01 1.2253E+04 1.9551E+03 1.5395E+03 1.7266E+03 1.1445E+03 1.2377E+03 2.9539E+02
Best 3.5754E+03 3.6988E+03 1.0947E+04 2.2934E+04 6.5307E+03 1.6238E+04 5.6649E+03 4.7086E+03 3.6910E+03
Rank 1 2 7 9 6 8 5 4 3

f29 Mean 7.8821E+03 9.9173E+03 5.4418E+05 5.8798E+05 7.9683E+03 2.0408E+04 8.2097E+03 7.2085E+03 8.1366E+03
Std 6.8330E+02 8.7616E+02 2.8814E+06 4.5733E+05 5.2439E+02 3.3843E+03 8.9141E+02 5.4400E+02 5.8740E+02
Best 6.3806E+03 8.3910E+03 1.3021E+04 2.1737E+05 7.2472E+03 1.4883E+04 7.2868E+03 5.9872E+03 7.2497E+03
Rank 2 6 8 9 3 7 5 1 4

f30 Mean 1.4024E+06 5.6927E+07 2.0149E+09 4.3075E+10 1.3233E+07 9.5610E+09 9.4129E+08 2.8022E+08 1.5045E+07
Std 1.4792E+06 1.9583E+07 1.1373E+09 3.6898E+09 1.9630E+07 2.5628E+09 1.1912E+09 1.6480E+08 4.4679E+07
Best 1.6981E+05 2.7543E+07 6.9213E+08 3.7605E+10 1.5806E+06 4.5993E+09 1.3992E+08 4.6974E+07 8.4977E+04
Rank 1 4 7 9 2 8 6 5 3

Total Rank 87 138 206 260 122 227 127 89 49
Final Rank 2 6 7 9 4 8 5 3 1
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(1) f1-D50 (2) f5-D30

(3) f8-D50 (4) f9-D100

(5) f12-D30 (6) f19-D100

(7) f24-D50 (8) f26-D100

Fig.7. Convergence curve of comparison algorithms under different functions
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TABLEⅨ
RESULTS OFWILCOXON SIGNED RANK TEST (MEAN)

Index HGWO
vs

Dimension
30 50 100

p-Value R+ R- Win p-Value R+ R- Win p-Value R+ R- Win

Mean

AEO 5.1070E-03 24 5 + 4.7751E-03 23 6 + 7.5746E-03 22 7 +
HHO 2.5631E-06 29 0 + 4.1746E-05 27 2 + 3.9017E-06 28 1 +
CSA 2.5631E-06 29 0 + 2.5631E-06 29 0 + 2.5631E-06 29 0 +
OSA 2.5631E-06 29 0 + 2.5631E-06 29 0 + 2.5631E-06 29 0 +
WSO 7.3750E-01 18 11 = 3.6921E-02 22 7 + 2.5576E-03 24 5 +
HGSO 2.5631E-06 29 0 + 2.5631E-06 29 0 + 2.5631E-06 29 0 +
GWO 1.1939E-05 27 2 + 3.1652E-06 28 1 + 3.1652E-06 28 1 +
CGWO 7.9390E-05 26 4 + 3.1790E-04 23 6 + 4.0717E-04 23 6 +
+/=/- 7/1/0 8/0/0 8/0/0

TABLE Ⅹ
RESULTS OF WILCOXON SIGNED RANK TEST (STD)

Index HGWO
vs

Dimension
30 50 100

p-Value R+ R- Win p-Value R+ R- Win p-Value R+ R- Win

Std

AEO 3.8117E-01 20 9 = 1.0397E-02 22 7 + 1.6311E-01 19 10 =
HHO 1.2398E-04 26 3 + 6.6006E-04 23 6 + 5.2956E-02 16 13 =
CSA 2.5631E-06 29 0 + 2.5631E-06 29 0 + 2.5631E-06 29 0 +
OSA 3.1483E-05 27 2 + 2.8631E-05 26 3 + 3.1790E-04 21 8 +
WSO 9.5689E-01 17 12 = 3.5008E-02 22 7 + 1.1765E-02 20 9 +
HGSO 1.9148E-04 25 4 + 1.9496E-05 27 2 + 5.1944E-04 21 8 +
GWO 2.1477E-05 27 2 + 8.8479E-06 28 1 + 1.2398E-04 24 5 +
CGWO 4.4628E-03 22 7 + 1.9162E-03 22 7 + 1.5360E-03 20 9 +
+/=/- 6/2/0 8/0/0 6/2/0

TABLE Ⅺ
RESULTS OFWILCOXON SIGNED RANK TEST (BEST)

Index HGWO
vs

Dimension
30 50 100

p-Value R+ R- Win p-Value R+ R- Win p-Value R+ R- Win

Std

AEO 1.4441E-01 21 8 = 7.4438E-02 20 9 = 4.4179E-04 23 6 +
HHO 2.5631E-06 29 0 + 3.8016E-05 28 1 + 2.5631E-06 29 0 +
CSA 2.5631E-06 29 0 + 2.5631E-06 29 0 + 2.5631E-06 29 0 +
OSA 2.5631E-06 29 0 + 2.5631E-06 29 0 + 2.5631E-06 29 0 +
WSO 8.2039E-01 17 12 = 2.3861E-01 19 10 = 1.3225E-03 23 6 +
HGSO 2.5631E-06 29 0 + 2.5631E-06 29 0 + 2.5631E-06 29 0 +
GWO 2.1477E-05 27 2 + 4.1746E-05 25 4 + 3.9017E-06 28 1 +
CGWO 6.0436E-05 26 3 + 1.9148E-04 24 5 + 1.0532E-03 22 7 +
+/=/- 6/2/0 6/2/0 8/0/0

G. Cpu-time comparisons on GWO and HGWO
Running speed is also an important indicator to describe

the performance of a meta-heuristic algorithm. In this
subsection, CPU-time of HGWO and GWO was compared.
The Mean CPU-time of all test functions in 30, 50 and 100
dimensions are plotted in Fig. 8 to Fig.10. It can be seen
from Fig. 8 to Fig.10 that the CPU-time of HGWO is longer
than that of GWO. According to the principle that there is no
free lunch [56], the CPU-time increase brought by the
performance improvement is reasonable. ood performance
achieved by the improvement of GWO does not come for
free. But we can also see that, with the increase of dimension,
the CPU-time of HGWO and GWO algorithm is closer and
closer, which indicates that HGWO is more suitable for
solving the high-dimensional optimization problems. Fig.8. CPU-Time consumption on all test functions(D=30)
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Fig.9. CPU-Time consumption on all test functions (D=50)

Fig.10. CPU-Time consumption on all test functions(D=100)

Fig. 11. Gear train design problem

V. REAL-WORLD APPLICATIONS OF HGWO IN FOUR
ENGINEERING PROBLEMS

Engineering design problems can effectively verify the
ability of an algorithm to solve real-world problems [41,57].
In this section, the performance of HGWO will be further
evaluated on four real-world engineering design problems,
including gear train design, pressure vessel design, welded
beam design and speed reducer design problem.

A. Gear train design problem
The aim of the gear train design problem is to minimize

the square of the difference between the desired gear ratio
(1/6.931) and the current design gear ratio [58]. The gear
train design model is shown in Fig.11. The main design
variables are mainly four, Td(x1) , Tb(x2) , Ta(x3) , Tf(x4) ,
where Td , Tb , Ta and Tf are the number of teeth on gears A,
B, D and F, respectively. For each gear, the minimum
number of teeth is 12 and the maximum is 60. The objective
function of the problem is described in (15).
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Fig.12. Pressure vessel design problem

Fig. 13. welded beam design problem

B. Pressure vessel design problem
The aim of the pressure vessel design problem is to

minimize the total cost, including the cost of material,
forming and welding [59]. The objective function of the
problem is described in (16).
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Where 1≤x1, x2≤99，10≤x3, x4≤200.
The pressure vessel model is shown in Fig.12. There are

four design variables in this problem: thickness of the shell
Ts (x1), thickness of the headTh (x2), inner radius R (x3), and
length of the cylindrical section of the vessel L(x4). Among
these four design variables, Ts and Th are expected to be
integer multiples of 0.0625 inch, and R and L are continuous
variables. This problem consists of 3 linear and 1 nonlinear
inequality constraints.

C. Welded beam design problem
The welded beam design problem is designed for

minimum cost subject to constraints on shear stress (τ),
bendding stress (σ) in the beam, buckling load on the bar (Pc),
end deflection of the beam (δ), and side constraints. The
pressure vessel model is shown in Fig.13. There are four
design variables for this problem including h (x1), l (x2), t (x3)
and b (x4) [60]. This problem consists of 4 continuous
variables with 2 linear and 5 nonlinear inequality constraints.
The objective function of the problem is described in (17).
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Fig. 14. Speed reducer design problem
































0)()(
0)()(
0125.0)(

00.5)0.14
04811.010471.1)(
0)(
0)()(
0)()(

..

0.14
04811.010471.1)(

7

max6

15

2

43
2
14

413

max2

max1

2

432
2
1

XPPXg
XXg

xXg
x

xxxXg
xxXg

xXg
xXg

ts

x
xxxxXf

Minimize

c






（

）（

(17)
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Where P=6000 lb, L=14 in, E=20×106 psi, G=12×106 psi,
τmax=13600 psi, σmax=30000 psi, δmax=0.25 in.

D. Speed reducer design problem
The Speed reducer design problem is a constrained

optimization problem in the field of mechanical engineering
[60]. As shwon in Fig.14, the weight of the speed reducer is
to be minimized subject to constraints on bending stress of
the gear teeth, surface stress, transverse deflections of the
shafts, and stresses in the shafts. The variables x1 to x7
represent the face width b(x1) , module of teeth m(x2) ,
number of teeth in the pinion z(x3), length of the first shaft

between bearings l1(x4), length of the second shaft between
bearings l2(x5), and the diameter of first d1(x6) and second
shafts (d2), respectively. This problem consists of 4 linear
and 7 nonlinear inequality constraints with 7 decision
variables. The objective function of the problem is described
in (24).
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(24)

Where 2.6≤x1≤3.6，0.7≤x2≤0.8，17≤x3≤28，7.3≤
x4≤8.3，7.8≤x5≤8.3，2.9≤x6≤3.9 and 5.0≤x7≤5.5.

E. Comparison of results of engineering problems
For engineering problems, it is important to pay more

attention to best solutions, because the best solutions are
often actually needed [61]. TableⅫ gives the best solutions
of the four engineering problems achieved by all comparison
algorithms. The best solutions obtained by comprasion
algorithms are marked in bold. Gear train design problem is
an unconstrained optimization problem. Eexcept for CSA
and OSA, other algorithms achieved the same best solutions,
which shows that most algorithms can handle unconstrained
optimization problems well. Other three design problems are
constrained optimization problems. It can be seen from
Table Ⅻ that only HGWO can obtain the best solutions of
the three problems. GWO can can only obtains the best
solution of pressure design problem, while it has poor ability
to deal with the other two constrained problems. In fact,
constraints are ubiquitous in engineering design. The ability

Engineering Letters, 31:3, EL_31_3_01

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



TABLE Ⅻ
BEST RESULTS OF THE FOUR ENGINEERING PROBLEMS ACHIEVED BY ALL COMPARISON ALGORITHMS

Problem AEO HHO CSA OSA WSO HGSO GWO CGWO HGWO
Gear train 2.7009E-12 2.7009E-12 2.3078E-11 5.1415E-06 2.7009E-12 2.7009E-12 2.7009E-12 2.7009E-12 2.7009E-12
Pressure
vessel 6.0597E+03 6.1082E+03 6.1185E+03 6.8795E+03 6.0597E+03 6.1446E+03 6.0597E+03 6.0598E+03 6.0597E+03

Welded beam 1.7784E+00 1.7571E+00 1.7332E+00 1.8061E+00 1.7251E+00 1.9308E+00 1.7251E+00 1.7250E+00 1.7249E+00
Speed
reducer 2.9968E+03 3.0011E+03 3.0028E+03 3.5554E+03 2.9963E+03 3.0601E+03 2.9976E+03 2.9976E+03 2.9963E+03

of HGWO to deal with constrained optimization problems is
improved compared with GWO, and its comprehensive
performance is better than other comparison algorithms.
Through the results and analysis of the engineering cases,
we can conclude that the proposed HGWO has potential
ability to deal with engineering problems, and has certain
strength in search for optimal values. In addressing
engineering design issues, these strategies proposed in
HGWO have greatly improved the performance of the
original GWO.

VI. CONCLUSIONS AND PROSPECTS

In this paper, a new GWO variant was proposed to
alleviate the stagnation problems of the basic optimizer,
which is called HGWO. The proposed HGWO mainly
adopts three strategies, random subgroup, two new global
search formulas and the concept of greedy wolf. The
purpose of the three strategies is to achieve a better balance
between exploration and exploitation, and improve the
convergence rate and accuracy. Random subgroup strategy
can effectively increase population diversity, which can
avoids local optimum. The switching of two global search
formulas can effectively help the algorithm escaping from
local optimum. Greedy wolves only hunt around the most
valuable prey to maximize profits, thus effectively
improving the convergence accuracy of the algorithm.
Nonliner factor can better coordinate the exploration and
exploitation. The numerical results on CEC2017 benchmark
functions show that the comprehensive performance of
HGWO is significantly better than those of comparison
algorithms. Friedman and Wilcoxon signed rank test further
proved the superiority of HGWO from a statistical sense.
Overall, in dealing with optimization problems of different
dimensions, the accuracy and stability of HGWO are better
than that of comparison algorithms. The convergence
comparison shows that HGWO has faster convergence
speed than most comparison algorithms. CPU-time cost
analysis shows that the good performance achieved by the
improvement of GWO is not for free, but HGWO is more
suitable for solving high-dimensional optimization problems.
No algorithm can get the best results on all optimization
problems, but the optimization results of four engineering
problems show that the proposed HGWO is more suitable
for solving complex engineering optimization problems.
Although there are still some gaps between the proposed
HGWO and GWO in running speed, and the theoretical
analysis still needs to be further strengthened, the
improvement strategy actually improves the performance of
HGWO and can also provide inspiration for the
improvement of other meta-heuristic algorithms.
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