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Abstract—Geographically Weighted Logistic Regression
(GWLR) creates a logistic regression model by incorporating
spatial variation through geographical weighting in parameter
estimation. GWLR can be employed for investigating the
relationship among a variable and its independent variables
when the dependent variable has a Bernoulli distribution. In
some studies, not only a single individual or experimental unit is
observed but also a group of binary samples that have all been
treated in the same manner. As a result, data with n total obser-
vations can be considered to have a binomial distribution, and
the total availability also indicates that the data have a binomial
distribution rather than a Poisson distribution or a negative
binomial distribution. In the present research, the GWLR model
is modified into Geographically Weighted Binomial Logistic
Regression (GWBLR). Unlike the GWLR, which only observes
one binary sample as the response variable, the GWBLR allows
n binary samples as the response variable. The parameter
estimations were calculated by maximum likelihood estimation
(MLE), and the optimum bandwidth was determined by a fixed
Gaussian function based on the least Cross Validation (CV)
result. The likelihood ratio test and the Wald test were used to
test hypotheses. We created the model using both simulation and
real data. The simulation parameter estimations demonstrated
high consistency with the generated data. The GWBLR model
was applied to real data to investigate the spatial effects
of temperature, sunshine, humidity and precipitation on the
number of confirmed Covid-19 cases in Indonesia. Temperature,
sunshine, humidity and precipitation all had an important effect
on confirmed Covid-19 cases, according to the data.

Index Terms—binomial distribution, geographically weighted
binomial logistic regression, geographically weighted logistic
regression, maximum likelihood estimation, likelihood ratio test

I. INTRODUCTION

Regression analysis is technique for investigating possible
relationships involving predictor factors and variable related
to responses statistically. The Ordinary Least Squares (OLS)
method, which assumes that all variables are continuous, is
a popular estimation method of the parameters in a linear
regression model. The normality of the data is also required
in classical linear regression. The Generalized Linear Model
(GLM) evolved from classical linear regression when nor-
mality was not met. GLM assumes that the response vari-
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able is of the exponential family, which includes binomial,
Poisson, and negative binomial distributions.

Observations in an experimental unit or individual can
result in one of two outcomes in various fields of research.
Those are generally expressed in terms of ”success” and
”failure”. Binary data have a Bernoulli distribution and
has two possible outcomes. In some studies, not only one
individual or experimental unit is observed, but also a group
of units that have all been treated similarly. The data are then
referred to as ”grouped binary data” and show the number
of successful observations out of all observations. Given
that such a sample has a binomial distribution, data with a
Bernoulli distribution are a subset of binomial distributions
with a single observation [1]. Hilbe [2] distinguishes two
types of logistic regression: binary (”1” or ”0”) response
logistic models based on the Bernoulli distribution and
proportional (”n/m”) response logistic models based on the
binomial probability distribution. The Bernoulli distribution
is a binomial model with a response denominator of one
(”1”). If there are not too many predictors with binary or
categorical outcomes with multiple levels, binary response
logistic models can be converted to clustered models.

The analysis for binomial data has been extended. Hall
[3] suggested a model for finite count data known as zero-
inflated binomial (ZIB), which adapts the model of zero-
inflated Poisson (ZIP). Jacups and Cheng [4] proposed
using binomial logistic regression in the health sector to
describe cases of community-acquired pneumonia (CAP).
Furthermore, [5] and [6] used a Bayesian approach to modify
the binomial logistic model in spatial analysis and industrial
experiments, respectively. Binomial logistic regression is also
widely used and implemented in many statistical programs
for data with binary or binomial responses [7]. The number
of known samples or finite integers is critical in binomial
data analysis. The number of samples in the form of upper
bounded count data or finite integers must be considered in
binomial data.

Spatial analysis is one of the statistical analyses that is
currently being developed. The primary principle of spa-
tial analysis is to consider the relationship between areas
represented by spatial data. The heterogeneity and spatial
dependency tests are used to test for spatial effects. Area
approaches, such as Spatial Autoregressive Models, can be
used to resolve data with spatial dependency effects [8],
[9]. This approach includes conditional autoregressive (CAR)
and simultaneous autoregressive (SAR) models. A point
approach is used to solve spatial data with heterogeneity
effects, such as the Geographically Weighted Regression
(GWR) introduced by [10]. [11] developed a Geographically
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Weighted Logistic Regression model (GWLR) for binary
outcome data with spatial effects that are non-stationary.
The GWLR model combines the GWR model [10], which
investigates spatial heterogeneity or nonstationarity, and lo-
gistic regression with binary response variables. GWLR with
binary response variables has been widely used in the health
sector, as demonstrated by [12], [13] and [14]. GWR models
with discrete and count data, in addition to GWLR, have
been developed, including Geographically Weighted Poisson
Regression (GWPR) and Geographically Weighted Negative
Binomial Regression (GWNBR). Both of these models have
been widely used, with the assumption of equidispersion data
for GWPR [15] and overdispersion data for GWNBR [16].
In these two models, the entire number of observations is
not required, and a given number of binary observations can
be an infinite count data.

In some studies, data collected in one location, such as data
on confirmed malaria cases, can be in the form of grouped
binary data, similar to logistic regression of binomial data.
Ssempiira, et.al. ( [17] investigated the widespread incidence
of malaria of kids in the Gambia using Bayesian spatiotem-
poral negative binomial models, and [18] proposed spatial
correlogram models for detecting spatiotemporal trends in
the risk of malaria in Uganda. The presence of total obser-
vations in binary data sets and the existence of more than one
observation indicate that the data has a binomial distribution
rather than a Poisson distribution or a negative binomial
distribution [3]. The GWLR developed by [11] must be
adjusted to the logistic regression of binomial data for these
grouped binary data. As a result, GWLR with binomial data
remains required to model and analyze data with a binomial
distribution that has spatial effects.

A spatial approach based on GWR is commonly used in
the health sector. [19] and [20] used several GWR models
under the assumption of Gaussian modeling. The GWLR
model with a binary response variable was used in [12],
[13] and [14]. [21], [22] and [23] employed GWPR on the
response variable represented by Poisson data. Furthermore,
[24] and [25] conducted the most recent epidemiological
research using the GWNBR model to investigate spatial
factors that affect Covid-19 incidences.

Almost every country is concerned about the prevalence
of Covid-19. The propagation of the COVID-19 pandemic,
according to Lamlili [26], is a difficult event to comprehend
and anticipate due to the multiple components involved, and
it is a new virus with unknown characteristics. As a result,
more research into the distribution of Covid-19 instances
is required. Some Covid-19 research in Indonesia has been
published. Forecasting studies for Covid-19 cases have been
conducted, including the use of the Richard Model [27],
Singular Spectrum Analysis [28], LSTM Neural Network
[29], [30] and multi-state SVIRS model [31]. Furthermore,
[32] forecasted using an autocorrelation analysis based on
the Hijri calendar. [33], [34] and [35] investigated Covid-
19’s influence and impact in the social and economic sectors.
Moreover, [36] and [37] investigated Covid-19 effects in the
financial sector. In contrast, [38] investigated the weather
effect on Covid-19 cases in Jakarta. However, [38] did not
account for meteorological heterogeneity in Covid-19 in-
fection transmission in Indonesia. Several studies, including
[39], [40], [41], [42], [43] and [44], have shown that climatic

circumstances can influence the dissemination of Covid-19.
As a result of the spatial non-stationarity, it was necessary to
conduct study on the impact of weather on Covid-19 cases
in Indonesia.

The objective of the present research is to extend a GWLR
model to include a dependent variable represented by bino-
mial data, which is recognized as Geographically Weighted
Binomial Logistic Regression (GWBLR). The following sec-
tion will provide a brief explanation of logistic regression
for binomial data, GWLR for binomial data, parameter esti-
mation using the Maximum Likelihood Method (MLE), and
bandwidth determination using the Cross-Validation (CV)
approach. Section 3 discusses the model’s application to
simulation and real-world data. The last section of this paper
is the conclusion.

II. METHODS

A. Logistic Regression for Binomial Data
The observed response for binary or binomial data is

the ratio yi/ni, denoted by pi, for i = 1, 2, . . . , n. The
response for the ith observation is represented by a binomial
distribution B(ni, pi), in which pi represents the success
probability or response probability and ni represents the total
number of observations. The expected value of the response
variable is thus E(Yi) = nipi, and V ar(Yi) = nipi(1− pi).
For binary data specifically, ni = 1 for all i and yi = 0
(failure) or yi = 1 (success). Therefore, E(Yi) = pi and
V ar(Yi) = pi(1− pi) are true for this condition.

The model is examined in logistic regression in terms of
the likelihood that the ith observation will be successful,
pi = E(Yi/ni), which has a value between 0 and 1. A
logistic transformation is used to ensure that the probability
is between 0 and 1 when modeling the linear equation.
The logit transformation is used to transform the probability
of success pi, which is denoted by logit(pi) and can be
calculated using the formula below [1]:

logit(p) = log

(
p

1− p

)
= β0 + β1x1i + · · ·+ βdxxi (1)

and can be realign into the success probability equation
presented below:

pi =
exp(β0 + β1x1i + · · ·+ βdxxi)

1 + exp(β0 + β1x1i + · · ·+ βdxxi)
. (2)

The unknown parameter in equation (1) or (2), β =
{β0, β1, . . . , βd} is estimated using MLE. Likelihood is de-
termined using probability function of binomial distribution
given by

f(yi;ni, pi) =

(
ni

yi

)
pyi

i (1− pi)
ni−yi , for i = 1, . . . , n.

(3)
Parameter estimation is obtained by determining the value

of β̂ which maximizes the likelihood function by determining
its first derivative and equating to zero. The likelihood
function is maximized in logarithmic form, which is referred
to as log-likelihood, as follows:

L(β) = log[l(β)] = log

{
n∏

i=1

(
ni

yi

)
pyi

i (1− pi)
ni−yi

}

=
n∑

i=1

{
log

(
ni

yi

)
+ yi log ηi − ni log(1 + eηi)

}
(4)
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where ηi =
∑d

k=0 βkxki and x0i = 1 for each i. With regard
to the d + 1 unknown parameter, the derivative of this log
likelihood function is given by:

∂L(β)

∂βk
=

n∑
i=1

yixki−
n∑

i=1

nixkie
ηi(1+eηi)−1, j = 0, 1, . . . , d.

(5)
These derivatives are evaluated at β̂ and are then equalized
to zero, resulting in a set of d+ 1 nonlinear equations with
β̂j unknown parameters that can only be solved numerically.

B. Geographically Weighted Logistic Regression for Bino-
mial Data

Geographically Weighted Logistic Regression (GWLR)
is one approach for obtaining regression parameters while
accounting for spatial factors. GWLR is a non-stationary
parameter approach to GWR that combines categorical data
and non-stationary parameters. [11] assumes that the GWLR
response variable has a bernoulli distribution with Y between
0 and 1. The GWLR model is expressed as follows:

π(loni, lati) =
exp(

∑d
k=0 βk(loni, lati)xki)

1 + exp(
∑d

k=0 βk(loni, lati)xki)
, (6)

where xi is the observation value of the i response for
i = 1, 2, . . . , n,, βk(loni, lati) is the coefficient at the i
observation location or geographic coordinates (longitude,
latitude), and d is the number of predictor variable pa-
rameters. By denoting the linear function ηi(loni, lati) =∑d

k=0 βki(loni, lati)xki with x0i = 1, then Equation (6)
can be expressed in

πi(loni, lati) =
exp(ηi(loni, lati))

1 + exp(ηi(loni, lati))
, i = 1, 2, . . . , n.

(7)
If at one location the interest is the number of successes

from n known samples with the same probability of each
action, then the data obtained can be in the form of grouped
binary data or binomial data. Similarly binomial logistic
regression, which has the same model as binary logistic
regression, the GWLBR model can also be expressed in
equation (6) and (7). Think about that n observations of the
dependent variable have a binomial distribution and yi is the
number of successful events of the total ni events at the i
location. The expected value of the variable yi is E(Yi) =

niπi(loni, lati) where πi(loni, lati) =
exp(ηi(loni,lati))

1+exp(ηi(loni,lati))
is

a probability of each corresponding location.

C. Parameter Estimation of GWBLR Model

To estimate the GWLBR model parameters, the MLE
approach is employed. By differentiating the log-likelihood
function to betak(loni, lati) and equalizing the outcome
to zero, parameter estimation is obtained. The likelihood
function for the dependent variable in the GWLBR, which
has a binomial distribution, is as follows:

l(β) =
n∏

i=1

P (Y = yi)

=
n∏

i=1

(
ni

yi

)
πi(loni, lati)

yi(1− πi(loni, lati))
ni−yi .

(8)

and log-likelihood function is as follow:

L(β) = log[l(β)]

= log

{
n∏

i=1

(
ni

yi

)
πi(loni, lati)

yi [1− πi(loni, lati)]
ni−yi

}

=

n∑
i=1

{
log

(
ni

yi

)
+ yi log πi(loni, lati)+

(ni − yi) log(1− πi(loni, lati))}

=

n∑
i=1

{
log

(
ni

yi

)
+ yi log

(
πi(loni, lati)

1− πi(loni, lati)

)
+

ni log(1− πi(loni, lati))}

=

n∑
i=1

{
log

(
ni

yi

)
+ yi

(
p∑

k=0

βl(loni, lati)xli

)

−ni log

(
1 + exp

(
p∑

k=0

βl(loni, lati)xli

))}

=

n∑
i=1

{
log

(
ni

yi

)
+ yiηi − ni log (1 + exp(ηi))

}
. (9)

The weighting factor in the GWBLR model is geograph-
ical location, and each region has local parameters with
unique values. To produce the GWBLR model, the log-
likelihood function is weighted by wij , which represents the
geographically weighted of the jth observation at the ith

regression point. In order to estimate the parameters at the
ith location, the local log-likelihood function to be employed
is

L∗(β(loni, lati)) =

m∑
j=1

{
log

(
nj

yj

)
+ yjηj(loni, lati)−

nj log(1 + exp(ηj(loni, lati)))}wij . (10)

Parameter estimation βk(loni, lati) is derived by differenti-
ating (10) to estimate parameter βk(loni, lati), where ηj =∑d

k=0 βk(loni, lati)xkj . The following equation provides
the derivative of the log likelihood function to the d + 1
parameter βk(loni, lati):

∂L∗(β(loni, lati))

∂βk(loni, lati)
=

m∑
j=1

{
yjxkj − njxkj

(
exp(ηj)

1 + exp(ηj)

)}
wij

=
n∑

j=1

wij {yjxkj − njxkjπj}

=
n∑

j=1

xkjwij {yj − njπj} (11)

which can be expressed in the form of a matrix

∂L∗(β(loni, lati))

∂βk(loni, lati)
= XTW (loni, lati)y

∗ (12)

where, X =


1 x11 · · · x1d

1 x21 · · · x2d

...
...

. . .
...

1 xm1 · · · xmd

 W (loni, lati) =


wi1 0 · · · 0
0 wi2 · · · 0
...

...
. . .

...
0 0 · · · wim

 and y∗ =


y1 − n1π̂1

y2 − n2π̂2

...
ym − nmπ̂m

 with

π̂j =
exp(

∑d
k=0 β̂k(loni,lati)xjk

1+exp(
∑d

k=0 β̂k(loni,lati)xjk)
, j = 1, 2, . . . ,m. The first

Engineering Letters, 31:3, EL_31_3_07

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



partial derivative is equal to zero to maximize the log-
likelihood function, so

∂L∗(β(loni, lati))

∂βk(loni, lati)
= XTW (loni, lati)y

∗ = 0. (13)

The MLE approach was unable to produce an analytical
solution due to the implicit nature of Equation (13). To
generate parameter estimates, Fisher’s Scoring algorithm,
a numerical iteration process, was used. This method was
selected because iteration can be used quickly and effectively
to estimate parameter values when the information matrix
and the gradient vector are known. The information matrix
is also the inverse of the maximum likelihood estimate’s
asymptotic variance-covariance matrix.

β̂(t+1)(loni, lati) =β̂(t)(loni, lati)I
(−1)(β̂(t)(loni, lati))

g(β̂(t)(loni, lati)), (14)

where β̂t(loni, lati) is the value of the parameter estimate
for the tth iteration at the ith location, g(β̂(t)(loni, lati))
is the value of the gradient vector at the tth iteration at
the ith location, and I(β̂(t)(loni, lati)) is the Information
matrix at the ith location for the tth iteration. Elements
in g(β̂(t)(loni, lati)) are the initial partial derivatives of
the log-likelihood function in (10) for each parameter as
in (12) and elements in I(β̂(t)(loni, lati)) are minus value
of the expected value for the second differential of the log-
likelihood function.

D. Hypothesis Testing
The parameters of the GWBLR model are available for

simultaneous and partial testing. A simultaneous test is
utilized to identify at least one predictor that significantly
affects the response at the observation location. A partial
test is employed to identify the specific predictor that has a
significant effect on the response at each observation point.

The following is the simultaneous hypothesis testing:
H0 : β1(loni, lati) = β2(loni, lati) = · · ·

= βd(loni, lati) = 0 for i = 1, . . . ,m
H1 : There is at least one βk(loni, lati) ̸= 0,

for k = 1, . . . , d; and i = 1, . . . ,m
The likelihood ratio test (LRT) is applied to calculate the

test statistic for this hypothesis [45]. This method compares
the most extreme likelihood function corresponding to the
parameter set under H0 to the most extreme value of the like-
lihood function for the parameter set under the population.
The likelihood function is equivalent to the log-likelihood
function, and the log transformation is implemented to pro-
duce a sample approximation with a chi-square distribution.

l(ω̂GWBLR) =
n∑

i=1

{
log

(
ni

yi

)
+ yi log π̃i(loni, lati)

+(ni − yi) log(1− π̃i(loni, lati))} (15)

Next the set of parameters under the population is
determined, which is Ω̂GWBLR = {β̂0(loni, lati),
β̂1(loni, lati), . . . , β̂d(loni, lati); i = 1, . . . , n} and the
maximum value of the likelihood function of the parameter
set under the population is as follows

l(Ω̂GWBLR) =
m∑
i=1

{
log

(
ni

yi

)
+ yi log π̂i(loni, lati)+

(ni − yi) log(1− π̂i(loni, lati))} . (16)

As a result, the deviance value can be calculated using the
formula below:

D = −2
l(ω̂GWBLR)

l(Ω̂GWBLR)

= 2
n∑

i=1

{
yi log

(
π̂i(loni, lati)

π̃i(loni, lati)

)
+

(ni − yi) log

(
1− π̂i(loni, lati)

1− π̃i(loni, lati)

)}
(17)

If the number of successes based on the model set of
parameters under the population is ŷi(loni, lati) = niπ̂i and
the model under H0 is ỹi(loni, lati) = niπ̃i, the test statistic
for the likelihood ratio test can be written as:

D =2
n∑

i=1

{
yi log

(
ŷ(loni, lati)

ỹ(loni, lati)

)
+

(ni − yi) log

(
(ni − ŷ(loni, lati)

(ni − ỹ(loni, lati)

)}
(18)

Test statistic D in (17) has asymptotic property and chi-
square distributed with the degrees of freedom equal to the
number of effective parameters, which is v = trace(I). The
H0 rejection region of the hypothesis testing for the α sig-
nificance level was H0 rejection if the value of D > λ(α,v).

Following the simultaneous test, a partial test is performed.
Testing the GWBLR model parameters partially is employed
to determine the parameters that have a significant effect on
the model. The partial hypothesis test for the βk parameter
with a certain value of k and i is

H0 : βk(loni, lati) = 0
H1 : βk(loni, lati) ̸= 0k;

for i = 1, . . . , n and k = 1, . . . , p. The Wald test statistic
is employed as the test statistic. Wald’s test equals the
parameter estimate to its estimated standard error as given
by:

W =
β̂k(loni, lati)

SE(β̂k(loni, lati))
(19)

with SE(β̂k(loni, lati)) =

√
V ar(β̂k(loni, lati).

V ar(β̂k(loni, lati) is the k diagonal element of the
inverse Fisher Information matrix at location (loni, lati).
The test statistic in (19) is close to the standard normal
distribution for a large enough sample size n. The critical
area is to reject H0 if the value is |W | > Zα/2.

E. Parameter Estimation Interpretation

The interpretation of the GWBLR model was obtained by
exponentiating the logit (1), so the odds of success are as
follows:

π̂ =
eβ̂0(loni,lati)(eβ̂1(loni,lati))x1i · · · (eβ̂k(loni,lati))xki

1 + eβ̂0(loni,lati)eβ̂1(loni,lati))x1i · · · (eβ̂k(loni,lati))xki

.

(20)

When all independent variables are 0, then

π̂ =
eβ̂0(loni,lati)

1 + eβ̂0(loni,lati)
(21)

According to what a result, if the intercept is negative, the
probability of the observed occurrence is less than 0.5. If
the intercept, on the other hand, has a positive sign, the
probability of the observed occurrence is greater than 0.5.
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In contrast to the intercept coefficient, the estimated
parameter coefficient of each independent variable in the
regression model can be interpreted as each increase in
β̂k units of variable Xk. In addition, it can also be inter-
preted that the negative coefficient reduces log odds and the
positive coefficient improves log odds. The odds value is
multiplied by eβ̂k(loni,lati) for every 1 unit increase in xli.
If β̂k(loni, lati) = 0, then eβ̂k(loni,lati) = 1, and it means
that the odds do not change when x changes.

F. Optimum bandwidth determination

The significance of weights in GWR cannot be overstated.
The distance between the observation points determines the
GWR weighting. The weighting matrix’s function is to select
a different parameter estimator at each point of observation.
There are several methods for calculating the weighting
value.

One of the locality-based weighting function developments
is excluding observations that are more than a certain dis-
tance d from the location ith. The following is the weighting
function:

wij =

{
1, if dij < d

0, dij otherwise (22)

where dij is the Euclidean distance between the i and j
observation locations, as expressed by the formula

dij =
√
(loni − lonj))2 + (lati − latj))2 (23)

The use of this function simplifies model formation because
only a portion of the data is used to form the model, i.e.
the distance from the observation location to i is less than d.
This function, however, has a discontinuity problem, which
causes the resulting parameters to change dramatically when
the observation location changes.

[10] provides a solution to the weighting discontinuity
problem by forming wij as a continuous function of dij .
The Gaussian weighting function, which is additionally rec-
ognized as the fixed kernel Gaussian function, is a common
function that is stated as follows:

wij = exp

[
−1

2

(
dij
b

)2
]

(24)

where b is a non-negative parameter called bandwidth. Band-
width is the balance controller between the smoothness of the
function and its appropriateness to the data. The weighting
value of the data will approach 1 if the distance is close or
coincides and will get smaller so it approaches zero if the
distance is further away.

To find the best model with the best bandwidth, models
with different bandwidths must be evaluated. To find the
best bandwidth and model for GWBLR, the Cross Validation
(CV) approach was adopted. The CV value is employed to
determine whether a model specification fits the data and to
provide an alternative method for testing the relevance of the
spatial relationship in the spatial regression model without
making assumptions. For GWBLR, the model with the lowest
CV value is the best. The CV value was calculated using the
following formula:

CV (b) =
n∑

i=1

(yi − ŷ ̸=i(b))
2 (25)

where ŷi(bi) is the estimated value of yi which administers
bandwidth bi and the variable in which the observations
at location (loni, lati) are removed from the estimation
process.

III. SIMULATION AND APPLICATION

A. Simulation

This section investigates the use of simulation data to
determine the optimum bandwidth and estimate parameters
based on the formulas in section 2. As a result, describing a
computer algorithm for determining optimal bandwidth and
estimating parameters is critical. The optimum bandwidth
and parameter estimation algorithm are adopted from pack-
age spgwr in R [46], while the Fisher’s Scoring algorithm
refers to [47]. The algorithms are presented below:

Algorithm 1 Parameter Estimation Algorithm

Require: Nn×1, yn×1, xn×p, (lon, lat)n×2, bdw
Ensure: β̂n×p

Function binom.gwr(β̂, N, π, x, y,W, V )
H = xTWV x
g = xTW (y − (Nπ))
β̂t+1 = β̂t +H−1gβ̂t

EndFunction
Calculating the weighting matrix
dij =

√
(loni − lonj))2 + (lati − latj))2 {Euclidean

Distance}
wij = exp

[
− 1

2

(
dij

bdw

)2
]
{Gaussian weighting function}

for i = 1 to n do
W = diag(w[, i])
β̂0 = (0, . . . , 0)
repeat
β̂ = β̂0

π = exp(xβ̂)

1+exp(xβ̂)

V = diag(Nπ(1− π))
β̂b = binom.gwr(β̂, N, π, x, y,W, V )
β̂ = β̂b

until
∑

((β̂b − β̂)2) < 0.0000000001
β̂[i, ] = β̂ {Coefficient Estimation in location ith}

end for

A simulation study was conducted to evaluate the fea-
sibility of the proposed method. As a consequence, before
applying the GWBLR model, it is important to generate
data. The generated data in this simulation referred to [48]
in order to evaluate the performance of GWR and tradi-
tional geostatistical models. The generated data are made
up of three variables, two independent variables and one
dependent variable. The independent variables are X1, X2

and dependent variable is Y . Each variable has coefficient
functions built into the simulation. Variables X1 and X2

were returned by Uniform(−5, 5) and Uniform(70, 90),
respectively. The pairs of spatial coordinate (loni, lati) for
a sample of 625 points of data are given below:

(ui, vi) = (0.5× ((i− 1) mod 25), 0.5× ((i− 1) fl 25)),
(26)
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Algorithm 2 Optimum Bandwidth Algorithm

Require: Nn×1, yn×1, xn×p, (lon, lat)n×2

Ensure: bdw
Function CV.score(bdw, β̂,N, π, (lon, lat))
dij =

√
(loni − lonj))2 + (lati − latj))2 {Euclidean

Distance}
wij = exp

[
− 1

2

(
dij

bdw

)2
]
{Gaussian weighting function}

for i = 1 to n do
wt.i = wt[, i]
wtnoi = diag(wt.i[−i]) {Remove element-ith of wt.i}
ynoi = y[−i] {Remove element-ith of y}
xnoi = x[−i, ] {Remove row-ith of x}
Nnoi = N [−i] {Remove row-ith of N}
β̂0 = (0, . . . , 0)
repeat

β̂ = β̂0

π = exp(x.noiβ̂)

1+exp(xnoiβ̂)

Vnoi = diag(Nnoiπ(1− π))
β̂b = binom.gwr(β̂, Nnoi, π, xnoi, ynoi, wtnoi, Vnoi)
β̂ = β̂b

until
∑

((β̂b − β̂)2) < 0.0000000001

π̂ = exp(xnoiβ̂)

1+exp(xnoiβ̂)
ŷnoi = Nnoiπ̂
CV [i] = ynoi − ŷnoi

end for
cv.score =

∑
(CV 2)

EndFunction
bb =

(
min(lon, lat)
max(lon, lat)

)
up =

√
(bb[1, 2]− bb[1, 1])2 + (bb[2, 2]− bb[2, 1])2)

low = up/100
band = (low, . . . , up)100×1

for i=1 to n=100 do
CV [i] = CV.score(band[i], β̂, N, π, (lon, lat))

end for
opt.bdw {Bandwidth value that minimizes CV}

for i = 1, 2, . . . , 625, on which (amodb) is the remaining
value of a divided by b and fl(a) is a’s floor. Then, as
functions of the coordinate pairs (lon, lat), the coefficients
β0(loni, lati), β1(loni, lati), and β2(loni, lati) are formu-
lated as follows:

β0(lon, lat) = 2

β1(lon, lat) = sign(lon)0.01lon+ sign(lat)0.01lat,

β2(lon, lat) = −
1 +

(
(36−(6−lon)2)(36−(6−lat)2)

600

)
100

For each location (loni, lati), the dependent variable Y
is simulated based on a binomial distribution with prob-
ability P and total occurrence Ytotal. The total occur-
rence at each observation point Ytotal is generated from
Uniform(500, 1500) and the probability P is generated
from the logit function as follows:

P =
e(β0(lon,lat)+β1(lon,lat)x1+β2(lon,lat)X2)

1 + e(β0(lon,lat)+β1(lon,lat)X1+β2(lon,lat)X2)
. (27)

The GWBLR model was applied to these data to deter-
mine estimated parameters b0, b1 and b2. The geographic

weighting is determined before the parameter coefficients
are estimated using the fixed kernel Gaussian function. The
optimum bandwidth is 0.48 based on the smallest CV value.
With a geographical weighting of 0.48, the variables X1, X2

and Y were generated by 100 data sets. Each generation data
set was used to estimate parameter coefficients b0, b1 and
b2, hence, 100 estimated coefficients were obtained at 625
observation points. The average estimate at each sample point
is utilized to estimate the GWBLR model of generation data
parameter coefficients. The results of the estimated parameter
coefficients from the simulation data are compared below:

(a) Simulation of β0 (b) Estimation of β0

(c) Simulation of β1 (d) Estimation of β1

(e) Simulation of β2 (f) Estimation of β2

Fig. 1: Simulation and Estimation of Parameter Coefficients

The simulation result map of β0 intercept coefficient and
its estimation is presented in Figure 1a and 1b. These two
images demonstrate slightly different results in which β0 is
simulated with a constant of value 2, whereas the estimated
intercept coefficient is varied and lies in the (1.7, 2.2) in-
terval. The estimates for β1 and β2 in Figures 1d and 1f
have nearly the same shape as the actual simulated values.
If the correlation between simulation data and estimation
was calculated, for β1 the Pearson correlation was 0.989
(p < 0.0000) and β2 is 0.999 (p < 0.0000). It illustrates
a high consistency between the simulation data and its
estimation using the GWBLR model.

B. Application

The proposed GWBLR model was implemented in R
Program and utilized to model Covid-19 cases for 34 In-
donesian provinces in 2020. Based on the availability and
completeness of the data, the GWBLR application in this
study aims to investigate the spatial variation of the variables
temperature, humidity, rainfall, and sunlight on the quantity
of positive confirmed Covid-19 cases. The statistics for
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Covid-19 instances come from the Indonesia Health Profile
2020, and the meteorological data come from Statistics
Indonesia 2021.

First, the optimal spatial distance bandwidth is determined
using the CV value before estimating the parameters. The
optimal bandwidth is determined to be 9.184 with a CV of
11817676823. The CV value profile is depicted in the figure
below:

Fig. 2: Cross-Validation Values for the Fixed Kernel Gaus-
sian Function Applied to Covid-19 Data. The black dot
indicates the optimum bandwidth with the minimum Cross-
Validation Value.

A weighting matrix is applied to form the GWBLR model
based on the optimal bandwidth value. The estimated model
parameters formed with MLE have the following minimum,
maximum, and median values:

TABLE I: Statistics of Estimate Parameters from the GW-
BLR model

Variables Min. 1st Median 3rd Max.
Intercept -5.2343 -3.4475 -2.1211 -0.6893 2.1963
Temperature -0.0929 -0.0406 -0.0170 0.0093 0.0279
Humidity -0.0019 0.0170 0.0233 0.0279 0.0419
Precipitation -0.0002 -0.0002 -0.0002 -0.0001 -0.0001
Sunshine -0.0074 -0.0068 -0.0040 -0.0001 0.0053

Estimates of temperature, humidity, rainfall, and sunshine
duration at the provincial level represent the relationship that
occurs between verified Covid-19 cases and these parameters
in 34 provinces. Table I depicts the relationship that occurs
between Covid-19 cases and each independent variable in
each province. Each province’s variation in the coefficient
estimate is a local estimate that can describe the different
effects of independent variables on Covid-19 cases.

After obtaining the GWBLR model’s parameter estimator,
the next step is to perform simultaneous and partial testing.
The statistical likelihood ratio test is calculated for simulta-
neous testing using equation 18, and the value is 1184697,
which is greater than the value of χ(5%,8.0258) = 15.5441.
As a result, H0 is rejected, and it is feasible to conclude that
the weather factor is important in the rise of Covid-19 cases
in Indonesia.

The hypothesis testing that follows is a preliminary test
that seeks to evaluate the influence of each weather factor
variable on the addition of Covid-19 instances. The Wald
test statistics p-value for 34 provinces is as follows:

TABLE II: p-value of Estimate Parameter from GWBLR
model

Province β1 β2 β3 β4

Aceh 0.0000 0.0172 0.0000 0.0000
West Sumatra 0.0000 0.0000 0.0000 0.0000
South Sumatra 0.0000 0.0000 0.0000 0.0000
North Sumatra 0.0000 0.0000 0.0000 0.0000
Jambi 0.0000 0.0000 0.0000 0.0000
Lampung 0.0000 0.0000 0.0000 0.0000
Riau 0.0000 0.0000 0.0000 0.0000
Bengkulu 0.0000 0.0000 0.0000 0.0000
Riau Islands 0.0000 0.0000 0.0000 0.0000
Bangka Islands 0.0000 0.0000 0.0000 0.0000
West Java 0.0000 0.0000 0.0000 0.0000
DKI Jakarta 0.0000 0.0000 0.0000 0.0000
Central Java 0.0000 0.0000 0.0000 0.0000
East Java 0.0000 0.0000 0.0000 0.0000
DI Yogyakarta 0.0000 0.0000 0.0000 0.0000
Bali 0.0000 0.0000 0.0000 0.0000
Banten 0.0000 0.0000 0.0000 0.0000
East Nusa Tenggara 0.0000 0.0000 0.0000 0.0217
West Nusa Tenggara 0.0007 0.0000 0.0000 0.0000
South Kalimantan 0.0000 0.0000 0.0000 0.0000
West Kalimantan 0.0000 0.0000 0.0000 0.0000
Central Kalimantan 0.0000 0.0000 0.0000 0.0000
North Kalimantan 0.0034 0.0000 0.0000 0.0000
East Kalimantan 0.0375 0.0000 0.0000 0.0000
North Maluku 0.0000 0.0000 0.0000 0.0000
Maluku 0.0000 0.0000 0.0000 0.0000
Central Sulawesi 0.0000 0.0000 0.0000 0.0000
North Sulawesi 0.0000 0.0000 0.0000 0.0000
Southeast Sulawesi 0.0000 0.0000 0.0000 0.0000
South Sulawesi 0.0000 0.0000 0.0000 0.1852
West Sulawesi 0.0000 0.0000 0.0000 0.3868
Gorontalo 0.0000 0.0000 0.0000 0.0000
Papua 0.0173 0.0000 0.0000 0.0410
West Papua 0.0000 0.0000 0.0000 0.0000

According to Table II, the p−value of the fourth variable
in the provinces of South and West Sulawesi is greater
than α = 5%. As a result, it is possible to conclude that
the variable duration of solar radiation has no effect on
the addition of Covid-19 cases in the province. With the
exception of the variable duration of irradiation in the two
provinces, all p − values are less than α = 5%, implying
that each of the other variables has a substantial role in the
addition of Covid-19 cases.

Fig. 3: Intercept Coefficient Estimations

Estimated intercept parameter b0 from −5.2343 to the
third quartile has a negative value, which was −0.6893. If
all of the independent variables are equal, the probability of
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a COVID-19 case is less than 0.5. Meanwhile, an estimated
positive value of b0 exists in the fourth quartile, indicating
that the chance of a COVID-19 case is greater than 0.5 if
all independent variables are 0. Aceh, West Sumatra, North
Sumatra, Jambi, Riau and Bengkulu are the provinces with
positive intercept values on Sumatra Island. Figure 3 depicts
the estimated b0 coefficients that differ from the GWLR
model parameters.

The provinces of Sumatra Island have a temperature coef-
ficient value in the first quartile and a negative value, indicat-
ing that the higher the air temperature, the lower the chance
of Covid-19 cases occurring in the region. Meanwhile, except
for Papua, provinces in eastern Indonesia have a positive
estimate of the coefficient of temperature parameter. This
could imply that an increase in air temperature in the eastern
region increases the likelihood of an increase in Covid-19
cases. Figure 4 portrays the distribution of the estimated
value of the temperature coefficient:

Fig. 4: Average Temperature Coefficient Estimations

Fig. 5: Humidity Coefficient Estimations

Figure 5 demonstrates the mapping of the estimated coeffi-
cient of humidity parameters. Except for Aceh, all provinces
in Indonesia have positive coefficient estimates for the Covid-
19 cases. This demonstrates that higher humidity levels can
increase the probability of Covid-19 by more than 50%.
When compared to areas in the western part of Indonesia,
provinces in the east have a higher chance of increasing cases
if the weather is humid. Except for the provinces of Maluku,
North Maluku, West Papua, and Sulawesi, this corresponds to
the estimated value of the coefficient on the duration of solar
radiation, which is negative. The negative estimation of the
sunshine parameter indicates that the longer the duration of
solar irradiation, the lower the chance of a rise in the quantity
of Covid-19 cases. The mapping of the estimated coefficient
of the sunshine parameter parameters is presented in Figure
6

Fig. 6: Duration of Sunshine Coefficient Estimations

Figure 7 depicts a mapping of the estimated coefficient
distribution for the rainfall parameter. According to the
GWBLR model, all estimates are negative in the range of
−0.000221 and −0.000087 or in the interval of increasing
probability of (0.49994, 0.49997). With this relatively small
increase in the opportunity interval, it is possible to conclude
that the effect of the rainfall variable on the rise in Covid-19
cases is nearly identical across all provinces.

Fig. 7: Precipitation Coefficient Estimations

Furthermore, the GWBLR model and the BLR were com-
pared to determine which model is better suited to modeling
Covid-19 cases in Indonesia. Mean Square Error (MSE), R-
Squared (R2), Mean Absolute Percentage Error (MAPE) and
Akaike Information Criterion (AIC) are the criteria used.
The best model has the highest R2 value as well as the
lowest MSE, AIC, and MAPE. The results of the comparison
between the GWBLR and BLR models are shown in the table
below:

TABLE III: Comparison of BLR and GWBLR Model

Criterion BLR GWBLR
R2 0.9715 0.9797
MSE 36363296 25838449
AIC 599.9084 588.2907
MAPE 30.75% 26.73%

Based on Table III, it is possible to conclude that the
GWBLR model outperforms the BLR method using the R2,
MSE, AIC and MAPE criteria. The GWBLR model has been
displayed to increase the value of R2 while decreasing the
value of MSE, AIC and MAPE. The GWBLR model can
increase the value of R2 by 0.28% over the BLR model.
The MAPE values for both models fall into the reasonable
category. However, the MAPE value for the GWBLR model
is smaller than the BLR model which indicates the GWBLR
model is also more accurate in modelling data than BLR.
Comparison charts for visualizing fitted values from the BLR
and GWBLR models are depicted in Figure 8. According to
Figure 8, the model estimation using the GWBLR method
is better suited for calculating positive confirmed Covid-19
cases according to weather-related factors in each region
of Indonesia. This is demonstrated by the graph above,
indicating in which the GWBLR model is considerably more
precise than the BLR model.
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Fig. 8: Comparison of the fitted value of the Global BLR and Local GWBLR model to the observed value

IV. CONCLUSIONS

For the GWBLR model with a binomial distribution,
the GWLR model with the assumption that the dependent
variable has a Bernouli distribution can be developed. MLE
is used to estimate parameters by assigning geographical
weights to each observation in a different location. The
GWBLR model parameter hypothesis can be tested simulta-
neously using the Likelihood Ratio Test Statistic and partially
tested using the Wald Test. The weighting function used is a
Gaussian weighting function with the same bandwidth value
at each location and the optimum bandwidth determined by
the CV value. The parameter estimation of the GWBLR
model may demonstrate high consistency to the generated
data based on the simulation study. The GWBLR model and
parameter coefficient estimations can describe the variety of
spatial relationships with regard to independent and depen-
dent variables.

According to the GWBLR model, the spatial relationship
between temperature, humidity, rainfall, and sunlight has
substantial impact on the quantity of Covid-19 cases in
Indonesia in 2020. Local parameter estimation causes param-
eter estimators to differ across provinces. Parameter estimates
in neighboring provinces tend to be in the same quartiles.
Aside from the weather, the most critical determinants in
Covid-19 transmission are social and demographic factors.
As a result, this research can be expanded to examine the
relation among social and demographic characteristics and
the prevalence of Covid-19 cases in Indonesia.
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