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Abstract—This paper is concerned with a singular three-point
boundary value problem of second-order dynamic equation on
time scales of the following form:{

u∆∆(x) + ηq(x)z(x, u(x)) = 0, x ∈ (0, 1)T,
u(0) = αu∆(0), u(1) = βu(ζ),

where η > 0 is a parameter, α > 0, 0 < ζ < 1, 0 < βζ < 1
and (1 − βζ) + α(1 − β) > 0. Applying the fixed point index
theory, sufficient conditions for the existence of at least one
or two positive solutions of the problem are established. The
interesting point of the obtained results is that q(x) may be
singular at x = 0 and/or 1, z(x, u) may be singular at u = 0.

Index Terms—Positive solution; Singular boundary value
problem; Second-order dynamic equation; Time scale.

I. INTRODUCTION

IN the past few decades, boundary value problems have
been widely studied by many scholars, because boundary

value problems can describe many dynamic phenomena in
nature and society; see, for example [1-12].

Consider the following second-order boundary value prob-
lem{

u
′′
(x) = g(x, u(x), u′(x)) + f(x), x ∈ (0, 1),

u′(0) = 0, u(1) =
∑n−2

j=1 ajbj .
(1)

In [5], Feng studied (1), where g is defined on [0, 1]×R×
R, and g is continuous and satisfies the nonlinear growth;
aj ∈ R, j = 1, 2, · · · , n− 2 are constants and have the same
sign, bj ∈ (0, 1), j = 1, 2, · · · , n− 2.

In [6], Gupta also studied (1), where aj > 0, j =
1, 2, · · · , n − 2 are positive constants, bj ∈ (0, 1), j =
1, 2, · · · , n − 2, and 0 < b1 < b2 < · · · < bn−2 < 1;
|g(x, u1, u2)| ≤ a1(t)|1|+ a2(t)|u2|+ a3(t), and κ1∥a1∥1 +
κ2∥a2∥1 ≤ 1, where ai(t) ∈ L1(0, 1), i = 1, 2, 3, κ1 and κ2
are constants.

From the above works, we can see that the nonlinear
term g satisfies the monotone and growth conditions, but the
conditions are more stronger. So, the first aim of this paper
is to study a boundary value problem under more general
conditions.

On the other hand, the theory of dynamic equations on
time scales has been developed rapidly in recent years. This
is because the dynamic equations on time scales can not only
accurately describe the dynamic processes of many systems
in the real world, but also obtain some new qualitative
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phenomena of the systems. So, the second aim of this paper
is to study a boundary value problem on time scales in order
to obtain more general results.

In this paper, we shall study a singular three-point bound-
ary value problem of second-order dynamic equation on time
scales of the following form:{

u∆∆(x) + ηq(x)z(x, u(x)) = 0, x ∈ (0, 1)T,
u(0) = αu∆(0), u(1) = βu(ζ),

(2)

where η > 0 is a parameter, α > 0, 0 < ζ < 1, 0 < βζ < 1
and (1 − βζ) + α(1 − β) > 0; q ∈ C((0, 1)T, (0,+∞)),
q(x) may be singular at x = 0 and/or 1; z ∈ C([0, 1]T ×
(0,+∞), (0,+∞)), z(x, u) may be singular at u = 0.

Applying the fixed point index theory, sufficient conditions
for the existence of at least one or two positive solutions of
(2) will be established. Throughout of this paper, [x1, x2]T
and (x1, x2)T denote [x1, x2] ∩ T and (x1, x2) ∩ T, respec-
tively.

II. PRELIMINARIES

A comprehensive review on the basic theory of calculus
on time scales, see [13].

Let X = C[0, 1]T is a Banach space with the norm ∥u∥ =
sup

x∈[0,1]T

|u(x)|, A is a positive cone in C[0, 1]T, and

A = {u ∈ X : u(x) ≥ 0, x ∈ [0, 1]T}.

Let

B = {u ∈ A : u(x) is a concave function,

x ∈ [0, 1]T, inf
x∈[ζ,1]T

u(x) ≥ δ0∥u∥}, (3)

where δ0 = min{ζ, βζ, β(1−ζ)
1−βζ }.

Let r,R are two positive constants, and 0 < r < R <
+∞. Define

Br = {u ∈ B : ∥u∥ < r},
∂Br = {u ∈ B : ∥u∥ = r},
B̄r,R = {u ∈ B : r ≤ ∥u∥ ≤ R}.

We first make the following assumptions:
(H1) α > 0, 0 < ζ < 1, 0 < β < 1+α

ζ+α (≤
1
ζ ), and Γ =

(1− βζ) + α(1− β) > 0;
(H2) q(x) ̸≡ 0, ∀x ∈ (0, 1)T, and

0 <

∫ 1

0

q(y)(y + α)(1− y)∆y < +∞;
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(H3) Let E(i) = [0, 1i ]T ∪ [ i−1
i , 1]T, and

lim
i→+∞

sup
u∈B̄r,R

∫
E[i]

(y + α)(1− y)q(y)z(y, u(y))∆y = 0.

Lemma 1. Assume that (H1) holds. Furthermore, if

(H4) u ∈ C((0, 1)T, [0,+∞)), and

0 <

∫ 1

0

(α+ y)(1− y)u(y)∆y < +∞;

holds, then the following boundary value problem{
u∆∆(x) + v(x) = 0, x ∈ [0, 1]T,
u(0) = αu∆(0), u(1) = βu(ζ),

(4)

has a unique solution

u(x) =

∫ 1

0

G(x, y)v(y)∆y, (5)

where G(x, y) : [0, 1]T × [0, 1]T → [0,+∞), and

G(x, y) =

1
Γ (σ(y) + α)((1− x) + β(x− ζ)),

0 ≤ σ(y) ≤ x ≤ 1, 0 ≤ σ(y) ≤ ζ < 1;
1
Γ (σ(y) + α)((1− x) + β(x− σ(y))(ζ + α)),

0 < ζ ≤ σ(y) ≤ x ≤ 1;
1
Γ (x+ α)((1− σ(y)) + β(σ(y)− ζ)),

0 ≤ x ≤ σ(y) ≤ ζ < 1;
1
Γ (x+ α)(1− σ(y)), 0 ≤ x ≤ σ(y) ≤ 1,

0 < ζ ≤ σ(y) ≤ 1.

(6)

Proof: Integrating the equation in (4), we have

u∆(x) = −
∫ x

0

v(y)∆y + u∆(0).

Since ∫ x

0

(∫ t

0

v(y)∆y

)
∆t

= t

∫ t

0

v(y)∆y

∣∣∣∣x
0

−
∫ x

0

σ(t)v(t)∆t

= x

∫ x

0

v(y)∆y −
∫ x

0

σ(y)v(y)∆y

=

∫ x

0

(x− σ(y))v(y)∆y,

then

u(x)

= −
∫ x

0

(x− σ(y))v(y)∆y + u∆(0)x+ u(0)

= −
∫ x

0

(x− σ(y))v(y)∆y + (x+ α)u∆(0). (7)

Take x = 1 in (7), by (4), then

u∆(0)

=
1

(1− βζ) + α(1− β)

∫ 1

0

(1− σ(y))v(y)∆y

− β

(1− βζ) + α(1− β)

∫ ζ

0

(ζ − σ(y))v(y)∆y,

and then

u(x)

= −
∫ x

0

(x− σ(y))v(y)∆y

+
x+ α

(1− βζ) + α(1− β)

∫ 1

0

(1− σ(y))v(y)∆y

− β(x+ α)

(1− βζ) + α(1− β)

∫ ζ

0

(ζ − σ(y))v(y)∆y.

If x ≤ ζ,

u(x)

=

∫ x

0

(σ(y) + α)((1− x) + β(x− ζ))

(1− βζ) + α(1− β)
v(y)∆y

+

∫ ζ

t

(x+ α)((1− σ(y)) + β(σ(y)− ζ))

(1− βζ) + α(1− β)

×v(y)∆y

+

∫ 1

ζ

(x+ α)(1− σ(y))

(1− βζ) + α(1− β)
v(y)∆y

=

∫ 1

0

G(x, y)u(y)∆y.

If x ≥ ζ,

u(x)

=

∫ ζ

0

(σ(y) + α)((1− x) + β(x− ζ))

(1− βζ) + α(1− β)
v(y)∆y

+

∫ x

ζ

(σ(y) + α)(1− x) + β(x− σ(y))(ζ + α)

(1− βζ) + α(1− β)

×v(y)∆y

+

∫ 1

t

(x+ α)(1− σ(y))

(1− βζ) + α(1− β)
v(y)∆y

=

∫ 1

0

G(x, y)u(y)∆y.

The proof is completed.

Lemma 2. Assume that (H1) and (H4) hold, then G(x, y)
satisfies

(i) G(x, y) is continuous on [0, 1]T × [0, 1]T;
(ii) G(x, y) ≥ 0, ∀x, y ∈ [0, 1]T;
(iii) k1(x)G(y, y) ≤ G(x, y) ≤ k2(σ(y) + α)(1 − σ(y)),

∀(x, y) ∈ [0, 1]T × [0, 1]T, where

k1(x) = min{1, β(1− ζ), x, 1− x},

k2 =

max

{
1 + β, β(1−ζ)

1−βζ

}
(1− βζ) + α(1− β)

.

Let

l = η

∫ 1

ζ

k1(y)G(y, y)q(y)∆y,

L = ηk2

∫ 1

0

(σ(y) + α)(1− σ(y))q(y)∆y.

Remark 1. By (H2), we have

0 < k2

∫ 1

0

(σ(y) + α)(1− σ(y))q(y)∆y < +∞,

Engineering Letters, 31:3, EL_31_3_09

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



and then

0 < min
x∈[ζ,1]T

k1(x)

∫ 1

ζ

G(x, y)q(y)∆y

≤ min
x∈[ζ,1]T

k1(x)

∫ 1

0

G(x, y)q(y)∆y < +∞.

Define Φ : B \ {0} → B, and

(Φu)(x) = η

∫ 1

0

G(x, y)q(y)z(y, u(y))∆y, x ∈ [0, 1]T. (8)

Lemma 3. Assume that (H1)-(H3) hold, then Φ : B̄r,R → B
is completely continuous, and the positive fixed point u of Φ
is a positive solution of (2).

Proof: (Φu)(x) is a nonnegative concave function, by
the properties of concave function and the Ascoli-Arzela
theorem, it is easy to show that Φ : B̄r,R → B is completely
continuous. Furthermore, one can see that if Φ exists a fixed
point u∗ ̸= 0, then u∗ ̸= 0 is a solution of (2); by the
maximum principle, u(x) > 0, t ∈ (0, 1)T, that is, u∗ is a
positive solution of (2). This completes the proof.

Let

(Ψu)(x) =

∫ 1

0

G(x, y)q(y)u(y)∆y, x ∈ [0, 1]T. (9)

Lemma 4. Assume that (H1), (H2) and (H4) hold, then
Ψ : A → A is completely continuous and Ψ(A) ⊂ A; the
spectral radius r(Ψ) ̸= 0, and ω = λ1Ψω, λ1 = (r(Ψ))−1,
ω > 0 is the eigenfunction.

Proof: From Lemma 3, Ψ : A → A is completely
continuous, and Ψ(A) ⊂ A. From (H1)− (H2), there exists
a constant y0 ∈ (0, 1)T and G(y0, y0)q(y0) > 0. Choose
a1, a2 ∈ [0, 1]T, and y0 ∈ (a1, a2) ⊂ [a1, a2] ⊂ (0, 1)T, and
G(x, y)q(y) > 0, ∀x, y ∈ [a1, a2]. Let g ∈ C[0, 1]T and
g(x) > 0,∀x ∈ (a1, a2), then

(Ψg)(x) =

∫ 1

0

G(x, y)q(y)g(y)∆y

≥
∫ a2

a1

G(x, y)q(y)g(y)∆y > 0,

and then there exists a positive constant a3 > 0 and
a3(Ψg)(x) ≥ g(x), ∀x ∈ [0, 1]T. By the Krein-Rutmann
theorem, Lemma 4 holds. The proof is completed.

The following lemmas, see [14,15].
Let X is a Banach space, A ⊂ X and B ⊂ X are cones,

D0(B) ⊂ B is a bounded open set, the operator Φ : D̄0(B) →
B is completely continuous.

Lemma 5. ([14]) If Φu ̸= bu, ∀u ∈ ∂D0(B). Assume that
ψ, ϕ, φ : X → X, and ψ(B) ⊂ B, ϕ(B) ⊂ A, φ(A) ⊂ B, for
u0 ∈ B \ {θ}, and
(i) ϕψnu0 ≥ ϕu0, n = 1, 2, 3, . . .;
(ii) ϕψu = φϕu, ∀u ∈ ∂D0(B);
(iii) ϕΦu ≥ ϕψu, ∀u ∈ ∂D0(B);
then i(Φ, D0(B),B) = 0.

Lemma 6. ([15]) If Φu ̸= bu,∀u ∈ ∂D0(B), b ≥ 1, then
i(Φ, D0(B),B) = 1.

Lemma 7. ([15]) The operator Φ satisfies
(i) If ∥Φu∥ > ∥u∥, ∀u ∈ ∂D0(B), then i(Φ, D0(B),B) =

0;

(ii) If θ ∈ D0(B) and ∥Φu∥ < ∥u∥, ∀u ∈ ∂D0(B);
then i(Φ, D0(B),B) = 1.

Let

zℓ = lim inf
u→ℓ

inf
x∈[0,1]T

z(x, u)

u
, zℓ = lim sup

u→ℓ
sup

x∈[0,1]T

z(x, u)

u
,

where ℓ denotes 0 or ∞.

III. EXISTENCE OF SOLUTIONS

Theorem 1. Assume that (H1)-(H3) hold, and

0 ≤ z∞ < z0 ≤ +∞.

If

η ∈
(
λ1
z0
,
λ1
z∞

)
, (10)

where λ1 is the first eigenvalue of Ψ which has been defined
by (9), then (2) exists at least one positive solution.

Proof: By (10), there exists positive constants r > 0,
R0 > r and 0 < ξ < 1, and

z(x, u) ≥ λ1
η
u,∀0 ≤ u ≤ r, 0 ≤ x ≤ 1, (11)

z(x, u) ≤ ξ

η
λ1u,∀u ≥ R0, 0 ≤ x ≤ 1. (12)

Let

(Ψ1u)(x) = ξλ1(Ψu)(x), ∀x ∈ [0, 1]T, u ∈ C[0, 1]T,

then Ψ1 : A → A is completely continuous, and Ψ1(A) ⊂
A. By Lemma 4, r(Ψ1) ̸= 0. Because of λ1 is the first
eigenvalue of Ψ, and 0 < ξ < 1, then 0 < r(Ψ1) < 1. Take
d0 = 1

6 (1− r(Ψ1)) > 0, by the Gelfand’s formula,

∥Ψn
1∥ ≤ (r(Ψ1) + d0)

n, ∀n ≥ Q, (13)

where Q is a natural number.
Let Ψ0

1 = I is the identity operator, and

∥u∥1 =

Q∑
p=1

(r(Ψ1) + d0)
Q−p∥Ψp−1

1 u∥, u ∈ C[0, 1]T, (14)

then

(r(Ψ1) + d0)
Q−1∥u∥ ≤ ∥u∥1

=

Q∑
p=1

(r(Ψ1) + d0)
Q−p∥Ψp−1

1 ∥∥u∥. (15)

Let

W = sup
u∈∂PR0

ηk2

∫ 1

0

(σ(y) + α)(1− σ(y))

×q(y)z(y, u(y))∆y. (16)

It is easy to show that W < +∞.
Take R1 > max{R0, 2∥W∥1d−1

0 }. From (15), there exists
a positive constant R, R > R1 > 0, and ∥u∥1 > R1, ∀∥u∥ >
R. Extend Φ, that is, Φ : B̄R → B, then Φ is completely
continuous. If Φ exists a fixed point on ∂Br, Theorem 1
holds. Suppose that there is no fixed point on ∂Br. Let u1
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is a positive eigenfunction of Ψ corresponding to the first
eigenvalue λ1,

u1(x) = λ1((BΨu1)(x) = λ1

∫ 1

0

G(x, y)q(y)u1(y)∆y,

then

∥u1∥ ≤ λ1k2

∫ 1

0

(σ(y) + α)(1− σ(y))q(y)u1(y)∆y.

Because of u∆∆
1 λ1q(x)u1(x) ≤ 0, x ∈ (0, 1)T, then u1

is a nonnegative continuous concave function. Let ∥u1∥ =
u1(x0), x0 ∈ (0, 1)T.

Suppose that 0 < β < 1, then min
ζ≤x≤1

u1(x) = u1(1). Since

u1 is concavity, then

∥u1∥ = u1(x0) ≤ u1(1) +
u1(ζ)− u1(1)

ζ − 1
(x0 − 1)

≤ 1− βζ

β(1− ζ)
u1(1), ∀0 ≤ x0 ≤ ζ < 1;

∥u1∥ = u1(x0) ≤ u1(0) +
u1(ζ)− u1(0)

ζ
x0

≤ u1(ζ)

ζ
=

1

βζ
u1(1),∀ζ ≤ x0 < 1.

Suppose that 1 ≤ β < 1+α
ζ+α (≤

1
ζ ), then min

ζ≤x≤1
u1(x) =

u1(ζ), and

∥u1∥ = u1(x0) ≤
u1(ζ)

ζ
x0 <

u1(ζ)

ζ
.

From the above analysis, we have

min
ζ≤x≤1

u1(x) ≥ min

{
β, βζ,

β(1− ζ)

1− βζ

}
∥u1∥ = δ0∥u1∥,

that is u1 ∈ B \ {θ}.
Let (Ψ̃1u)(x) = λ1(Ψu)(x), u ∈ A, then Ψ̃1 : A → A is

completely continuous, and Ψ̃1(A) ⊂ B, Ψ̃1u1 = λ1Ψu1 =
u1.

By (11), if u ∈ ∂Br, then

(Φu)(x) = η

∫ 1

0

G(x, y)q(y)z(y, u(y))∆y

≥ η
λ1
η

∫ 1

0

G(x, y)q(y)u(y)∆y

= λ1(Ψu)(x) = (Ψ̃1u)(x), x ∈ [0, 1]T.

Let D0(v) = Br, ψ = φ = Ψ̃1, ϕ = I and n = 1. By
Lemma 5,

i(Φ,Br,B) = 0. (17)

Next, we show that

Φu ̸= bu, b ≥ 1, ∀u ∈ ∂BR. (18)

If not, there exist u0 ∈ ∂BR and b0 ≥ 1, and

Φu0 = b0u0. (19)

Let u0(x) = min{u0(x), R0}, then ỹ0 ∈ ∂BR0 . By (12),

(Φu0)(x)

= η

∫ 1

0

G(x, y)q(y)z(y, u0(y))∆y

= η

∫
E[u0>R0]

G(x, y)q(y)z(y, u0(y))∆y

+η

∫
[0,1]T\E[u0>R0]

G(x, y)q(y)z(y, u0(y))∆y

≤ η
ξ

η
λ1

∫
E[u0>R0]

G(x, y)q(y)z(y, u0(y))∆y

+η

∫
[0,1]T\E[u0>R0]

G(x, y)q(y)z(y, u0(y))∆y

≤ ξλ1

∫ 1

0

G(x, y)q(y)z(y, u0(y))∆y

+ηk2

∫ 1

0

(σ(y) + α)(1− σ(y))q(y)z(y, ỹ0(y))∆y

≤ (Ψ1u0)(x) +W,

where E[u0 > R0] = {x : u0(x) > R0, x ∈ [0, 1]T} and W
is defined by (16), then

0 ≤ b0u0(x) = (Φu0)(x)

≤ (Ψ1u0)(x) +W,x ∈ [0, 1]T. (20)

Since Ψ1(B) ⊂ B, then 0 ≤ (Ψp
1(Φu0))(x) ≤ (Ψp

1(Ψ1u0 +
W ))(x), ∀x ∈ [0, 1]T. Hence,

∥Φu0∥1 =

Q∑
p=1

(r(Ψ1) + d0)
Q−p∥Ψp−1

1 (Φu0)∥

≤
Q∑

p=1

(r(Ψ1) + d0)
Q−p∥Ψp−1

1 (Ψ1u0 +W )∥

= ∥Ψ1u0 +W∥1. (21)

Since ∥u0∥ ≥ R, then ∥u0∥1 > R1. It follows from (13),
(14) and (21) that

b0∥u0∥1 = ∥Φu0∥1 ≤ ∥Ψ1u0∥1 + ∥W∥1

=

Q∑
p=1

(r(Ψ1) + d0)
Q−p∥Ψp

1u0∥+ ∥W∥1

= (r(Ψ1) + d0)

Q−1∑
p=1

(r(Ψ1) + d0)
Q−p−1

×∥Ψk
1u0∥+ (r(Ψ1) + d0)

N∥u0∥+ ∥W∥1

= (r(Ψ1) + d0)

Q−1∑
p=1

(r(Ψ1) + d0)
Q−p

×∥Ψp−1
1 u0∥+ ∥W∥1

= (r(Ψ1) + d0)∥u0∥1 + ∥W∥1

≤ (r(Ψ1) + d0)∥u0∥1 +
d0
2
R1

≤ (r(Ψ1) + d0)∥u0∥1 +
d0
2
∥u0∥1

≤ (r(Ψ1) +
3

2
d0)∥u0∥1

=
1

4
(1 + 3r(Ψ1))∥u0∥1. (22)
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Since b0 ≥ 1, by (22), then r(Ψ1) ≥ 1, which is a
contradiction to r(Ψ1) < 1. So (18) holds. By Lemma 6,

i(Φ,BR,B) = 1. (23)

It follows from (17) and (23) that

i(Φ,BR,r,B) = i(Φ,BR,B)− i(Φ,Br,B) = 1,

that is, (2) exists at least one positive solution. This completes
the proof.

Theorem 2. Assume that (H1)-(H3) hold, and

0 ≤ z0 < z∞ ≤ +∞.

If

η ∈
(
λ1
z∞

,
λ1
z0

)
, (24)

where λ1 is the first eigenvalue of Ψ which has been defined
by (9), then (2) exists at least one positive solution.

Proof: By (24), there exists a positive constant r > 0,
and

z(x, u) ≤ λ1
η
u,∀0 ≤ u ≤ r, 0 ≤ x ≤ 1. (25)

Let

Ψ2y = λ1Ψy, u ∈ C[0, 1]T,

then Ψ2 : B → B and

Ψ2(B) ⊂ P, r(Ψ2) = 1. (26)

By (25), if u ∈ ∂Br, then

(Φu)(x) ≤ λ1η

η

∫ 1

0

G(x, y)q(y)u(y)∆y

= (Ψ2u)(x), x ∈ [0, 1]T,

that is, Φu ≤ Ψ2y,∀u ∈ ∂Br.
If there exists a fixed point on ∂Br, Theorem 2 holds.

Suppose that there is no fixed point on ∂Br. Next we show
that

Φu ̸= bu, ∀u ∈ ∂Br, b ≥ 1. (27)

If not, there exist u ∈ ∂Br and b0 ≥ 1, and

Tu0 = b0u0.

Since b0 > 1 and b0u0 = Tu0 ≤ Ψ2y, then bn0u0 ≤
Ψn

2u0(n = 1, 2, · · · ), and

bn0u0(x) ≤ Ψn
2u0(x) ≤ ∥Ψn

2∥∥u0∥, x ∈ [0, 1]T. (28)

Considering the supremum of (28) on [0, 1]T, there is
bn0 ≤ ∥Ψn

2∥. By the Gelfand’s formula, then r(Ψ2) =
limn→+∞

n
√
∥Ψn

2∥ ≥ b0 > 1, which is a contradiction to
r(Ψ2) = 1. By Lemma 6,

i(Φ,Br,B) = 1. (29)

From (24), there exists R > r > 0, and

z(x, u) ≥ λ1
η
u,∀u ≥ R, 0 ≤ x ≤ 1.

Extend Φ, that is, Φ : B̄R → B, then Φ is completely
continuous. If Φ exists a fixed point on ∂Br, Theorem 2

holds. Suppose that Φ has no fixed point on ∂BR. Similarly
to the proof in Theorem 1, then

i(Φ,BR,B) = 0. (30)

By (29) and (30),

i(Φ,BR,r,B) = i(Φ,BR,B)− i(Φ,Br,B) = −1,

that is, (2) exists at least one positive solution. This completes
the proof.

Define

(Ψζu)(x) =

∫ 1

ζ

G(x, y)q(y)u(y)∆y, x ∈ [0, 1]T. (31)

Lemma 8. Assume that (H1), (H2), (H4) hold, then Ψζ :
A → A is completely continuous and Ψζ(A) ⊂ A; the spec-
tral radius r(Ψζ) ̸= 0, and h1 = λζΨζh1, λζ = (r(Ψζ))

−1,
h1 > 0 is the eigenfunction.

Theorem 3. Assume that (H1)-(H3) hold. Furthermore,

η >
λ1
z0
, η >

λζ
z∞

, (32)

and

z(x, u) ≤ x(1− x)

u
, 0 < u ≤ r∗, 0 < x < 1, (33)

where r∗ >
√
L1 is a constant, L1 = L

ζ(1−ζ) , λ1 and λζ are
the first eigenvalues of Ψ and Ψζ , which have been defined
by (9) and (31), respectively. Then (2) exists at least two
positive solutions u1, u2 ∈ B.

Proof: From (32), there exist positive constants r1 > 0,
r3 > r∗, and 0 < r1 ≤

√
L1, then

z(x, u) ≤ λ1
η
u, 0 < u ≤ r1, 0 ≤ x ≤ 1, (34)

and

z(x, u) ≤ λζ
η
u, u ≥ δ0r3, 0 ≤ x ≤ 1.

Hence, for u ∈ ∂Br3 ,

z(x, u) ≤ λζ
η
u(x), u(x) ≥ δ0r3, x ∈ [ζ, 1]T. (35)

Extend Φ, that is, Φ : B̄r3 → B, then Φ is completely
continuous. Suppose that Φ has no fixed point on ∂Br1 and
∂Br3 . Similarly to the proof of Theorem 1,

i(Φ,Br1 ,B) = 0. (36)

Take
√
L1 < r2r∗. Since u(x) on (0, 1)T is concavity, if

u ∈ ∂Br2 , then u(x) ≥ ∥u∥min{t, 1−t, ζ, 1−ζ}. So u(x) ≥
∥u∥t(1− x)ζ(1− ζ), ∀x ∈ (0, 1)T and 0 < u(x) ≤ r2 ≤ r∗,
∀x ∈ (0, 1)T. From (33), if u ∈ ∂Br2 , then

z(x, u(x)) ≤ x(1− x)

u(x)
≤ x(1− x)

∥u∥x(1− x)ζ(1− ζ)

=
1

r2ζ(1− ζ)
, x ∈ (0, 1)T.
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Thus, if u ∈ ∂Br2 , then

∥Φu∥

≤ ηk2

∫ 1

0

(σ(y) + α)(1− σ(y))q(y)z(y, u(y))∆y

≤ 1

r2ζ(1− ζ)
ηk2

∫ 1

0

(σ(y) + α)(1− σ(y))q(y)∆y

≤ L

r2ζ(1− ζ)
=
L1

r2
< r2 = ∥u∥. (37)

By Lemma 7,

i(Φ,Br2 ,B) = 1. (38)

Suppose that u1 is a positive eigenvalue function of Ψζ

corresponding to the first eigenvalue λζ , and

u1(x) = λζ(Ψζu1)(x) = λζ

∫ 1

ζ

G(x, y)q(y)u1(y)∆y,

that is, u1 ∈ B \ {θ}.
Define

(Ψ3u)(x) = λζ(Ψζu)(x), u ∈ C[0, 1]T.

By Lemma 8, Ψ3 : A → A is a linear operator and com-
pletely continuous and Ψ3(A) ⊂ A,Ψ3u1 = λζΨζu1 = u1.
From (35), u ∈ ∂Br3 , then

(Φu)(x) = η

∫ 1

0

G(x, y)q(y)z(y, u(y))∆y

≥ λζ

∫ 1

ζ

G(x, y)q(y)u(y)∆y

= (Ψ3u)(x), x ∈ [0, 1]T.

Let D0(B) = Br3 , ψ = φ = Ψ3, ϕ = I , n = 1. From Lemma
5,

i(Φ,Br3 ,B) = 0. (39)

By (36), (38) and (39),

i(Φ,Br2,r1 ,B) = i(Φ,Br2 ,B)− i(Φ,Br1 ,B) = 1,

i(Φ,Br3,r2 ,B) = i(Φ,Br3 ,B)− i(Φ,Br2 ,B) = −1,

that is, (2) exists at least two positive solutions. This com-
pletes the proof.

Theorem 4. Assume that (H1)-(H3) hold. Furthermore,

η ≤ λ1
z0
, η ≤ λ1

z∞
, (40)

and

z(x, u) ≥ r̃∗

l
, 0 < u ≤ r̃∗, 0 ≤ x ≤ 1, (41)

where r̃∗ > 0, and λ1 is the first eigenvalue of Ψ which
has been defined by (9). Then (2) exists at least two positive
solutions.

Proof: By (40), there exist positive constants r′1 > 0
and 0 < r′1 < r̃∗, r′2 > 0 and r′2 > r̃∗, choose 0 < ε < 1,
then

z(x, u) ≤ λ1
η
u, 0 ≤ u ≤ r′1, 0 ≤ x ≤ 1, (42)

and

z(x, u) ≤ ε
λ1
η
u, u ≥ r′2, 0 ≤ x ≤ 1. (43)

Suppose that Φ has no fixed point on ∂Br′1
and ∂Br′2

. It
follows from (42), (43) and the permanence property of fixed
point index that

i(Φ,Br′1
,B) = 1, (44)

and

i(Φ,Br′2
,B) = −1. (45)

Since u(x) is concavity on [0, 1]T, u ∈ ∂Br′1
, then 0 <

δ0∥u∥ ≤ u(x) ≤ ∥u∥ = r̃∗, x ∈ [ζ, 1]T. By (41), u ∈ ∂Br̃∗ ,
then

(Φu)(x) = η

∫ 1

0

G(x, y)q(y)z(y, u(y))∆y

≥ r̃∗

l
η

∫ 1

ζ

k1(y)G(y, y)q(y)∆y = r̃∗,

that is, ∥Φu∥ ≥ ∥u∥. By Lemma 7,

i(Φ,Br̃∗ ,B) = 0. (46)

It follows from (44)-(46) that

i(Φ,Br̃∗,r′1
,B) = i(Φ,Br̃∗ ,B)− i(Φ,Br′1

,B) = −1,

i(Φ,Br′2,r̃
∗ ,B) = i(Φ,Br′2

,B)− i(Φ,Br̃∗ ,B) = 1,

that is, (2) exists at least two positive solutions. This com-
pletes the proof.

IV. CONCLUSION

A singular boundary value problem on time scales is
studied in this paper under weaker conditions via the fixed
point index theory. The nonlinear term is not required to
be monotone or growth, this new approach is different from
the works in [4,5,6,8,9,11,12], and the existing results are
developed even if T = R. Furthermore, we may bring many
other boundary value problems under investigation on time
scales to obtain more general results; see [16-18].
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