
 

  

Abstract—This paper introduces a complete method for 

bearing fault detection. By analyzing the vibration signal when 

a fault occurs, the type of fault can be detected. The number of 

high-frequency intrinsic mode functions (IMFs) is determined 

by calculating the cumulative mean of each IMF. In the 

modified ensemble empirical mode decomposition (EEMD), 

only the high-frequency IMFs need to be decomposed out. The 

scientific calculation process for the parameters of the 

algorithm is explained in detail. The function of the kurtosis 

value and the correlation coefficient is analyzed, and the IMFs 

with the most abundant fault information are selected to 

restructure the signal. The reconstructed signal is then 

processed by wavelet algorithm. The fault vibration signal from 

the bearing inner ring is used as an example for the experiment. 

The fault characteristic frequency of bearing inner race is 

calculated by formula. By analyzing the envelope spectrum of 

the final restructured signal, the fault information is effectively 

detected. The results demonstrate that the method given by this 

paper can detect bearing fault information more quickly and 

efficiently. 

 
Index Terms—Fault diagnosis, cumulative mean, rolling 

bearing, wavelet algorithm, envelope spectrum  

 

I. INTRODUCTION 

ost motor failures are caused by rolling bearings. 

Bearing fault diagnosis has always been an important 

research content in mechanical fault [1]. When a bearing fault 

occurs, the vibration signal is often used to analyze it [2]. The 

vibration fault signal of bearing is a kind of non-linear and 

non-stationary signal, and empirical mode decomposition 

(EMD) is very suitable for analyzing its analysis. But EMD 

has the problem of modal mixing, which limits its use. Today, 

the ensemble empirical mode decomposition (EEMD) and 

the application of EEMD in bearing fault detection are being 

studied. In [3], an example of EEMD in fault diagnosis is 

given. The EEMD decomposition of the signal can promote 

all components of the model to obtain better timing, and the 

diagnostic accuracy of the model can be significantly 

improved. But the operation process of the algorithm is not 

detailed enough, and the running speed of the algorithm is 

slow. In [4], an early warning method for gearbox fault based 

 
Manuscript received November 14, 2022; revised May 7, 2023.  

This work was supported by the National Natural Science Foundation of 
China (61905171).  

G. Yang is an associate professor of Engineering Training Center, Yantai 

University, Yantai, 264005, China. (corresponding author, e-mail: 
zhongshanlinggu@163.com) 

X. R. Liu is a lecturer of School of Computer Science and Technology, 
Shandong Technology and Business University, Yantai, 264005, China. 

(e-mail:ygyantai@163.com). 

 
 

on EEMD and a broad learning algorithm is put forward, and 

the results verified that the fusion method of EEMD and the 

width learning algorithm is feasible in early fault warning. 

However, many false components are generated during the 

process of algorithm decomposition, which has a negative 

impact on the efficiency and accuracy. In [5], a fault 

diagnosis method for roller bearing based on EMD and 

spectral kurtosis is discussed, but the decomposition process 

is prone to mode mixing, which affects the detection effect. 

In [6], researchers pointed out that the low-frequency white 

noise plays a major role in eliminating mode mixing, while 

the high-frequency part has little impact. They proposed to 

select the white noise with limited bandwidth to save the 

EEMD operation time, and achieved good results. But the 

white noise amplitude and the ensemble average operations 

number cannot be obtained scientifically, which needs to be 

determined manually. 

This paper presents an effective fault detection method. In 

order to improve the running speed, the EEMD is modified. 

The relevant parameters are obtained scientifically, and the 

final reconstructed signal contains richer fault information. 

The specific implementation process is described in detail as 

follows. 

 

II. RELATED ALGORITHMS 

A. Signal decomposition process 

Based on the EEMD algorithm, the signal decomposition 

process is proposed. The EEMD algorithm comes from EMD 

algorithm [7]. In application, EMD algorithm has the 

problem of mode mixing [8]. The mode mixing problem is 

that an IMF is composed of signals with different scales, or 

signals with similar scales appear in different IMFs. This 

problem leads to large errors in the decomposition results 

[9][10]. Signal discontinuity is the cause of mode mixing. In 

discontinuous signals, the interval distribution of the extreme 

points of high-frequency components is dense, and the 

interval distribution of the extreme points of low-frequency 

components of signals is sparse. In EEMD, a set of white 

noise signals is added to the original signal, which changes 

the distribution characteristics of the low-frequency 

components. This ensures that the mean value of the upper 

and lower envelopes can be accurately obtained each time, 

and avoids the mode mixing in EMD [11], but the running 

speed become slowly.  

For the bearing fault vibration signal, the fault signal is a 

high frequency periodic signal. It is mainly contained in 

high-frequency components. Therefore, the low-frequency 

components and the residual component decomposed by the 

algorithm are unimportant in bearing fault detection. 

Study on Method of Bearing Fault Detection 

Based on Vibration Signal Analysis 

Guang Yang, Xinrong Liu  

M 

Engineering Letters, 31:3, EL_31_3_14

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



 

In this paper, the EEMD algorithm is modified. During the 

operation of the algorithm in this paper, after all 

high-frequency IMFs are decomposed out, the algorithm will 

be ended. The low-frequency IMFs and the residual need not 

be worked out. The parameter of cumulative mean is 

introduced in the process. The main function of cumulative 

mean is to distinguish high-frequency components from all 

IMFs [12]. When the cumulative mean value of an IMF is 

close to zero, the IMF is regarded as a high-frequency 

component. If the cumulative mean deviates too much from 

the zero value, the IMF is regarded as a low-frequency 

component. The cumulative mean is given by the following 

formula: 
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Here the L is cumulative mean; the mean(﹒) is function 

for averaging. The std(﹒) is the standard deviation. The 

mean(IMFi) is the average value of each number in IMFi . 

The modified EEMD algorithm in this paper are described 

as follows: 

1) The original signal is decomposed with EMD, and all 

IMFs are obtained. The number of high-frequency IMFs 

are determined according to the L value of each IMF. 

The number of high-frequency IMFs is expressed by j. 

2) White noise ni(t) with zero mean and constant amplitude 

standard deviation is added to the original signal x(t) for 

many times. 

 

                )()()( tntxtx ii +=     (i=1, 2…M)            (2) 

 

Where, xi (t) is the signal after adding white noise for 

the ith time, and ni(t) is the white noise added for the ith 

time. 

3) EMD decomposition is carried out on xi(t). After j times 

of decomposition, EMD stops operation. Each xi(t) is 

decomposed into j components, and the result is 

recorded as IMFij.  

4) After averaging the corresponding IMF components 

according to the following formula, the final 

decomposition result is obtained.  
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The Fig. 1 shows the running process of the algorithm.  

It can be seen from the above process that the algorithm 

can run faster than EEMD since only j IMFs are decomposed 

out, and other IMFs and residual component need not to be 

obtained.  

In the above algorithm, the amplitude and number of white 

noise need to be determined. The magnitude of white noise 

directly determines the effect of eliminating mode mixing, 

and the number of ensemble average operations can 

determine the degree of white noise elimination [13].  
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Final IMFs are obtained 

The number of high-frequency IMFs (L) to be obtained is determined 

 
 

Fig. 1.  The algorithm of modified EEMD 
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B. Method of determining parameters 

Before the process of the above algorithm, two parameters 

should be determined in the algorithm of this paper. One 

parameter is the amplitude of the white noise signal; the other 

is the total number of white noise signals that will be added to 

the process. The two parameters are usually decided by 

experience, and that lacks a theoretical basis. This paper 

gives the calculation method. The following section 

describes the parameters calculation process. 

The relationship between the two parameters can be given 

by the following formula: 

 

Me /=                                                  (4) 

 

Here e is the expected error value between the original 

signal and the decomposition result. The λ is the ratio of the 

white noise signal amplitude standard deviation to the 

original signal amplitude standard deviation; The M is the 

ensemble average number.  

The e must be defined to a small value in order to get a 

better decomposition result. From above formula we can see 

that the e can become small by decreasing λ or increasing M. 

But when λ is too smaller, the effect of adding white noise 

signal is not obvious. Similarly, the larger the M is set, the 

longer the running time of the algorithm will be.  

Usually, the e can be determined by our expectations. The 

λ can be obtained by following formula: 

 

2
0


                                       (5) 

 

The τ is the ratio of the high frequency signal amplitude 

standard deviation to the original signal amplitude standard 

deviation. Usually, the parameter value of λ is τ/4. 

In order to determine τ, the high frequency IMF must be 

selected. The original signal is decomposed by EMD 

algorithm at first, and some IMFs are obtained. The first IMF 

usually has the highest frequency. So, the first IMF is 

selected to determine τ. 

The Fig. 2 shows the calculation process for the two 

parameters. 

 

C. Wavelet algorithm 

After running the modified EEMD algorithm, some IMFs 

are selected to reconstruct the signal. In order to obtain a 

better fault detection effect, wavelet algorithm is used to 

further process the reconstructed signal. During the operation 

of wavelet algorithm, a series of high-frequency detail 

coefficients and a low-frequency approximation coefficient 

are generated. In the usual wavelet denoising algorithm, 

some high-frequency detail coefficients are removed as noise. 

However, for the bearing fault signal, the fault feature 

information is mainly included in the high frequency signal. 

Therefore, this paper uses some high frequency detail 

coefficients to further reconstruct the signal, and the low 

frequency approximation coefficients are removed. 

The final reconstructed signal contains more obvious fault 

information. 

 

III. BEARING FAULT DETECTION METHOD 

A. Kurtosis 

Kurtosis is a parameter that describes the peak of 

waveform, which is very sensitive to the instantaneous 

impact characteristics in the signal [14]. Kurtosis is widely 

used in bearing fault diagnosis, and its calculation formula is 

given as below: 

 

4

1

)(
1


=

−
=

N

i

i xx

N
K


                               (6) 

 

The K is kurtosis value; N is the number of samples; the xi 

is amplitude of signal; x is mean value of signal; λ is 

standard deviation of signal. 

 Input the original signal x(t) and the expected error value e  

EMD decomposition 

High frequency IMF andτ are obtained 

The λ is obtained 

The M is determined by e and λ 

Modified EEMD decomposition 
 

 
Fig. 2.  The parameters calculation process 
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Kurtosis is very sensitive to impact signals, which is 

especially suitable for the diagnosis of surface damage faults 

[15]. For the normal bearing vibration signal, the kurtosis 

value K=3, but for the fault bearing, the kurtosis value of the 

vibration signal will become larger. The higher the kurtosis 

value, the more obvious the fault impact component 

contained in the signal [16]. When the kurtosis value K>8, the 

bearing may have great faults. In the process of bearing fault 

detection, the IMF component with a large kurtosis value can 

better reflect the fault characteristics. 

 

B. Correlation coefficient 

The correlation coefficient can be used to assess whether 

two signals are related [17]. Because the bearing vibration 

signal contains noise, the IMFs decomposed by EEMD may 

contain many false components. The false IMFs are 

irrelevant to the original signal, and they should be 

eliminated [18][19]. For the real IMF component, its 

correlation coefficient is relatively large, whereas for the 

false IMF component, the correlation coefficient is relatively 

small. By calculating the correlation coefficient between 

each IMF component and the original vibration signal, the 

false IMFs can be picked out. 

The following formula gives the calculation method for 

correlation coefficient: 
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The IMFi is the ith IMF component; ri is correlation 

coefficient between original signal and IMFi; x(k) is the kth 

sampling point of the original signal; IMFi(k) is the kth 

sampling point of IMFi; N is the number of samples. 

C. Bearing fault detection process 

1) The original bearing vibration signal is decomposed by 

the above modified EEMD algorithm, and j IMFs are 

obtained.   

2) The kurtosis values for each IMF are calculated. 

3) The correlation coefficients between each IMF and the 

original signal are calculated. 

4) Those IMFs with a large correlation coefficient and a 

kurtosis value are selected to reconstruct the signal. 

5) The reconstructed signal is further processed by wavelet 

algorithm, and the final reconstructed signal is obtained. 

6) Find the envelope spectrum of the final reconstructed    

signal, and the fault frequency is found. 

The Fig. 3 shows the bearing fault detection process. 

 

IV. EXAMPLE OF DETECTION PROCESS 

The bearing fault signal data comes from the experimental 

data provided by Western Reserve University in the United 

States. From the inner circle fault data file, 1200 data are 

selected as the original signal. Fig. 4 shows the original signal 

waveform. In this paper, the fault data of the bearing inner 

ring for driver end is adopted. The sampling frequency is 

12KHZ, and the bearing speed r=1797r/min; Number of balls 

n=9; Rolling element diameter d=7.938mm; Bearing 

diameter D=39mm; Contact angle of rolling element α=0. 

The calculation formula for bearing inner ring fault 

frequency is given below: 
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The fi is inner ring fault frequency; r is bearing speed; n is 

number of balls; d is rolling element diameter; D is bearing 

diameter; α is contact angle of rolling element.  

The calculation result shows that the inner ring frequency  

 Input the original signal x(t)  

The modified EEMD decomposition process 

Calculate kurtosis and the correlation coefficient 

Select some components of IMF to reconstruct signal 

Find the envelope spectrum of the final reconstructed signal 

Find the fault frequency 

Further processing with wavelet algorithm 

 
 

Fig. 3.  The bearing fault detection process 

 

Engineering Letters, 31:3, EL_31_3_14

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



 

fault is 162.2HZ, after substituting the above experimental 

data into the formula. 

 

A. Modified EEMD decomposition process 

Before running the modified EEMD, the L value in the 

formula (1) and the three parameters in formula (4) are 

determined. The calculation process is described as follows. 

First, the original signal is decomposed by EMD algorithm. 

Nine IMFs and a residual component are generated. The L 

value of each IMF is calculated, and the results are given in 

Table 1. It can be seen from Table 1 that the deviation from 

zero increases significantly after the fourth L value. So, the 

first four IMFs are considered to be high-frequency 

components, and j=4. This means that in the subsequent 

EMD decomposition, only four IMFs need to be decomposed 

each time. This makes the algorithm run faster. 

The IMF1 is taken as the high frequency component to 

calculate τ. The standard deviation of original signal is 

0.2876, and the standard deviation of IMF1 is 0.2553. τ= 

0.2553/ 0.2876=0.8877. Therefore, the λ is finally 

determined as λ=τ/4=0.222.  

The expected error value e is set to 0.015, and the final 

value of M is 219 by the calculation of formula 4.  

The original signal is decomposed with the modified 

EEMD, and four IMFs are obtained. The Fig. 5 shows the 

decomposition results. 

B. Signal reconstruction 

The kurtosis value and the correlation coefficient of the 

four IMFs are calculated. The results of the calculation are 

presented in Table 2.  

The vibration signal of normal bearing approximately 

obeys the normal distribution, and the kurtosis value is about 

 
Fig. 4.  Original signal waveform 

TABLE I 

THE CALCULATION RESULTS FOR EACH IMF 

Cumulative 

mean (10-2) 
IMF1 IMF2 IMF3 IMF4 IMF5 IMF6  IMF7  IMF8  IMF9  

L 0.36 0.30 -0.17 0.12 3.50 4.20 6.90 10.34 24.25 

 

 

 
 

Fig. 5.  The decomposition results 
 

 

TABLE 2 
KURTOSIS AND CORRELATION COEFFICIENT OF THE IMFS 

 IMF1 IMF2 IMF3 IMF4 

Kurtosis 5.0426 5.6002 3.1851 3.2005 

Correlation coefficient 0.8433 0.4156 0.2448 0.1356 
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3. When the rolling bearing fails, the kurtosis value increases 

significantly. So, the IMFs with a kurtosis value greater than 

3 contain more fault information. The kurtosis value of the 

original signal is 5.4996. 

It can be seen from the Table 2 that the correlation 

coefficient and kurtosis value of IMF1 and IMF2 are large, 

and the kurtosis value is greater than 3. They retained the 

most fault information in the original signal, so the first two 

IMFs are used for the signal reconstruction. 

The reconstructed signal is further processed with wavelet 

algorithm. The signal is decomposed into five layers of 

wavelet. Five high-frequency detail coefficients and one 

low-frequency approximation coefficient are obtained. The 

first two high-frequency detail coefficients contain the most 

fault information, and they are selected to further reconstruct 

the signal. The further reconstructed signal is used for 

subsequent fault analysis. The results of wavelet 

decomposition and the final reconstructed signal are shown 

in the Fig.6. A is the approximation coefficient; D1-D5 are 

the detail coefficients; Y is the final reconstructed signal. 

 

C. Envelope Spectrum Analysis 

In order to obtain the final fault detection results, envelope 

spectrum analysis is required. The Fig.7 shows the envelope 

spectrum of the final reconstructed signal.  

From the envelope spectrum, it can be seen that there is a 

prominent pulse signal, which is much higher than the other 

parts. The frequency corresponding to the pulse is around 

162Hz, and that is the inner ring fault frequency calculated 

previously. Therefore, the fault frequency is finally detected 

perfectly through the envelope spectrum. 

 

V. CONCLUSIONS 

This paper studies the bearing fault detection method. The 

fault data from the bearing inner ring is used in the 

experiment. The application of the modified EEMD 

algorithm in detection is introduced in detail, and the 

calculation process of relevant parameters is well explained. 

In the modified EEMD, only high-frequency IMFs need to be 

decomposed, which greatly accelerates the operation speed 

of the algorithm. The data signal is reconstructed based on 

kurtosis value and correlation coefficient. The reconstructed 

signal is further processed by wavelet algorithm. Each 

experimental result is thoroughly analyzed. The envelope 

spectrum analysis shows that this method can detect fault 

information effectively and quickly. 
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