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Abstract—This article explores some interactive aggregation
operators for Fermatean fuzzy sets (FFS). These operators
are generalisations of those defined for intuitionistic fuzzy
sets. It revises the existing operational rules for Fermatean
Fuzzy Numbers (FFNs) to construct interactive aggregation
operators for FFSs. The improved operational rules incorporate
the effects of the membership and non-membership values of
the operand FFNs on the resulting FFN. Based on the weighted
arithmetic mean and weighted geometric mean, this article
proposes two aggregation operators, namely, the Fermatean
Fuzzy Interactive Weighted Averaging (FFIWA) operator and
the Fermatean Fuzzy Interactive Weighted Geometric (FFIWG)
operator. It discusses some properties of the proposed operators
and develops an approach for Multi-Attribute Decision making
(MADM) using these operators. A numerical example illustrates
the developed approach, which is tested for validity using some
evaluation criteria.

Index Terms—Fermatean fuzzy sets, Fermatean fuzzy num-
bers, interaction aggregation, decision-making.

I. INTRODUCTION

MULTI-attribute decision-making (MADM), an
essential component of decision theory, selects the

best alternative from a set of alternatives while allowing
the decision-maker to evaluate each alternative based
on some criteria or attributes. It is often difficult for
a decision-maker to accurately evaluate the attributes
because of the uncertainty in the information available for
decision-making. For this reason, several methods have been
developed for managing uncertainty in the decision-making
process. The fuzzy sets introduced by L. A Zadeh [1]
with a membership value in [0, 1] are very suitable for
decision-making in uncertain environments. Atanassov [2]
designed an intuitionistic fuzzy set (IFS) with membership
and non-membership values. Compared to fuzzy sets the
IFSs are more effective in handling uncertain information.
The researchers investigated different aggregation operators
[3], [4], [5], [6], [7] of IFSs to use them effectively in
MADM. In all these articles, the membership value of
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the aggregate depends only on the membership values
of the collection being aggregated, and analogously, the
non-membership values of the aggregate depend only on the
non-membership values of the collection. Such aggregation
operators may produce incorrect output in some situations.
To address this shortcoming, authors [5], [6], [8] derived
aggregation operators that accommodate the impacts of both
membership and non-membership values. Pythagorean fuzzy
set (PFS) [9] extended the framework for depicting uncertain
information. Many authors [10], [11], [12] concentrated
on interactive aggregation operators for PFSs for solving
Pythagorean fuzzy MADM problems. The Fermatean fuzzy
set (FFS) [13] is an extension of IFS. FFSs are advantageous
in representing the uncertainty of objective things because
they assign a degree of membership, a degree of non-
membership, and a degree of hesitation to each element
in a universe. As a result, more and more researchers are
using FFSs to characterise imprecise or ambiguous decision
information and to deal with uncertainty in decision-making
in many contexts. In the literature [14], [15], [16] several
aggregation operations have been created to combine
Fermatean fuzzy information in different contexts.

The sections of this article are as follows. Section II gives
an overview of FFSs. Section III introduces two aggregation
operators for FFNs that consider the effects of membership
and non-membership values of the aggregated FFNs on the
resulting FFN. It also lists some properties that these aggre-
gation operators satisfy. Section IV analyses the suitability of
the constructed aggregation operators for MADM problems.

II. PRELIMINARIES

Definition 1: [13] Consider a universal set X, a Fermatean
fuzzy set on X is expressed as

A = {(x, (uA(x), vA(x))) | x ∈ X}

wherein uA and vA are functions from X to the interval
[0, 1], comprising (uA(x))

3
+(vA(x))

3 ≤ 1. uA suggests the
membership value and, vA expresses the non-membership
value of x to A.
Each (uA(x), vA(x)) is termed as a Fermatean fuzzy number
(FFN), documented as ϱ = (u, v). The set of all FFNs is
denoted as 𭟋. By calculating two values: the score value
and the accuracy degree of an FFN, any two FFNs can be
ordered.

Definition 2: [13] Consider an FFN ϱ = (u, v), score
value of ϱ is calculated as score(ϱ) = u3 − v3, and
score(ϱ) ∈ [−1, 1].
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Definition 3: [13] Consider an FFN ϱ = (u, v), accuracy
degree of ϱ is calculated as accuracy(ϱ) = u3 + v3, and
accuracy(ϱ) ∈ [0, 1].

Definition 4: [13] Consider two FFNs ϱ1 = (u1, v1) and
ϱ2 = (u2, v2) , if score(ϱ1) < score(ϱ2), then ϱ1 < ϱ2;
suppose score(ϱ1) = score(ϱ2), then in that context if:

1) accuracy(ϱ1) = accuracy(ϱ2), then it suggests that
ϱ1 and ϱ2 depict the same information, i.e., ϱ1 = ϱ2

2) accuracy(ϱ1) < accuracy(ϱ2), then ϱ1 < ϱ2.
Due to the current focus on the aggregation of Fermatean
fuzzy data, several aggregation operators are evolving. This
article lists the existing operations on FFNs in Definition 5.

Definition 5: [13] Consider FFNs ϱ1 = (u1, v1) , ϱ2 =
(u2, v2), and ϱ = (u, v), below are some operations defined
on them:

1) ϱ1 ⊞ ϱ2 =
(

3
√

u31 + u32 − u31u
3
2, v1v2

)
2) ϱ1 ⊠ ϱ2 =

(
u1u2,

3
√

v31 + v32 − v31v
3
2

)
3) aϱ =

(
3
√
1− (1− u3)a, va

)
, a > 0

4) ϱa =
(
ua, 3
√
1− (1− v3)a

)
, a > 0

III. FERMATEAN FUZZY INTERACTIVE AGGREGATION
OPERATORS

The aggregation of FFNs using the operations defined in
[13] has several shortcomings, including:

1) The membership value of the result is unaffected by
the non-membership values of the operands, and vice
versa. For example for two FFNs ϱ1 = (0.50, 0.60)
and ϱ1 = (0.30, 0.90), ϱ1 ⊞ ϱ2 = (0.3856, 0.54).
Changes in the non-membership values of the operands
do not affect the membership value of the resultant.
Considering a different set of FFNs ϱ1 = (0.50, 0.70)
and ϱ2 = (0.30, 0.80), ϱ1 ⊞ ϱ2 = (0.3856, 0.56). This
also occurs in other operations mentioned in [13].

2) Non-zero membership (or non-membership) values of
operands are not significant if any of them is zero. For
example for two FFNs ϱ1 = (0.50, 0.60) and ϱ1 =
(0.00, 0.90), ϱ1 ⊞ ϱ2 = (0.00, 0.54) and ϱ1 ⊠ ϱ2 =
(0.00, 0.8874).

The above deficiencies show the importance of simultane-
ously including the effects of operand membership and non-
membership in operational rules. To address the deficiencies
noted above, the operations are modified to consider the
effects of the operands’ membership and non-membership
values on the resultant. They are referred to as interactive
operational rules and are essential for defining interactive
aggregation operators for Fermatean fuzzy information.

Definition 6: Consider FFNs ϱ1 = (u1, v1), ϱ2 = (u2, v2)
and ϱ = (u, v),

1) ϱ1 ⊞ ϱ2 =(
3
√
u31 + u32 − u31u

3
2,

3
√

v31 + v32 − v31v
3
2 − v31u

3
2 − u31v

3
2

)
2) ϱ1 ⊠ ϱ2 =(

3
√
u31 + u32 − u31u

3
2 − u31v

3
2 − v31u

3
2,

3
√
v31 + v32 − v31v

3
2

)
3) aϱ =

(
3
√
1− (1− u3)a, 3

√ (
1− u3

)a −(
1−

(
u3 + v3

))a ) ,

a > 0.

4) ϱa =

(
3

√ (
1− v3

)a −(
1−

(
u3 + v3

))a , 3
√
1− (1− v3)a

)
,

a > 0.

Theorem 1: Let ϱ1 = (u1, v1) and ϱ2 = (u2, v2) be two
FFNs and a > 0, then

1) (ϱ1 ⊞ ϱ2)
c = ϱc1 ⊠ ϱc2

2) (ϱ1 ⊠ ϱ2)
c = ϱc1 ⊞ ϱc2

3) (ϱc1)
a = (aϱ1)

c

4) (aϱc1)
a = (aϱ1)

c

Proof: Proofs follow directly from the operational rules
defined in Definition 6.
This article discusses the concepts of weighted arithmetic
mean and the weighted geometric mean of a collection of
FFNs using the interactive operations defined in Definition
6.

Definition 7: Consider a collection {ϱι : ϱι = (uι, vι),
ι = 1, 2, · · · , n} of FFNs and a weight vector q =
(q1, q2, · · · , qn)T specifying the weights for each ϱι such

that qι > 0 and
n∑

ι=1
qι = 1. The mapping FFIWA : 𭟋n → 𭟋

FFIWA (ϱ1, ϱ2, · · · , ϱn) = ⊞n
ι=1 (qιϱι)

is called a Fermatean fuzzy interactive weighted averaging
(FFIWA) operator.

Theorem 2: Consider a collection {ϱι : ϱι = (uι, vι),
ι = 1, 2, · · · , n} of FFNs and a weight vector q =
(q1, q2, · · · , qn)T specifying the weights for each ϱι such

that qι > 0 and
n∑

ι=1
qι = 1. Then the aggregate obtained by

employing the FFIWA operator is an FFN, and

FFIWA (ϱ1, ϱ2, · · · , ϱn)

=


3

√
1−

n∏
ι=1

(1− u3ι )
qι ,

3

√
n∏

ι=1
(1− u3ι )

qι −
n∏

ι=1
(1− (u3ι + v3ι ))

qι


Proof: Proof by mathematical induction on n.

1) Properties of FFIWA operator:
Theorem 3: Consider a collection ϱι, ι = 1, 2, · · · , n of

FFNs with a weight vector q = (q1, q2, · · · , qn)T specifying

the weights for each ϱι such that qι > 0 and
n∑

ι=1
qι = 1, then

1) Idempotency: FFIWA (ϱ, ϱ, · · · , ϱ) = ϱ
2) Boundedness: For ϱ− = (minι uι,maxι vι), ϱ+ =

(maxι uι,minι vι), ϱ− ≤ FFIWA (ϱ1, ϱ2, · · · , ϱn) ≤
ϱ+.

3) Homogeneity: FFIWA (aϱ1, aϱ2, · · · , aϱn) =
aFFIWA (ϱ1, ϱ2, · · · , ϱn)

4) Monotonicity: For a set of FFNs ϱ′ι =
(u′ι, v

′
ι) with the same weight vector

q = (q1, q2, · · · , qn)T such that uι ≤ u′ι and
u3ι + v3ι ≥ (u′ι)

3 + (v′ι)
3 for all ι = 1, 2, · · · , n,

FFIWA (ϱ1, ϱ2, · · · , ϱn) ≤FFIWA (ϱ′1, ϱ
′
2, · · · , ϱ′n).

Proof: For ϱι = ϱ = (u, v) with weight vector q
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satisfying qι > 0 and
n∑

ι=1
qι = 1.

FFIWA (ϱ1, ϱ2, · · · , ϱn)

=


3

√
1−

n∏
ι=1

(1− u3ι )
qι ,

3

√
n∏

ι=1
(1− u3ι )

qι −
n∏

ι=1
(1− (u3ι + v3ι ))

qι



=



3

√
1− (1− u3)

n∑
ι=1

qι
,

3

√√√√√√√
(
1− u3

) n∑
ι=1

qι
−

(
1−

(
u3 + v3

)) n∑
ι=1

qι


= (u, v)

minι u
3
ι ≤ u3ι ≤ maxι u

3
ι

1−maxι u
3
ι ≤ 1− u3ι ≤ 1−minι u

3
ι

(1−maxι u
3
ι )

qι ≤ (1− u3ι )
qι ≤ (1−minι u

3
ι )

qι

(1−maxι u
3
ι ) ≤

n∏
ι=1

(
1− u3ι

)qι ≤ (1−minι u
3
ι )

minι u
3
ι ≤ 1−

n∏
ι=1

(
1− u3ι

)qι ≤ maxι u
3
ι . . . (1)

minι uι ≤ 3

√
1−

n∏
ι=1

(1− u3ι )
qι ≤ maxι uι . . . (2)

minι{u3ι + v3ι } ≤ (u3ι + v3ι ) ≤ maxι{u3ι + v3ι }

1−maxι{u3ι + v3ι } ≤ 1− (u3ι + v3ι ) ≤

1−minι{u3ι + v3ι }

1−maxι{u3ι + v3ι } ≤
n∏

ι=1

(
1− (u3ι + v3ι )

)qι ≤
1−minι{u3ι + v3ι }

minι{u3ι + v3ι } ≤ 1−
n∏

ι=1

(
1− (u3ι + v3ι )

)qι ≤
maxι{u3ι + v3ι } . . . (3)

From (1) and (3)

minι v
3
ι ≤

n∏
ι=1

(
1− u3ι

)qι − n∏
ι=1

(
1− (u3ι + v3ι )

)qι
≤ maxι v

3
ι

minι vι ≤ 3

√
n∏

ι=1
(1− u3ι )

qι −
n∏

ι=1
(1− (u3ι + v3ι ))

qι

≤ maxι vι . . . (4)

From (2) and (4)

ϱ− ≤ FFIWA (ϱ1, ϱ2, · · · , ϱn) ≤ ϱ+

aϱ1 =

(
3

√
1− (1− u31)

a
, 3

√ (
1− u31

)a
−
(
1−

(
u31 + v31

))a )
...

aϱn =

(
3
√
1− (1− u3n)

a
, 3

√ (
1− u3n

)a
−
(
1−

(
u3n + v3n

))a )

FFIWA (aϱ1, aϱ2, · · · , aϱn)

=


3

√
1−

n∏
ι=1

(1− u3ι )
aqι ,

3

√
n∏

ι=1
(1− u3ι )

aqι −
n∏

ι=1
(1− (u3ι + v3ι ))

aqι


= aFFIWA

Since uι ≤ u′ι,

3

√
1−

n∏
ι=1

(1− u3ι )
qι ≤ 3

√
1−

n∏
ι=1

(1− (u′ι)
3)

qι .

Since u3ι + v3ι ≥ (u′ι)
3 + (v′ι)

3,
n∏

ι=1

(
1−

(
u3ι + v3ι

))qι ≤ n∏
ι=1

(
1−

(
(u′ι)

3 + (v′ι)
3
))qι

which gives

3

√
n∏

ι=1
(1− u3ι )

qι −
n∏

ι=1
(1− (u3ι + v3ι ))

qι ≥

3

√
n∏

ι=1
(1− (u′ι)

3)
qι −

n∏
ι=1

(1− ((u′ι)
3 + (v′ι)

3))
qι

.

Thus the ordering defined for FFNs gives
FFIWA (ϱ1, ϱ2, · · · , ϱn) ≤FFIWA (ϱ′1, ϱ

′
2, · · · , ϱ′n).

Definition 8: Consider a collection {ϱι : ϱι = (uι, vι),
ι = 1, 2, · · · , n} of FFNs and a weight vector q =
(q1, q2, · · · , qn)T specifying the weights for each ϱι such

that qι > 0 and
n∑

ι=1
qι = 1. The mapping FFIWG : 𭟋n → 𭟋

FFIWG (ϱ1, ϱ2, · · · , ϱn) = ⊠n
ι=1 (ϱι)

qι

is called a Fermatean fuzzy interactive weighted geometric
(FFIWG) operator.

Theorem 4: Consider a collection {ϱι : ϱι = (uι, vι),
ι = 1, 2, · · · , n} of FFNs and a weight vector q =
(q1, q2, · · · , qn)T specifying the weights for each ϱι such

that qι > 0 and
n∑

ι=1
qι = 1, then the aggregate obtained

through employing the FFIWG operator is an FFN, also

FFIWG (ϱ1, ϱ2, · · · , ϱn)

=


3

√
n∏

ι=1
(1− v3ι )

qι −
n∏

ι=1
(1− (u3ι + v3ι ))

qι ,

3

√
1−

n∏
ι=1

(1− v3ι )
qι


Proof: Proof by mathematical induction on n.

2) Properties of FFIWG operator:
Theorem 5: Consider a collection ϱι, ι = 1, 2, · · · , n of

FFNs with a weight vector q = (q1, q2, · · · , qn)T specifying

the weights for each ϱι such that qι > 0 and
n∑

ι=1
qι = 1, then

1) Idempotency: FFIWG (ϱ, ϱ, · · · , ϱ) = ϱ
2) Boundedness: For ϱ− = (minι uι,maxι vι), ϱ+ =

(maxι uι,minι vι), ϱ− ≤ FFIWG (ϱ1, ϱ2, · · · , ϱn) ≤
ϱ+.
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3) Homogeneity: FFIWG (aϱ1, aϱ2, · · · , aϱn) =
aFFIWG (ϱ1, ϱ2, · · · , ϱn)

4) Monotonicity: For a set of FFNs ϱ′ι =
(u′ι, v

′
ι) with the same weight vector

q = (q1, q2, · · · , qn)T such that vι ≥ v′ι and
u3ι + v3ι ≤ (u′ι)

3 + (v′ι)
3 for all ι = 1, 2, · · · , n,

FFIWG (ϱ1, ϱ2, · · · , ϱn) ≤FFIWG (ϱ′1, ϱ
′
2, · · · , ϱ′n).

Proof: Similar to proof of Theorem 3.

IV. DECISION MAKING BY APPLYING THE PROPOSED
AGGREGATION OPERATORS

Multi-attribute decision-making (MADM) is a decision-
making method widely used in science, engineering and busi-
ness. An MADM problem includes numerous attributes that
represent the different aspects under which the alternatives
are examined. The attributes are assigned weights that are
normalised so that they sum to one. The problem is to rank
the alternatives or find the best alternative(s) from a given
collection of alternatives based on some related decision
criteria (attributes). This section focuses on Fermatean fuzzy
MADM (FF-MADM) problems, which can be mathemati-
cally represented as follows: Let A = {a1, a2, ......., am}
be a set of m alternatives, and let G = {g1, g2, ...., gn}
be the universe of discourse with n attributes. The vector
w = (w1, w2, ....., wn)

T is the weight vector, where each wι

denotes the relevance of each attribute gι. If the decision-
maker specifies the rating of each alternative ai for each
attribute gι as an FFN (uiι, viι), where uiι denotes the degree
to which alternative ai fulfils attribute gι, and viι denotes the
degree to which alternative ai does not satisfy attribute gι.
An FF-MADM is briefly represented in the form of a matrix
called a decision matrix, where each entry is an FFN. This
article proposes an approach to solve an FF-MADM from the
perspective of information fusion. The aggregation operators
for FFNs are used as tools to combine the Fermatean fuzzy
information and the attribute weights. The following steps
are included in this approach.
Step 1. The assessments of the decision-maker are depicted
as a matrix, called the decision matrix O = (ϱiι)m×n where
ϱiι is an FFN (uiι, viι).

g1 g2 . . . . . . gn

O =

a1
a2
...

am


ϱ11 ϱ12 . . . ϱ1n
ϱ21 ϱ22 . . . ϱ2n

...
...

. . .
...

ϱm1 ϱm2 . . . ϱmn



Step 2. Normalise the decision matrix, transforming the
preference values of the cost type attributes of O into the
benefit type attributes by applying (5).

ϱiι =

{
(uiι, viι) ; if gι is a benefit type criterion
(viι, uiι) ; if gι is a cost type criterion . . . (5)

TABLE I
ORDERING OF ALTERNATIVES FOR AGGREGATION OPERATORS

FFWA FFWG FFIWA FFIWG

a1 0.1434 0.0616 0.3554 0.3040

a2 −0.2245 −0.1848 −0.2830 −0.3237

a3 0.0651 0.0455 0.0776 0.0777

The normalised matrix is represented as Ǒ

g1 g2 . . . . . . gn

Ǒ =

a1
a2
...

am


ϱ̌11 ϱ̌12 . . . ϱ̌1n
ϱ̌21 ϱ̌22 . . . ϱ̌2n

...
...

. . .
...

ϱ̌m1 ϱ̌m2 . . . ϱ̌mn



Step 3. Compute the aggregate value ϱ̌i for the alternatives
ai, i = 1, 2, .....,m using the FFIWA (or FFIWG) operator.
Step 4. Determine the score(ϱ̌i) of each ϱ̌i.
Step 5. Order the alternatives ai (i = 1, 2, ....,m) in
accordance with the score(ϱ̌i) [ accuracy(ϱ̌i) if necessary]
and select the alternative(s) with the highest order as the
optimal one.

A. Numerical Example

Choosing a suitable job is a crucial decision in one’s
life. An individual’s happiness, confidence, well-being and
health depend on finding the right job. A person applies for a
position at different companies in his field of expertise. Even-
tually, he received offers for this job from three companies.
Now he evaluates each offer based on five characteristics:
salary, benefits and perks, working hours, commuting costs,
and growth opportunities. To represent this MADM problem
mathematically, label the job offers as a1, a2, and a3 and
the attributes as g1, g2, g3, g4, and g5, respectively. The
weights for each attribute are 0.30, 0.25, 0.12, 0.15, and
0.18, respectively.
Step 1. The person evaluates each job in accordance with
the criteria and makes the decision matrix.

O =
[
(0.90, 0.20) (0.50, 0.30) (0.40, 0.60) (0.40, 0.80) (0.10, 0.60)
(0.10, 0.60) (0.20, 0.80) (0.60, 0.20) (0.90, 0.20) (0.60, 0.50)
(0.40, 0.10) (0.60, 0.05) (0.50, 0.40) (0.50, 0.50) (0.10, 0.30)

]
Step 2. Since g4 is a cost type attribute, normalise the
decision matrix O using (5).

Ǒ =
[
(0.90, 0.20) (0.50, 0.30) (0.40, 0.60) (0.80, 0.40) (0.10, 0.60)
(0.10, 0.60) (0.20, 0.80) (0.60, 0.20) (0.20, 0.90) (0.60, 0.50)
(0.40, 0.10) (0.60, 0.05) (0.50, 0.40) (0.50, 0.50) (0.10, 0.30)

]
Step 3. The values aggregated using FFIWA operator for
each job are ϱ̌1 = (0.7475, 0.3965), ϱ̌2 = (0.4192, 0.7092)
and ϱ̌3 = (0.4796, 0.3200). Using the FFIWG operator:
ϱ̌1 = (0.7319, 0.4499), ϱ̌2 = (0.3764, 0.7224) and ϱ̌3 =
(0.4798, 0.3197).
Step 4. Calculate the score values for each ϱ̌i.
Step 5. Using the FFIWA operator, we obtain the following
ranking: a1 > a3 > a2 and a1 is the optimal solution (job).
The same is obtained using the FFIWG operator. Using the
same MADM approach with the aggregation operators from
[14], we obtain a ranking for the alternatives similar to that
of the illustrated numerical example (summarised in Table
I).
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B. Evaluation of the proposed MADM approach

The goal of MADM approaches is to improve decision
quality by making decision-making precise, more logical,
and more efficient. Although enormous efforts and significant
progress have been made in developing several MADM
models to address different types of decision problems, no
model can be considered the best for a general MADM
problem. Different MADM methods can lead to different
solutions (rankings) for the same problem (numerical data).
In the MADM approach discussed in this article, the ranking
of alternatives depends on the aggregation operator used in
merging the given information. To illustrate the viability of
a typical MADM method, Wang and Triantaphyllou [17]
established some evaluation criteria. An effective MADM
should meet the following criteria:

1) Evaluation Criterion I: The method should not affect
the specification of the best alternative if the mem-
bership and non-membership values of a non-optimal
alternative and the worst alternative are swapped (pro-
vided that the weights of the attributes remain un-
changed).

2) Evaluation Criterion II: The method must be transitive.
3) Evaluation Criterion III: If the given problem is de-

composed into subproblems and solved independently
by the same method, the cumulative ranking of the
alternatives should be the same as the ranking of the
undecomposed problem.

Using the illustrated numerical example, this article examines
the feasibility of the MADM techniques proposed in this
article and in [14].

1) Testing using the Evaluation Criterion I: Swap the
membership and non-membership values of the assessments
of the worst alternative (a2) and the non-optimal one (a3)
and apply the method. The values aggregated with the FFWA
operator are ϱ̌1 = (0.5810, 0.3750), ϱ̌2 = (0.6290, 0.2900),
ϱ̌3 = (0.2195, 0.4230) and those aggregated with the FFWG
operator are ϱ̌1 = (0.4664, 0.3415), ϱ̌2 = (0.5812, 0.2259),
ϱ̌3 = (0.1541, 0.3663). Moreover, in both cases, the ranking
of alternatives is a2 > a1 > a3 and the optimal alternative
is a2, which is different from the optimal alternative for
the original problem. The first evaluation criterion is not
met, indicating that the MADM approach using FFWA and
FFWG operators are not effective. The aggregate values us-
ing the proposed FFIWA operator are ϱ̌1 = (0.7475, 0.3965),
ϱ̌2 = (0.7224, 0.3764), ϱ̌3 = (0.3197, 0.4798), and using
the proposed FFIWG operator are ϱ̌1 = (0.7319, 0.4499),
ϱ̌2 = (0.7092, 0.4192), ϱ̌3 = (0.3200, 0.4796) and in both
approaches, the ranking of alternatives is a1 > a2 > a3, with
the optimal alternative a1, identical to the original optimal
alternative. Therefore, the proposed approaches satisfy the
first evaluation criterion.

2) Testing using the Evaluation Criteria II and III: Split
the given problem into smaller problems that is, problems
with alternatives {a1, a2}, {a1, a3} and {a2, a3} and find the
ranking using the proposed approaches. The ranking obtained
in sub-problems is: a1 > a2, a1 > a3 and a3 > a2. Thus, the
combined ranking of all the smaller problems is a1 > a3 >
a2, consistent with the original ranking. The transitivity of
the approach for the given problem follows directly from the
test for the Evaluation Criterion III.

The MADM approach proposed in this article satisfies all
three evaluation criteria and is thus validated as an effective
MADM approach.

V. CONCLUSION

The article defines a few operations of FFNs that consider
the effect of membership and non-membership on one of
these values of the resulting FFN. In addition, the article
defines the FFIWA and FFIWG operators for FFSs using
these operations. It then provides a numerical example of an
MADM approach generated for decision problems where the
inputs are FFNs. Future work in this direction includes the
construction of several aggregation operators for FFSs with
potential applications in decision-making.
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