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Abstract—At present, whale optimization algorithm (WOA)
is one of the hot issues in swarm intelligence algorithm. Since
it was proposed, people have done a lot of improvement work
for WOA algorithm. To address the shortcomings of WOA,
an improved WOA combined with the equiangular spiral
bubble net predation (named as IWOA) is proposed in this
paper. In IWOA, search agent uses the equiangular spiral
rather than 9-shaped path to mimics the foraging trajectory
of humpback whale. This rule can increase the convergence
speed and exploitation ability of the search agent to an extent.
Additionally, with the guidance of the sound wave attenuation
steering law, search agent in IWOA can switch back and forth
between the actively swim (exploitation) and the randomly swim
(exploration) to the goal, hence obtain a better tradeoff between
the exploitation and exploration. Numerical experiments are
conducted on a set of mathematical benchmark cases. The
results show that IWOA has a better performance.

Index Terms—whale optimization algorithm, sprint feeding
method, equiangular spiral bubble net, selective probability P.

I. INTRODUCTION

ANIMALS have various foraging methods. Some ani-
mals use a passive attitude to hunt for food, others

take the initiative in catching prey [1-5]. Bubble net feeding
is a unique foraging method utilized by humpback whales.
Humpback whales are lack of chewing teeth, so they are
biased toward hunting school of small fish and shrimp. When
the swarm of fish becomes densely packed, the humpback
whale just needs to rush into the fish swarm, and open its
mouth to swallow the fish and shrimp together with water.
However, when the fish swarm is spread out, the effectiveness
of this predation will decrease. This is because small fish are
agile and able to swim at high speeds. But as an expert in
the art of hunting, humpback whale has developed a variety
of techniques. Humpback whales will dive into the water and
then start to spit small bubbles around the prey. This is the
bubble net feeding, which will be introduced in this paper.

Bubble net feeding can be divided into two categories
based on the number of whales involved. The first catego-
ry involves a small group of humpback whales using the
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”bubble curtain wall” to catch small fish and shrimp. The
second category involves a single humpback whale using
the ”spiral bubble net” to capture its prey. Humpback whale
prefers to be alone out of the breeding season, so it needs to
use the ”spiral bubble net” to hunt alone in most cases. The
specific predation process is that humpback whale dived into
the water to look for the position of small fish and shrimp.
Then the whale swims towards the surface in a spiral drawn.
During the acceleration phase, humpback whale constantly
releases bubbles of varying sizes to create a spiraling bubble
net that drives small fish and shrimp towards the center of
the net. Finally, the whale rushes into the center of spiral
bubble net, and swallowes the fish and shrimp together.

By mimicking the hunting behavior of humpback whales,
Mirjalili et.al proposed a new meta-heuristic optimization
algorithm, namely WOA [6]. Due to its simplicity and ease
of implementation, WOA algorithm has been applied to solve
many kinds of problems besides numerical function opti-
mization. Unfortunately, like other evolutionary algorithms,
WOA also has some insufficiencies. For example, WOA can
easily get trapped in local optima when solving complex
multimodal function problems and its exploitation ability
is also an issue in some cases. These weaknesses have
restricted the applications of the WOA. Consequently, more
and more researchers [7-24] are paying close attention to the
improvement of WOA so as to overcome these shortages.
With the aid of chaotic local search and lẽvy flight, Chen
et.al [16] proposed a balanced whale optimization algorithm
(BWOA), which can avoid search agent being stuck at local
optima. In [17], an enhanced whale optimization algorithm
(EWOA) was proposed by Kaveh. This algorithm can achieve
a better performance in terms of reliability and solution
accuracy. Based on lẽvy flight trajectory, Ling et al. [18]
proposed a lẽvy flight trajectory based whale optimiza-
tion algorithm (LWOA) for global optimization. Since lẽvy
flight trajectory is helpful for increasing the diversity of
the population against, LWOA can jump out of the local
optimal optima. Combine with simulated annealing strategy
(SA), Mafarja et.al proposed two hybrid whale optimization
algorithms called WOASA-1 and WOASA-2 in [19]. These
hybridizations can enhance the exploitation property of the
search agent to an extent. Rajathi successfully uses these
hybrids WOASA algorithm to classify chronic liver disease
in [20]. In order to enhance the diversity of the population,
Fan [21] et. al uses an opposition-based learning mechanism
and an adaptive inertia weight rule to update the individuals
of JSWOA. This multi-mechanisms whale optimization al-
gorithm can improve the solution accuracy at the expense
of computation complexity. By modifying and integrating
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the mutualism phase of Symbiotic Organisms Search with
WOA, Chakraborty proposed an enhanced whale algorithm
(WOAmM) in [22]. Liu proposes a reinforced exploration
mechanism whale optimization algorithm (REM-WOA) for
continuous optimization problems in [23]. Experiment result
shows that this algorithm can enhance whale population
global exploration efficiency.

In this paper, we develop an improved whale optimization
algorithm (IWOA) combined with the equiangular spiral
bubble net predation. As we know, the shaped of spiral
bubble net looks more like an equiangular spiral rather than
9-shaped path, so search agent uses equiangular spiral to
mimic the foraging trajectory of humpback whale, which can
enhance the exploitation ability of IWOA. Meanwhile, with
the guidance of a sound wave attenuation steering law, search
agent can switch back and forth between the actively swim
(exploitation) and the randomly swim (exploration) to the
goal, hence obtain a better tradeoff between the exploitation
and exploration of the algorithm. To very IWOA′s per-
formance, some numerical experiments are carried on. The
corresponding test result is compared with WOA, LWOA,
BWOA, EWOA, WOASA-1, WOASA-2, PSO [24], DE [25],
GA [26], IHS [27], and ES [28].

The structure of this paper is designed as follows: Section
I briefly introduces the research status of whale optimization
algorithm. The process of basic whale optimization algorithm
is explained in Section II, and the detail of IWOA algorithm
combined with the equiangular spiral bubble net predation
is given in Section III. Experiment and related results are
discussed in Section IV, and finally the conclusion is given
in Section V.

II. STANDARD WHALE OPTIMIZATION ALGORITHM

In standard WOA, humpback whales only have two differ-
ent position updating rules to choose for preying. Depending
on the density of fish swarm, humpback whales can choose
to use either the ”Shrinking encircling mechanism” or
the ”Spiral updating strategy” to prey. In order to simu-
late the automatic selection behavior of humpback whale,
a control factor p was introduced. if the value of p is
less than 0.5, the ”Shrinking encircling mechanism” is
employed by whale to search a virgin territory; else, the
”Spiral updating strategy” is used by whale to exploit
a promising candidate solution.

There are two search equations in ”Shrinking encircling

mechanism”. If the module of coefficient vector
−→
A is less

than 1, humpback whale will swim to the target source
actively and use the optimal solution Xbest in current pop-
ulation to guide the exploitation process; else, humpback
whale will swim passively and randomly and use Xrand

(selected randomly from the whole population) to guide the
exploration process.

The location of humpback whale is continuous updated
according to the result produced by search agent. Calculating
the fitness value of each solution and selecting the solution
with the minimum fitness value as the optimal solution for
this iteration. If the number of iterations is not satisfied,
repeat the above steps. The framework of the basic WOA
is described in Algorithm 1.

Flight

Trajectory

Fig. 1. The phenomenon of moths flying into flames

III. IMPROVED WOA COMBINED WITH THE
EQUIANGULAR SPIRAL BUBBLE NET PREDATION

The fundamental principle of ”Spiral updating strate−
gy” is to ensure that the initial and final bubbles released by
the humpback whale ascend to the surface simultaneously.
Thus forming a spiral bubble net that tightly surrounds the
prey and forces them toward the center of bubble net. The
shaped of spiral bubble net looks more like an equiangular
spiral rather than 9-shaped path. It is important to highlight
that ”equiangular spiral” can more accurately mimic the
foraging trajectory of humpback whale, and then help to
identify the optimal solution from the original set. Equiangu-
lar spirals are found in various natural phenomena, such as
the nautilus shell’s stripe which closely resembles the shape
of this spiral. Equiangular spiral also can be observed in
certain unusual natural occurrences, such as the phenomenon
of moths flying into flames. Fig. 1 is the phenomenon of
moths flying into flames.

A. Standard Equation of Equiangular Spiral

The equiangular spiral has a particular nature that the angle
between the tangent vector and the polar radius is a constant.
Suppose P is an arbitrary point on equiangular spiral. The
angle between the tangent vector and the polar radius is
marked as φ (φ ̸= π/2 ). Set ordinate origin o as the polar
pole, hence the polar coordinates equation of equiangular
spiral can be expressed as r = f(θ) ; Point P can be marked
as (f(θ), θ); The tangent vector at point P can be expressed
as:

(f
′
(θ) cos θ − f(θ) sin θ, f

′
(θ) sin θ + f(θ) cos θ)

Use the vectorial angle formula to calculate cosine value
of the angle φ.

cotφ =

cosθ[f
′
(θ)cosθ − f(θ)sinθ]√

(f ′(θ))2 + (f(θ))2
+

sinθ[f
′
(θ)sinθ + f(θ)cosθ]√

(f ′(θ))2 + (f(θ))2

=
f

′
(θ)√

(f ′(θ))2 + (f(θ))2

(1)

Through proper simplification, we can easily obtain the

following result: cotφ =
f

′
(θ)

f(θ)
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Algorithm 1: Pseudo-code of WOA
01: Initialize the whales population xi (i = 1, 2, 3, ...n).
02: Calculate the fitness of each search agent, set x∗ = the best search agent
03: While (t < maximum number of iterations)
04: For each search agent
05: Update a, A, C, l and p
06: If1 (p < 0.5)
07: If2 (

−→
|A| < 1)

08: Updater the position of the current search agent by x(t+ 1) = x∗(t)−
−→
AD

09: Else If2 (
−→
|A| >= 1)

10: Select a random search agent xrand

11: Updater the position of the current search agent by x(t+ 1) = xrand −
−→
AD

12: End if2
13: Else If1 (p >= 0.5)
14: Updater the position of the current search agent by x(t+ 1) = D

′
eblcos(2πl) + x∗(t)

15: End If1
16: End For
17: Check if any search agent goes beyond the search space and amend it
18: Calculate the fitness of each search agent and update x∗ if there is a better solution
19: t=t+1
20: End while
21: Output best solution x∗

And then, by solving this differential equation, the stan-
dard equation of equiangular spiral can be expressed simply:

r = f(θ) = αeθcotφ, (2)

where α is a constant for defining the shape of equiangular
spiral.

B. Equiangular Spiral Updating Position

The equiangular spiral is a special curve that can achieve
congruent stretching continuation. No matter how many
times it performed enlarge or shrink transformation, the
obtained curve is still an equiangular spiral. This self-
perpetuating feature can make equiangular spiral more suited
to exhibit the character of spiral bubble net. Hence, an
equiangular spiral update formula is created as follows:

X⃗(t+ 1) =
∣∣∣X⃗∗(t)− X⃗(t)

∣∣∣ eθcotφ + X⃗∗(t) (3)

where
∣∣∣X⃗∗(t)− X⃗(t)

∣∣∣ is the distance between whale and
prey; φ is a constant angle; θ is a random polar angle. If φ is
less than π/2, θ is a random number in [−∞, 0]; Otherwise,
θ is a random number in [0,∞].

Due to the advantage of equiangular spiral in mimicking
the foraging patterns of humpback whales, the proposed
equiangular spiral position updating rule can increase the
exploitation ability of the search agent.

C. Steering Law of Sound Wave Attenuation

Humpback whales used to live in the deepest part of the
ocean, so they may use ultrasound to complete information
exchange. When a humpback whale finds fish swarm, it
will send out ultrasonic signals to other whales nearby. The
intensity of ultrasound will be attenuate in the process of
spread. Usually, the transmission attenuation formula can
be expressed as ρ = ρoe

−ηd . Where ρo is the initial
strength; η is the loss coefficient; d is the distance to the
wave source. The value of loss coefficient η is depending
on the physical characteristics of the media. For function

optimization problems, parameter η is depending on dimen-
sions, multi-peak distribution, domain of objective function,
and search operator coverage metrics. Hence, parameter η
needs to be set various values depending on the different
functions. To be operational, suppose ultrasonic intensity
maybe attenuate down to the level of 25%ρo , when the
transmission distance is equal to the one twentieth of the
max-width of the search space. Thus, the loss coefficient η
can be simplified calculation as follow.

ρoe
−ηdmax/20 = 25%ρo (4)

where dmax is the max-width of the search space. Through
proper simplification, the loss coefficient η can be expressed
simply:

η =
20ln4

dmax
= ln

dmax
√
420 (5)

According to the strength of ultrasound, humpback whales
may dynamically determine the next search locations. When
the whale receives ultrasound information from faraway
search location (the strength of received ultrasound is smaller
than threshold), due to the accuracy of this information is
uncertain, it will just be passively and randomly swim toward
goal. This is because the information may be distorted after
the long distance transmission. However, if the whale is close
to the information source (the strength of received ultrasound
is bigger than threshold), it will be actively swim to the target
location. Base on this phenomenon, a sound wave attenuation
steering law is given follow.

X⃗(t+ 1) =

{
X⃗(t) + δ[DX⃗∗ − X⃗(t)], dxx∗ < do,

X⃗(t) + δ[DX⃗rand − X⃗(t)], otherwise,
(6)

where δ is a random number in (e−ηdxx∗ , 1); D is a
random number in (1− e−ηdxx∗ , 1+ e−ηdxx∗ ). According to
the strength of received ultrasound, humpback whale timely
calculates the distance to the wave source, and then makes a
dynamic determination on choosing between either randomly
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swim (exploration) or actively swim (exploitation) to the
target location. If the distance between whale and the wave
source is smaller than do (do is the adaptive threshold),
the actively swim model (exploitation phase) is chose to
update the position of whale during optimization. Otherwise,
the randomly swim model (exploration phase) is selected to
update the position of whale.

D. Proposed Whale Optimization Algorithm

Similar to the standard WOA algorithm, we also use a
selective probability parameter P to control the frequency of
introducing ”Equiangular spiral updatingposition” and
”The steering law of sound wave attenuation”. The
threshold value of parameter P is set to 0.5 . Based on
the above explanation, the flowchart of the proposed method
(denoted as IWOA Algorithm) is given in Fig. 2.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Test Function and Parameter Settings

To test the performance of the IWOA algorithm, we have
carried out different experiments using various mathematical
benchmark cases. The first kind of mathematical cases are 18
common continuous functions and 5 composite benchmark
functions. The second kind is 3 constrained engineering
design problems. The third kind is 18 machine leaning
datasets from UCI database, which can be used to confirm
the efficiency of the IWOA algorithm in improving the
classification accuracy. The performance of IWOA algorithm
with respect to solution accuracy is first compared with
the BWOA[16], EWOA[17], LWOA[18] and standard WOA
algorithms on 23 test functions provided in Table 1 and
Table 2. Then, the effective of IWOA algorithm is further
compared with PSO[24], DE[25], GA[26], IHS[27], ES[28],
and BWOA on three constrained engineering design prob-
lems. Finally, the comparison on the classification accuracy
is performed between the hybrid version IWOA algorithm
and the hybrid WOA algorithm [19] marked as WOASA−1,
and WOASA− 2.

To make a fair comparison, all test functions are conducted
for 30 runs, and the means and standard deviations of the
statistical experimental data are reported. Meanwhile, in this
section, all the algorithms are coded in Matlab 7.0 and the
simulations are run under a Windows 10 with Intel (R) Core
i7− 4790 CPU @3.6GHz with 8GB memory capacity.

B. Effects of Parameter do on the Performance of IWOA

As introduced in Section 3, the balance between explo-
ration and exploitation strongly depends on the parameter
do, which controls the switch between the exploratory and
exploitative patterns. To obtain better coordination relation,
the proper value of do needed be investigated. We investigate
the impact of parameter do on the IWOA algorithm. It is
evident that if do is small, the whales may tend to explore
uncharted search space. Hence IWOA algorithm will be
good at exploration but pool at exploitation. Conversely,
large values of do may prompt whales to perform the local
search frequently. This situation can easily make IWOA
algorithm trapped in a local optimum, thereby cutting down
the performance of exploration. In conclusion, an appropriate

value of do must be used. Different types of test functions
are used to investigate the impact of do. They are Sphere,
Step, Schwefei 1.2, Ackley, Griewank, and Penalized 1
functions, as defined in Table 1. The swarm size is set to
be 20, and the maximum iteration number is set to 800. The
IWOA algorithm runs 30 times separately on different values
of do, and the average values of the test results are plotted in
Fig. 3. We can clearly observe that different landscapes have
dissimilar responses to do values. Specifically, in functions
Sphere, Step and Ackley, smaller test results and higher
convergence speed are obtained when parameter do is set
to 0.05dmax. Function Schwefei 1.2 is not sensitive to
the value of parameter do, because smaller test results are
obtained for all values of do. For the remaining functions,
i.e., Griewank, and Penalized 1, smaller test results are
obtained when do = 0.1dmax; However, these results are not
significantly different when compared to those obtained with
do = 0.05dmax. Therefore, in our experiments, the parameter
do is set to 0.05dmax for all test functions. Under this
setting, exploration function and the exploitation function of
IWOA algorithm can be coordinated and balanced to achieve
satisfactory results on different optimization problem.

C. Performance of IWOA on Different Benchmark Functions

In the first part of experiment, all benchmark functions
are minimization problems and widely adopted to test the
performance of evolutionary algorithms. These functions
are of different types such as: unimodal functions, multi-
modal functions, composite functions, noisy quartic func-
tions, discontinuous step functions, shifted functions, and
rotated functions. In particular, f1, f2, and f4 are unimodal
functions, f7, f8, f9, f11, f12, f13, f14, f15, f16, f17,
and f18 are multimodal functions, f19, f20, f21, f22, and
f23 are composite benchmark functions, f3 and f10 are
shifted functions, f5 is a discontinuous step function, f6
is a noisy quartic function. Simulation result obtained by
the IWOA, LWOA, BWOA, EWOA, and WOA on
different test functions is used to analyze the performance of
WOAs algorithm. Comparison results are shown in Tables
3-6 in terms of the best, median, worst, mean, and standard
deviation of the solutions. In addition, to further test the
efficiency of the IWOA algorithm, the convergence curves
of the WOAs algorithm on different test functions are shown
in Fig. 4.

For the unimodal functions, the swarm size is set to
be 20, and the maximum iteration number is set to 800
for each WOAs algorithm. Simulation results of different
WOAs algorithm are reported in Table 3. From Table 3, we
can see that the results of IWOA algorithm do not differ
significantly from those of the LWOA, BWOA, EWOA,
and stand WOA algorithms. This is because the optimal
value of these test functions is easy to find out. But, from
the standard deviation rows of Tables 3, we can see that
the standard deviations abstained by IWOA algorithm are
relatively small. It implies that the solution quality of the
IWOA algorithm is considerable competitive with other
WOA algorithms. In particular, IWOA is the most efficient
optimizer in text function f1, f2, f3, f4 and f6. For text
function f5 and f10, all algorithms do not find satisfactory
results, but the IWOA converges to a smaller value than
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TABLE I
18 BENCHMARK FUNCTIONS IN EXPERIMENT 1

Functions D Search range Optimum

f1 =
D∑

i=1
x2
i 30 [-100,100] 0

f2 =
D∑

i=1

| xi | +
D∏

i=1

| xi | 30 [-10,10] 0

f3 =
D∑

i=1

(
i∑

j=1

xj)
2 30 [-100,100] 0

f4 = max{| xi |, 1 ≤ i ≤ D} 30 [-100,100] 0

f5 =
D∑

i=1
(⌊xi + 0.5⌋)2 30 [-100,100] 0

f6 =
D∑

i=1
ix4

i + random[0, 1) 30 [-1.28,1.28] 0

f7 =
D∑

i=1

| xisin(xi) + 0.1xi | 50 [-10,10] 0

f8 =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10) 30 [-5.12,5.12] 0

f9 = −20 exp(−0.2 ∗

√
D∑

i=1

x2
i/D) − exp( 1

D

D∑
i=1

cos(2πxi)) + 20 + e 30 [-32,32] 0

f10 = 1
4000

D∑
i=1

x2
i −

D∏
i=1

cos(
xi√
i
) + 1 30 [-600,600] 0

f11 = Π
D 10 sin2(Πy1) +

Π
D

D−1∑
i=1

(yi − 1)2[1 + 10sin2(Πyi+1)]

+ Π
D (yD − 1)2 +

D∑
i=1

u(xi, 10, 100, 4)

yi = 1 +
xi+1

4 , u(xi, a, k,m) =


k(xi − a)m, xi > a

0, −a ≤ xi ≤ a

k(−xi − a)m, xi < −a

30 [-50,50] 0

f12 = ( 1
500 +

25∑
j=1

(j +
2∑

i=1

(xi + aij)
6)−1)−1 2 [-65,65] 1

f13 =
11∑
i=1

[ai −
x1(b2i+bix2)

b2
i
+bix3+x4

]2 4 [-5,5] 0.0003

f14 = (x2 − 5.1x2
1

4Π2 +
5x1
Π − 6)2 + 10(1 − 1

8Π )cosx1 + 10 2 [-5,5] 0.398

f15 = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

∗[30 + (2x1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)] 2 [-5,5] 3

f16 = −
5∑

i=1

[(X − ai)(X − ai)
T + ci]

−1 4 [0,10] -10.1532

f17 = −
7∑

i=1
[(X − ai)(X − ai)

T + ci]
−1 4 [0,10] -10.4028

f18 = −
10∑
i=1

[(X − ai)(X − ai)
T + ci]

−1 4 [0,10] -10.5364

TABLE II
COMPOSITE BENCHMARK FUNCTIONS IN EXPERIMENT 1.

Test function D Search range Optimum Mathematical representation

CF1 30 [-5, 5]D 0 f1, f2, · · · , f10 = SphereFunction, [σ1, σ2, · · · , σ10] = [1, 1, · · · , 1]
[λ1, λ2, · · · , λ10] = [0.05, 0.05, · · · , 0.05]

CF2 30 [-5, 5]D 0 f1, f2, · · · , f10 = Griewank
′
sFunction, [σ1, σ2, · · · , σ10] = [1, 1, · · · , 1]

[λ1, λ2, · · · , λ10] = [0.05, 0.05, · · · , 0.05]
CF3 30 [-5, 5]D 0 f1, f2, · · · , f10 = Griewank

′
sFunction, [σ1, σ2, · · · , σ10] = [1, 1, · · · , 1]

[λ1, λ2, · · · , λ10] = [1, 1, · · · , 1]
CF4 30 [-5, 5]D 0 f1, f2 = Weierstrass

′
s Function, f3, f4 = Griewank

′
s Function,

f5, f6 = Ackley
′
s Function, f7, f8 = Rastrigin

′
s Function,

f9, f10 = Sphere Function, [σ1, σ2, · · · , σ10] = [1, 1, · · · , 1]
[λ1, λ2, · · · , λ10] = [10, 10, 0.05, 0.05, 5/32, 5/32, 1, 1, 0.05, 0.05]

CF5 30 [-5, 5]D 0 f1, f2 = Weierstrass
′
s Function, f3, f4 = Griewank

′
s Function,

f5, f6 = Ackley
′
s Function, f7, f8 = Rastrigin

′
s Function,

f9, f10 = Sphere Function, [σ1, σ2, · · · , σ10] = [1, 1, · · · , 1]
[λ1, λ2, · · · , λ10] = [10, 10, 0.05, 0.05, 5/32, 5/32, 0.2, 0.2, 0.05, 0.05]
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Fig. 2. The flowchart for the IWOA algorithm

TABLE III
COMPUTATIONAL RESULTS OF DIFFERENT WOAS ON UNIMODAL FUNCTIONS.

Function Result IWOA WOA LWOA EWOA BWOA

f1 Best 0 1.93e-144 0 3.42e-185 0
Mean 0 3.48e-131 0 4.42e-172 0
Worst 0 9.53e-127 0 6.77e-160 0
Std 0 4.73e-130 0 3.28e-169 0

f2 Best 3.25e-297 5.26e-105 5.71e-288 4.37e-202 6.57e-292
Mean 4.28e-264 4.22e-096 9.33e-240 3.18e-182 4.55e-259
Worst 5.37e-261 8.85e-094 2.53e-236 5.42e-167 3.75e-256
Std 1.75e-260 2.55e-096 2.15e-239 2.75e-190 1.87e-257

f4 Best 3.36e-237 14.526434 8.55e-222 4.12e-198 7.76e-236
Mean 1.75e-210 73.577285 5.24e-192 6.37e-189 3.28e-208
Worst 2.44e-203 95.406733 3.87e-187 3.16e-182 3.44e-197
Std 6.38e-204 25.068562 1.75e-190 5.57e-190 8.42e-203

f3 Best 0 111980.48 0 100802.75 0
Mean 0 165755.38 0 143723.18 0
Worst 0 236779.22 0 194537.22 0
Std 0 33455.339 0 12431.227 0

f10 Best 0 0 4.37e-107 7.46e-087 2.83e-126
Mean 3.75e-125 0.0567574 2.28e-105 5.35e-084 4.62e-113
Worst 1.22e-110 0.8905877 1.89e-103 3.13e-079 6.55e-107
Std 1.83e-126 0.0820968 1.76e-104 4.28e-082 3.11e-110

f5 Best 0.4331728 0.5978572 0.7835524 0.8022356 0.6100235
Mean 1.6537825 1.9526035 2.0692323 2.8243133 1.8926541
Worst 2.8743224 3.0285035 3.9788245 4.1034225 2.8824733
Std 0.5804226 0.7044416 0.9152733 0.9927357 0.9021475

f6 Best 1.375e-09 2.687e-04 5.387e-06 8.795e-05 1.757e-08
Mean 2.546e-07 0.0046875 4.679e-04 0.0018225 2.014e-06
Worst 3.687e-06 0.0354670 0.0087455 0.0077561 8.421e-05
Std 4.783e-06 0.0058894 7.874e-05 0.0043152 4.885e-06

other WOA algorithms. Hence, IWOA algorithm provides
very excellent performance.

For the multimodal functions, the maximum number of
swarm size is set to 30, and the maximum iteration number
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Fig. 3. Performance of IWOA algorithm for different values of do

is set to 1000 for each swarm intelligence algorithm. In
fact, IWOA algorithm works better in almost all cases
and achieves better result than LWOA, BWOA, EWOA,
and stand WOA algorithms. More specifically, the IWOA
algorithm can find the global optimal solutions in text func-
tions f8, f15, f16, f17, and f18, and obtain highly accurate
solutions that are extremely close to the optimum values in
text functions f7, f9, f12, f13 and f14. The results reported in
Table 4 and Table 5 suggests that the exploration capability
of IWOA algorithm is the best one among the WOAs
algorithm. This is due to Eq. 6 enforces humpback whales
to switch randomly between the actively swim (exploitation)
and the randomly swim (exploration) toward the goal ac-
cording to the strength of received ultrasound. This integrated
mechanism of exploration can lead IWOA algorithm jumping

out of the local optimal optima and terminating by finding
the global optimum value.

For the composite functions and other representative test
functions, the number of swarm size is set to 10, and the
maximum iteration number is set to 100 for each enhanced
version WOAs algorithm. Optimization results of different
WOAs algorithm are reported in Table 6. These results
prove that IWOA algorithm is the best optimizer in most
cases and can efficiently avoid local optima optimal. In the
concrete causes, a sound wave attenuation steering law obtain
a better tradeoff between the exploitation and exploration
of the WOA algorithm. Then, in the rest of iterations,
excellent diversity and high convergence are emphasized
which originate from equiangular spiral updating position
mechanism. Meanwhile, this update mechanism allows the
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Fig. 4. Convergence performance of different WOAs on 9 test functions

humpback whales to rapidly re-position themselves around
the superior individuals produced in different generation, and
finally terminates by getting the satisfactory results.

The convergence characteristics of WOA algorithms can
be observed in Fig. 4. The convergence speed of IWOA
algorithm is higher than that of WOA, BWOA, EWOA,
and LWOA algorithms on most of test functions. More
specially, during the early evaluation, there is no signifi-
cant difference among the convergence performance of the
WOAs algorithm. But, in the subsequent iteration, IWOA
algorithm exhibits better convergence performance than the
WOA, EWOA and BWOA algorithms on most test func-
tions.

To sum up, we can come to the conclusion that
”Equiangular spiral updating mechanism” can
be used to guide the further foraging of humpback
whales, and lead to a more efficient search procedure
than other WOAs algorithm. Meanwhile, the

”steering law of sound wave attenuation” of IWOA
algorithm can achieve the right equilibrium between the
exploration and exploitation, and ensure the depth and
extent of the global search. Therefore, IWOA can increase
the search precision, put down the number of failed search
procedures and find a better solution at a higher speed. In
order to increase the diversity of population and enhance the
capability of exploratory pattern, LWOA algorithm employs
the lẽvy flight mechanism to guide the swarm of humpback
whales. This factor may put down the exploitation ability,
and hence, reduce the promised search fruits of whales.
BWOA algorithm also uses two novel effective strategies
(lẽvy flight and chaotic local search) to coordinate the
relation between the exploration and exploitation, but these
strategies increase the computational burden of the BWOA
algorithm.

The non-parametric statistical Wilcoxon signed-rank test
at 0.05 significant levels is used to estimate the statisti-
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TABLE IV
COMPUTATIONAL RESULTS OF DIFFERENT WOAS ON MULTIMODAL FUNCTIONS.

Function Result IWOA WOA LWOA EWOA BWOA

f7 Best 7.85e-293 4.96e-112 5.89e-285 1.38e-156 3.42e-292
Mean 4.25e-257 7.06e-086 4.25e-235 8.63e-135 4.39e-257
Worst 8.16e-241 3.55e-081 3.57e-229 6.22e-114 6.75e-242
Std 3.59e-250 2.95e-083 1.55e-232 4.55e-127 1.82e-251

f8 Best 0 0 0 0 0
Best 0 0 0 0 0
Best 0 0 0 0 0
Best 0 0 0 0 0

f9 Best 7.66e-016 8.92e-013 4.68e-014 3.26e-013 2.22e-015
Mean 1.75e-015 2.46e-011 8.98e-012 2.14e-011 1.45e-013
Worst 2.38e-014 1.45e-009 9.85e-010 9.97e-010 4.67e-012
Std 3.01e-015 5.33e-010 8.45e-011 8.45e-010 4.35e-013

f11 Best 0.0013262 0.0115472 0.0047225 0.0095344 0.0022473
Mean 0.0565751 0.0527662 0.0874250 0.0934226 0.0463722
Worst 0.0750144 0.3829915 0.1025898 0.1562175 0.0935881
Std 0.0620146 0.0996435 0.0954250 0.1025614 0.0875647

f12 Best 0.9999876 0.9979482 0.9985416 0.9984344 0.9999577
Mean 1.5206538 2.6348402 4.9504671 5.8632752 2.2930442
Worst 6.2033485 12.641925 13.026507 10.523942 4.3685241
Std 1.9526419 2.9214228 4.0322405 3.9265624 3.8124021

f13 Best 0.0003965 0.0004125 0.0004846 0.0004962 0.0004013
Mean 0.0005863 0.0011392 0.0005538 0.0008875 0.0005916
Worst 0.0006614 0.0027716 0.0008766 0.0022138 0.0006542
Std 0.0003325 0.0008244 0.0003541 0.0007526 0.0003022

TABLE V
COMPUTATIONAL RESULTS OF DIFFERENT WOAS ON MULTIMODAL FUNCTIONS.

Function Result IWOA WOA LWOA EWOA BWOA

f14 Best 0.3978873 0.3754226 0.3773076 0.3761932 0.3897556
Mean 0.3978873 0.3567944 0.3675234 0.3691443 0.3753826
Worst 0.3978873 0.3388245 0.3461538 0.3402675 0.3602435
Std 0 1.795e-04 3.154e-03 1.232e-04 2.625e-03

f15 Best 3.1592842 3.6003568 3.4665872 3.6012516 3.1162837
Mean 3.2601473 3.9561057 3.8294364 3.9706221 3.2193456
Worst 3.4003576 4.7625013 4.6704385 4.7345644 3.3235562
Std 0.0392285 1.4461055 1.3628427 1.4530332 0.0375487

f16 Best -10.12350 -9.680575 -10.02968 -9.853446 -10.105223
Mean -9.214733 -8.042236 -8.709271 -8.107783 -9.026048
Worst -5.227436 -0.950811 -0.832497 -0.812675 -3.870434
Std 1.216532 2.401735 2.232854 2.400247 1.433729

f17 Best -10.38175 -10.06573 -10.18775 -10.03471 -10.307418
Mean -10.16509 -8.530527 -9.931806 -8.630273 -10.162283
Worst -10.04238 -3.674533 -9.054278 -3.759052 -9.5287464
Std 0.002304 2.629745 0.083144 2.741153 0.0726140

f18 Best -10.41832 -9.874283 -10.20644 -9.920653 -10.240317
Mean -9.968437 -9.508242 -9.816507 -9.573184 -10.037150
Worst -3.174463 -2.114735 -2.336240 -2.403362 -3.407526
Std 1.864353 1.872533 2.053627 2.061031 1.763708

TABLE VI
COMPUTATIONAL RESULTS OF DIFFERENT WOAS ON COMPOSITE FUNCTIONS.

Function Result IWOA WOA LWOA EWOA BWOA

CF1 Mean 0.073364 0.512635 0.205344 0.504331 0.278325
Std 0.057365 0.495532 0.195613 0.487576 0.194263

CF2 Mean 56.84637 69.78465 65.47352 69.15223 62.86775
Std 37.06552 40.58632 39.37265 40.52164 39.01844

CF3 Mean 38.47133 46.35272 41.55372 46.73162 42.64273
Std 18.97417 20.13752 19.15137 20.08474 19.62415

CF4 Mean 35.02546 43.27235 40.26443 42.85523 40.65208
Std 18.20552 19.07341 18.52713 18.75261 18.66372

CF5 Mean 52.14335 65.42735 59.87745 63.12752 60.56143
Std 41.52750 47.30642 46.50644 48.06224 47.02571
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cally significant difference between the IWOA algorithm
and other competitors. If the result of the corresponding
algorithm is statistically significantly better than that of the
IWOA algorithm, this situation is represented by the ”− ”
symbol. If the result is statistically comparable to that of the
IWOA algorithm, this situation is recorded by the ” ≈ ”
symbol. If the result of the IWOA algorithm is statistically
significantly better than that of the corresponding algorithm,
this situation is represented by the ”+” symbol. If the result
of the corresponding algorithm and the IWOA algorithm
both achieve the same accuracy results, this situation does
not need to estimate the statistically significant difference,
and represented by the ”NA” symbol which stands for Not
Applicable.

In this test, the swarm size is set to be 30, and the
iteration number is set to 500. The run results of the WOA
algorithm is taken from [6]. Table 7 and Table 8 report
the statistical significance level of the difference between
the means of two algorithms. From Table 7 and Table 8,
we can see that IWOA algorithm is statistically better than
LWOA, EWOA, and BWOA algorithm in functions f1,
f2, f5, f6, f10 and f12. In functions f11, IWOA algorithm
is statistically better than WOA, LWOA, and EWOA
algorithm, but statistically worse than BWOA. In functions
f4 and f16, IWOA algorithm is statistically better than
WOA, EWOA, and LWOA algorithm, but statistically
comparable to BWOA. In functions f3, f8 and f14, all
algorithms achieve comparably performances.

In the second part of experiment, IWOA, standard
PSO[24], FPSO[29], standard DE[25], and JADE[30]
algorithms are compared, with a maximum of 1.5 × 104

fitness evaluations for each test function. The test functions
used in this experimental are chosen from table 1. The
run results of PSO, DE, WOA algorithms are taken
from [6]. The comparison of solution accuracy is listed
in Table 9. For test functions f1, f3, f4, f6, f7, and
f8, the run result of IWOA algorithm is obviously
superior to PSO, DE, FPSO, and JADE algorithm.
In addition, the IWOA algorithm works better in the
standard deviation, which implies that the solution
quality of IWOA is stable. Other representative test
functions, i.e., f10, f12, f13, f14, f15, f16, f17, f18,
which contain shifted functions and rotated functions are
listed for further testing the efficiency of the IWOA
algorithm. The result of comparison demonstrates that the
”steering law of sound wave attenuation mechanism”
can help humpback whales to produce higher
quality solutions than state-of-the-art evolutionary
algorithms, and increase exploitation and convergence
ability of IWOA to an extent. Meanwhile,
”Equiangular spiral updating mechanism” is
performed near the superior individuals produced in
different generation. This rule can pull numerous humpback
whales to swarm toward the different regions, and obtain a
set of solutions with excellent diversity. As a summary, the
results of this section revealed different characteristics of
the proposed IWOA algorithm.

D. Performance of IWOA on Engineering Design Problems
To very the performance of IWOA, it is used to solve

3 constrained optimization problems. And the best solution

obtained by IWOA is compared with some other intelligent
algorithms. The first engineering problem is to design a
tension compression spring (TCS) with minimum weight.
This design must satisfy constraints on shear stress, surge
frequency, and deflection. This problem can be modeled as
follows:

min f(d,D,N) = d2DN + 2d2D

subject to

1− D3N

71785d4
≤ 0,

4D2 − dD

12566(Dd3 − d4)
+

1

5108d2
≤ 1,

1− 140.45d

D2N
≤ 0,

d+D

1.5
− 1 ≤ 0,

where

0.05 ≤ d ≤ 2.00, 0.25 ≤ D ≤ 1.30, 2.00 ≤ N ≤ 15.0.

In this model, there are three variables, wire diameter
(d), mean coil diameter (D), and number of active coils
(N). This problem has been optimized by many researchers
using different methods like PSO[24], DE[25], GA[26],
IHS[27], RO[31], CCM [32], MOM [33], JSWOA[21],
WOAmM [22], REM − WOA[23],BWOA. The best so-
lution and the optimal value obtained by each algorithm are
recorded in Table 10. During the running process, IWOA
algorithm sets the swarm size to be 10, and the maximum
iteration number is set to 500. The comparisons show that
IWOA outperforms other methods. The optimum weight
obtained by BWOA is less than IWOA, but to be clear,this
design is a infeasible solution than that of all other compar-
ison algorithms.

The second engineering problem is to design a pres-
sure vessel, whose objective is to minimize the total cost
(material, forming and welding) subjected to 4 inequalities
constraints. Meanwhile, the both ends of vessel are covered,
and the head has hemi-spherical shape. The model of this
problem can be expressed as follows:

min f(Ts, Th, R, L) = 0.6224TsRL+ 1.7781R2Th

+ 3.1661T 2
s L+ 19.84T 2

sR

subject to

−Ts + 0.0193R ≤ 0,
−Th + 0.00954R ≤ 0,

−πLR2 − 4

3
πR3 + 1296000 ≤ 0,

−240 + L ≤ 0,

where

0 ≤ Ts ≤ 99, 0 ≤ Th ≤ 99, 10 ≤ R ≤ 200, 10 ≤ L ≤ 200,

In this model, there are four variables, the depth of the
shell (Ts) and the head (Th), the inner radius (R), and the
length of the cylindrical section without considering the head
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TABLE VII
STATISTICAL SIGNIFICANCE LEVEL OF THE DIFFERENT OF THE MEANS OF WOAS.

Function Result IWOA WOA LWOA EWOA BWOA

f1 Mean 4.55e-1424.55e-1424.55e-142 1.41e-030 2.64e-099 1.35e-030 3.75e-110
D = 30 Std 2.73e-1372.73e-1372.73e-137 4.91e-030 1.78e-097 4.55e-030 2.33e-105

Sign + + + +
f2 Mean 3.24e-1833.24e-1833.24e-183 1.06e-021 2.44e-159 8.75e-022 5.53e-167

D = 30 Std 1.75e-1801.75e-1801.75e-180 2.39e-021 2.22e-155 2.13e-021 4.86e-162
Sign + + + +

f3 Mean 1.77e-007 5.39e-007 3.12e-007 4.25e-007 2.34e-007
D = 30 Std 1.31e-006 2.91e-006 2.65e-007 2.93e-006 2.00e-006

Sign ≈ ≈ ≈ ≈
f4 Mean 8.87e-2028.87e-2028.87e-202 0.072581 3.27e-183 0.042581 1.02e-201

D = 30 Std 3.45e-1993.45e-1993.45e-199 0.397472 4.32e-199 0.362573 2.45e-200
Sign + + + ≈

f5 Mean 1.554431.554431.55443 3.11626 2.82164 3.02535 2.10375
D = 30 Std 0.275420.275420.27542 0.53229 0.35276 0.38423 0.31642

Sign + + + +
f6 Mean 3.74e-0183.74e-0183.74e-018 0.001425 1.45e-004 8.95e-004 2.77e-012

D = 30 Std 1.85e-0161.85e-0161.85e-016 0.001149 7.87e-005 6.44e-004 3.46e-010
Sign + + + +

f8 Mean 0 0 0 0 0
D = 30 Std 0 0 0 0 0

Sign NA NA NA NA

TABLE VIII
STATISTICAL SIGNIFICANCE LEVEL OF THE DIFFERENT OF THE MEANS OF WOAS.

Function Result IWOA WOA LWOA EWOA BWOA

f10 Mean 3.44e-1133.44e-1133.44e-113 2.89e-055 2.45e-080 8.32e-069 6.32e-107
D = 30 Std 2.07e-1102.07e-1102.07e-110 1.59e-054 2.17e-075 3.87e-068 3.77e-104

Sign + + + +
f11 Mean 0.0704622 0.0753967 0.0784563 0.0816522 0.06493350.06493350.0649335

D = 30 Std 0.0253041 0.3314864 0.0306714 0.0344632 0.02217040.02217040.0221704
Sign + + + -

f12 Mean 1.4062141.4062141.406214 2.111973 1.774562 1.873645 1.584406
D = 30 Std 1.2204351.2204351.220435 2.498594 1.431543 2.125745 1.284361

Sign + + + +
f13 Mean 4.21e-004 5.72e-004 4.12e-004 4.87e-004 4.19e-004

D = 30 Std 2.04e-004 3.24e-004 3.06e-004 3.75e-004 2.16e-004
Sign + - + ≈

f14 Mean 0.398 0.397914 0.397958 0.395714 0.398
D = 30 Std 0 2.70e-005 1.73e-005 2.45e-005 0

Sign ≈ ≈ ≈ NA
f16 Mean -8.95374 -7.04918 -8.65804 -7.82758 -8.91732

D = 30 Std 1.46524 3.62955 2.74283 4.06321 2.13584
Sign + + + ≈

(L). This problem has been optimized by many methods like
PSO, GA, DE, IHS[27], ES[28], Branch− bound[34],
Lagrangian − mul[35], JSWOA, WOAmM , REM −
WOA, BWOA. The optimum solution obtained by IWOA
algorithm is compared with other design results. During the
running process of IWOA, the population size is set to 20,
and the maximum iteration number is set to 500. Statistical
optimization results obtained by different algorithm are listed
in Table 11. The comparisons show that IWOA outperforms
all other methods. The minimum cost of pressure vessel can
be 5946.3845 when the variables Ts, Th, R, and L are set
as 0.812361, 0.401551, 42.091257, and 176.725695.

The third is a cantilever beam design problem, whose
objective is to minimize the weight of a cantilever beam,
subjected to 1 inequalities constraints. The five variable
x1, x2, x3, x4, x5 in this model are heights of the cross-

section of each hollow blocks. This problem can be described
as follows:

min f(x1, x2, x3, x4, x5) = 0.6224(x1 + x2 + x3 + x4 + x5)

subject to

61

x3
1

+
27

x3
2

+
19

x3
3

+
7

x3
4

+
1

x3
5

− 1 ≤ 0,

where
0.01 ≤ x1, x2, x3, x4, x5 ≤ 100,

This problem has been optimized by many methods like
PSO, GA, DE, JSWOA, WOAmM , and BWOA. The
optimum sloution obtained by IWOA algorithm is compared
with other design results in Table 12. During the running
process, IWOA algorithm sets the swarm size to be 15, and
the maximum iteration number is set to 700. The minimum
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TABLE IX
RESULT COMPARISONS OF DIFFERENT EVOLUTIONARY ALGORITHM.

Function Result IWOA WOA FPSO PSO JADE DE

f1 ave 0 1.41e-030 2.76e-064 1.36e-004 4.26e-086 8.20e-014
Std 0 4.91e-030 3.24e-061 2.02e-004 3.47e-083 5.90e-014

f2 ave 3.75e-246 1.06e-021 5.64e-178 0.047441 2.73e-239 1.50e-009
Std 4.28e-242 2.39e-021 6.48e-173 0.045421 1.64e-233 9.90e-010

f3 ave 0 5.39e-007 3.38e-012 70.12562 5.26e-087 6.80e-011
Std 0 2.93e-006 4.76e-011 22.11924 6.63e-085 7.40e-011

f4 ave 6.45e-165 0.07258 5.84e-035 1.086481 0 0
Std 4.73e-160 0.39747 2.11e-033 0.317039 0 0

f5 ave 0.506275 3.116266 1.25e-014 0.000102 0 0
Std 0.26513 0.53249 4.86e-014 8.28e-005 0 0

f6 ave 2.37e-006 0.001425 0.007425 0.122854 3.83e-006 0.00463
Std 2.15e-006 0.001149 0.005846 0.044957 3.33e-006 0.0012

f8 ave 0 0 13.79455 46.70423 23.46573 69.2
Std 0 0 9.46574 11.62938 12.26833 38.8

f9 ave 4.76e-012 7.4043 3.72e-016 0.276015 6.67e-022 9.70e-008
Std 2.34e-009 9.897572 2.45e-012 0.50904 5.32e-021 4.20e-008

f10 ave 2.22e-033 2.78e-004 5.64e-024 0.009215 0 0
Std 1.96e-030 1.63e-003 3.43e-022 0.007724 0 0

f11 ave 3.43e-035 0.339676 3.75e-031 0.006917 5.37e-040 7.90e-015
Std 2.83e-030 0.214864 2.77e-031 0.026301 4.44e-042 8.00e-015

f12 ave 1.356274 2.111973 2.015423 3.627168 1 0.998004
Std 1.417358 2.498594 2.053342 2.560828 1.21e-020 3.30e-016

f13 ave 3.44e-004 5.72e-004 4.27e-004 5.77e-004 3.35e-004 4.50e-014
Std 2.15e-004 3.24e-004 1.98e-004 2.22e-004 1.88e-004 3.30e-004

f14 ave 0.398 0.397914 0.398 0.397887 0.398 0.397887
Std 3.45e-008 2.70e-005 0 0 4.35e-015 9.90e-009

f15 ave 3 3 3 3 3 3
Std 2.17e-034 4.22e-015 1.85e-027 1.33e-015 1.95e-022 2.00e-015

f16 ave -10.1322 -7.04918 -9.8557 -6.8651 -10.1532 -10.1532
Std 1.75e-006 3.629551 2.35e-004 3.019644 1.23e-007 0.0000025

f17 ave -10.3557 -8.18178 -10.2251 -8.45653 -10.4028 -10.4029
Std 2.11e-005 3.829202 1.95e-002 3.081094 2.49e-011 3.90e-007

f18 ave -10.5283 -9.34238 -10.5054 -9.95291 -10.5636 -10.5364
Std 1.54e-003 2.414737 1.68e-003 1.782886 1.72e-009 1.90e-007

TABLE X
OPTIMUM DESIGNS OBTAINED BY DIFFERENT ALGORITHMS FOR TCS DESIGN PROBLEM.

Algorithm Optimum Variables Optimum Feasible

d D N weight solution

PSO 0.051728 0.357644 11.244543 0.0126747 Y

GA 0.051480 0.351661 11.632201 0.0127048 Y

DE 0.051609 0.354714 11.410837 0.0126702 Y

RO 0.051370 0.349096 11.762790 0.0126788 N

IHS 0.051154 0.349871 12.076432 0.0126706 N

CCM 0.050000 0.315900 14.250000 0.0128334 Y

MOM 0.053396 0.399180 9.1854000 0.0127303 Y

BWOA 0.051602 0.357488 11.244198 0.0126654 N

JSWOA 0.051611 0.354734 11.410945 0.0126720 Y

WOAmM 0.051608 0.354724 11.412445 0.0126716 Y

REM − WOA 0.051617 0.354753 11.413734 0.0126783 Y

IWOA 0.051606 0.354720 11.407158 0.0126655 Y
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TABLE XI
OPTIMUM DESIGNS OBTAINED BY DIFFERENT ALGORITHMS FOR PV DESIGN PROBLEM.

Algorithm Optimum Variables Optimum Feasible

Ts Th R L cost solution

PSO 0.812500 0.437500 42.091266 176.746500 6061.0777 Y

GA 0.812500 0.437500 40.323900 200.000000 6288.7445 Y

DE 0.812500 0.437500 42.098411 176.637690 6059.7340 Y

ES 0.812500 0.437500 42.098370 176.637146 6059.7144 N

IHS 1.125000 0.625000 58.290150 43.6926800 7197.7300 N

Branch-bound 1.125000 0.625000 47.700000 117.701000 8129.1036 N

Laagrangian-mul 1.125000 0.625000 58.291000 43.6900000 7198.0428 N

BWOA 1.258663 0.621865 65.179120 10.1987370 7318.1690 Y

JSWOA 0.954722 0.510223 48.859274 107.661401 6485.7758 Y

WOAmM 1.258900 0.100000 65.220000 10.000000 3368.5000 N

REM − WOA 0.812500 0.437500 41.955027 178.422179 6077.2635 Y

IWOA 0.812361 0.401551 42.091257 176.725695 5946.3845 Y

TABLE XII
OPTIMUM DESIGNS OBTAINED BY DIFFERENT ALGORITHMS FOR CANTILEVER BEAM DESIGN PROBLEM.

Algorithm Optimum Variables Optimum Feasible

x1 x2 x3 x4 x5 cost solution

PSO 5.9513284 4.9214222 4.5581397 3.4261537 2.0907730 13.037921 Y

GA 5.8566353 4.8469272 4.8109691 3.9480581 1.9114557 13.303206 Y

DE 5.8087225 4.7114432 4.6782256 3.8852335 2.0451168 13.150529 Y

WOA 5.8255731 4.6981373 4.6578377 3.8682607 2.0184437 13.112880 Y

BWOA 5.9875344 4.8723062 4.4712103 3.4800182 2.1287477 13.032942 Y

JSWOA 5.8774185 4.7068225 4.6354451 3.7985503 2.0142775 13.090637 Y

WOAmM 5.9705657 4.8718027 4.4804933 3.4868702 2.1296397 13.032665 Y

IWOA 5.9712011 4.8871107 4.4782235 3.4775665 2.1254001 13.032745 Y

weight of cantilever beam can be 13.032745, when the
variables x1, x2, x3, x4, and x5, are set as 5.9712011,
4.8871107, 4.4782235, 3.4775665, and 2.1253999.

Based on the simulation results and analyses above,
IWOA outperforms all other comparative algorithms and
it can offer a more efficient solution on three optimization
problems. Therefore, IWOA is capable and effective in
solving these practical problems under a better tradeoff
between the exploitation and exploration.

E. Performance of IWOA on Feature Selection

Feature selection is one of the major preprocessing steps
in data mining since it aims to elimimate the redundant
irrelevant variaables within a dataset. In this section, sev-
eral different algorithms[36-39] are used to design different
feature selection techniques and evaluate on 18 standard
benchmark dataset from UCI repository. Classification ac-
curacy and average selected attributes of IWOA, WOA,
WOASA− 1, WOASA− 2, GA[37], PSO[38], ALO[39]
algorithms are compared in table 13 and 14. In this section,
the maximum fitness evaluations is set to 1.0 × 103. All
datasets are conducted 5 times with random seed, and the
means and standard deviations of the statistical experimental
data are reported.

In the first part of experiment, the IWOA, standard
WOA, WOASA − 1, WOASA − 2 algorithms are com-
pared. The results of the WOASA− 1, WOASA− 2 algo-
rithms are taken from [19]. For making a fair comparison,

we also employ SA to further improve the best solution,
found after each iteration of IWOA performs. This rule
can increace the exploitation capability by searching the
most promising regions. The comparison of classification
accuracy and selection attributes among the WOA, IWOA,
WOASA − 1, and WOASA − 2 is listed in Tables 12.
In the second part of experiment, other three representative
evaluation algorithms, which contain ALO, GA, PSO al-
gorithms are used for further testing the efficiency of the
IWOA algorithm. Table 13 show the experimental results
of comparison with other three evaluation algorithms. The
corresponding experimental results of the ALO, GA, PSO
algorithms are excerpted from [37-39]. The results show that
IWOA performs better than other evaluation algorithms, and
has strong superiority in terms of classification accuracy, con-
vergence speed, and search precision on most of datasets. For
example, in penglungew dataset, the classification accuracy
of IWOA has increase about 2%∼30%; in sonarew dataset,
the classification accuracy of IWOA has increase about
2%∼23%, comparing to the other algorithms. As a summary,
the results of this section revealed good property of local
feature selection behave of IWOA algorithm. This property
of IWOA can be well used to solve feature selection
problems by decreasing the redundant attributes in a dataset
and reducing the search space.
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V. CONCLUSION

In this paper, we develop an improved algorithm, IWOA,
to solve global numerical optimization problems by intro-
ducing an equiangular spiral search mechanism and an sound
wave attenuation steering law. Equiangular spiral, which can
better mimic the foraging trajectory of humpback whale and
increase exploitation ability of the search agent, is employed
to generate candidate solutions in IWOA. Additionally, with
the guidance of sound wave attenuation steering law, IWOA
algorithm can switch back and forth between the actively
swim (exploitation) and the randomly swim (exploration),
hence obtain a better tradeoff between the exploitation and
exploration. Numerical experiments show the IWOA is very
useful. In the next step, this method will be used to solve
some practical problems.
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