
 

  

Abstract—In orchards, detecting green apples can be 

challenging due to interference factors like similar fruit and 

background color, branch and leaf shading, and fruit overlap. 

To address this limitation, this paper presents a simple yet 

effective detection model based on improved YOLOv5, which 

can enhance the detection ability of green apples against a near-

color background. Our contributions are twofold. Firstly, we 

added an attention mechanism to enhance the feature extraction 

network of the conventional YOLOv5. This modification focuses 

the network on green apple features and improves the detection 

performances on green apples. Secondly, we introduced the 

Focal Loss calculation method to the loss calculation of YOLOv5, 

to improve the model's results by controlling positive and 

negative sample weights as well as hard and easy to classify 

sample weights. Experimental results show that our model 

yields better results. While the base YOLOv5 model achieved an 

Average Precision (AP) of 86.3% and an Average Recall (AR) of 

66.8% on the green apple dataset test, our improved YOLOv5 

model reached an AP of 88.1% (a 1.8 percentage point 

improvement) and an AR of 69.1% (a 2.3 percentage point 

improvement). Our proposed model, therefore, significantly 

enhances detection efficiency. 

 

Index Terms—Green apple; Target Detection; YOLOv5 

model; Attention Mechanism; Focal Loss  

 

I. INTRODUCTION 

he development of science and technology has 

transformed the agricultural management mode, 

resulting in a significant increase in agricultural productivity 

through the incorporation of intelligent agricultural 

equipment. With one such example being the use of vision 

systems by intelligent agricultural equipment, which serve as  

  

 

 

 

the equipment’s "eyes," and provide vital environmental 

perception information. In an agricultural or orchard 

environment, vision systems are capable of target fruit 

detection, which allows for crop maturity monitoring [1], 

yield predictions [2][3][4], automatic fruit picking [5][6][7], 

diagnosis of pest and disease spotting [8], and more. However, 

the complexity of the orchard environment adds numerous 

factors that can affect the accuracy of the vision system, 

including light and camera angles, background and fruit color 

similarity, shading of branches and leaves, as well as, 

overlapping of fruits leads to the possibility of missed and 

misidentified fruit, challenging the accurate and efficient 

detection of fruit. 

  Conventional machine learning algorithms have 

accumulated significant results in the field of target fruit 

detection. For instance, Li [9] proposed an improved spectral 

clustering algorithm to address the issue of overlapping fruits 

in natural environments. It employs a spectral clustering 

algorithm to segment the image first and then uses the 

randomized Hough transform to achieve fruit identification 

and localization. Seng [10] used nearest neighbor 

classification to obtain feature values that can fuse three 

features of color, shape, and size to detect fruit accurately. 

Song [11][12] proposed a method based on convex hull 

theory to handle identification and localization of obscured 

apple targets and an algorithm based on convex hull for 

segmentation and reconstruction of overlapping apple targets 

for branch occlusion and fruit overlap, respectively. Huang 

[13] proposed a new optimized method based on the 

framework of discriminative region feature integration (DRFI) 

algorithm that combines color, texture, and shape features of 

green fruits to achieve the detection of green fruits under the 

interference of various factors of natural conditions. However, 

the conventional target detection algorithm is greatly affected 

by the complex orchard environment, and it cannot meet the 

requirements of practical operation, leading to a bottleneck in 

the development of orchard target fruit recognition. 

Deep learning technology has been increasingly applied to 

various fields, including facial detection [14], classification 

of MI signals in brain-computer interface [15], extraction of 

semantic maps of roads [16], and malaria parasite detection 

[17]. Naturally, Deep Learning has also found widespread 

application in fruit detection, bringing about significant 

improvements in the performance of the detection and the 

models' reliability. To provide technical support for 

intelligent fig planting management, Wu [18] proposed a fig 

fruit recognition method based on the YOLOv4 Deep 

Learning technique. In order to enable better agricultural 

tasks, Bargoti [19] devised a method for fruit detection by 

combining data augmentation techniques and Faster-RCNN. 

Zhao [20] proposed an apple localization method based on 

the YOLOv3 deep convolutional neural network, which 
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enables the picking robot to overcome various influencing 

factors to pick apples around the clock and to improve its 

efficiency and ability to identify fruits. To better apply the 

excellent performance of Deep Learning to fruit detection in 

orchards, Jia [21] devised a target fruit recognition algorithm 

based on Mask R-CNN, which combines ResNet and 

DenseNet as a feature extraction network, greatly improving 

the performance of fruit detection. For accurate counting of 

visible fruits in image sequences, Liu [22] combined depth 

segmentation, frame-to-frame tracking and 3D localization to 

devise a fruit counting method. Jia [23] proposed a fast and 

effective Foveabox detection model to improve the 

performance of fruit detection, achieving quick identification 

and localization of green apples. Despite the above-

mentioned results, there are still significant challenges in 

detecting target fruit in orchards. 

This paper introduces improvements to the YOLOv5 

model, by incorporating ECA-Net and CBAM in its feature 

extraction. This mitigates the issues related to tree branch 

occlusion and fruit overlap, commonly occurring in the 

orchard's near-color background. These modifications help 

the model focus on fruit features during the feature extraction 

process. In addition, Focal Loss is employed in the loss 

calculation to assign weightage to positive and negative 

samples, as well as hard and easy classification samples. This 

enhances the model's performance. 

The following chapters are structured as such: The second 

chapter outlines the acquisition and labeling process used for 

fruit images. In the third chapter, the network structure and 

loss function of our improved YOLOv5 model are presented. 

Finally, the fourth chapter provides a comparative analysis of 

our model against YOLOv5 and other Deep Learning-based 

models to demonstrate superior performance. 

II. PRODUCTION OF DATASET 

Target detection of fruits against a green background is 

challenging due to the similarity between the fruit color and 

the background color, making it difficult to distinguish the 

fruit features. To improve the model's accuracy in detecting 

target fruits against a green background, a dataset of high-

quality images of green fruits was curated and used. 

A. Image acquisition 

To ensure accurate detection of green apples against a 

green background, this research focuses on using green 

apples as the target object. The images were captured from an 

apple production base located in Longwang Mountain, 

Fushan District, Yantai City, Shandong Province. 

 

Images were captured using a Canon EOS 80D DSLR 

camera equipped with a CMOS image sensor having a 

resolution of 6000×4000 pixels. To simplify the model, the 

images were compressed to 600×400 pixels and saved in .jpg 

format with 24-bit color depth.  

Apple acquired 1361 images. There are 953 images for the 

training set and 408 images for the test set. These images were 

captured in various scenarios, such as backlighting, shading, 

overlapping, shadows, daytime and nighttime, as depicted in 

Figure 1. 

B. Image annotation 

LabelMe software was utilized in the experiment to 

annotate images of green apples. Initially, a marker point was 

used to trace the outline of the green fruit in each image, thus 

forming a boundary between the fruit and the background. 

This boundary aided in determining the position of the fruit 

within the picture. Subsequently, all essential information 

pertaining to the image and its annotation points is recorded 

in a corresponding json file. Finally, the collected data is 

converted into the COCO format dataset. 

III. OPTIMIZED YOLO V5 DETECTION ALGORITHM 

In real-world applications of orchards, fruit detection while 

in motion is crucial. Thus, a simple and efficient model is 

necessary. This study utilized the fifth generation of 

YOLOv5s for enhancement. YOLOv5s has the smallest 

depth and feature map width in the YOLOv5 family. 

Consequently, YOLOv5s is exceptionally rapid and 

appropriate for identifying fruits swiftly. 

A. Basic Network  

The YOLOv5 [24][25][26][27] network is composed of 

four main segments: the input section, backbone network, 

neck network, and head network. The input section includes 

Mosaic Data Augmentation, adaptive anchor box calculation, 

and adaptive image scaling. Meanwhile, the backbone 

network, which is formed by the CSPDarknet structure, is 

composed of Focus structure, Conv2D_BN_SiLU (CBS) 

structure, CSP structure, and SPP structure. These structures 

provide three effective feature layers, obtained through 

convolution modules, residual modules, and pooling 

operations, that are fed into the neck network. Essentially, the 

neck network enhances the effective feature layers and fuses 

them through the construction of the FPN. Finally, the head 

network adjusts the number of channels through a 

convolutional network and predicts the final results. 

B. Improved YOLOv5 network  

A higher level of independence of the fruit alongside clear 

edges will improve the accuracy of the model's detection 

capabilities. Nonetheless, orchard environments are highly 

intricate, and various obstructive factors can influence the 

fruit images captured. In particular, the similarity of fruit 

color and background, as well as branch and leaf shading, are 

environmental elements that contribute to the unclear edges 

in fruit images. Such factors can significantly impair the 

accuracy of the model's detection capabilities. 

 

 
Fig. 1.  Green apple in various cases. 
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Overall Network Structure 

The simple structure of the YOLOv5 model detrimentally 

affects its detection performance in complex orchard 

environments. To address the unclear edges of fruit images, 

this paper proposes an improvement to the YOLOv5s model 

to increase its adaptability to detect green fruits in complex 

orchard environments. By incorporating attention 

mechanisms such as ECA-Net [28][29] and CBAM 

[30][31][32], the enhanced model focuses on fruit features, 

allowing for better fruit identification and classification in 

images. Figure 2 illustrates the structure of the improved 

model. 

Specifically, the input fruit image is first resized to 640 × 

640 × 3 after Mosaic Data Augmentation, and then to 320 × 

320 × 12 after the Focus structure, as illustrated in Figure 3. 

In the Focus structure, a pixel value is taken every other pixel 

on the green apple image, then pixels of the same type are 

combined to form a feature layer, and finally these feature 

layers are stitched together. The end result is that the height 

and width of the fruit image is reduced by half and the number 

of channels is expanded to four times as many as before, 

achieving the effect of subsampling. This allows the height 

and width information of the fruit image to be fused to the 

channels without loss of feature information, making it easier 

to extract the fruit features. 

After increasing the number of channels, feature extraction 

is carried out using convolutional network modules and 

residual network modules to obtain several feature layers. 

From these layers, the Neck selects three effective feature 

layers of varying scales for feature fusion. These three layers 

have sizes of 80×80×256, 40×40×512, and 20×20×1024, 

respectively. One of the feature layers, which has a size of 

20×20×1024, is obtained through the SPP structure illustrated 

in Figure 4. The SPP structure downscales fruit features using 

a CBS module, passes them through three different max 

pooling layers, stitches the resulting scaled and pooled 

features, and then further adjusts the number of channels 

through another CBS. The SPP structure significantly 

improves the network's perceptual field, thereby enhancing 

fruit feature fusion. 

ECA-Net 

In this paper's feature fusion module of Neck, the ECA-Net 

attention mechanism is added after the 80×80×256 feature 

layer and upsampling to differentiate the background and 

fruit clearly and fuse the fruit features efficiently. The ECA-

Net's cross-channel interactivity ensures that each fruit 

feature point has multiple features, improving the accuracy of 

the classifier and retractor. Figure 5 demonstrates the first 

step involves global average pooling (GAP) on the height and 

width of the fruit feature layer, followed by a 1D 

convolutional network that learns the channel information of 

the fruit feature with the same channel dimension. The 

 
Fig. 2.  Network structure of the improved YOLOv5 model. 

 
Fig. 3.  Focus structure  
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resulting value is considered a sigmoid value, and it becomes 

a weight for each channel, which multiplies with the initial 

fruit feature layer to obtain the fruit feature with channel 

attention. 

ECA-Net's introduction not only enhances feature fusion 

but also adds minimal complexity, leading to improved fruit 

detection performance. Additionally, the model's detection 

speed is preserved, meeting the real-time demands of 

agricultural operations. 

CBAM 

To enhance the model's performance by providing more 

information on fruit features and better fusion of fruit features, 

this paper incorporates CBAM after two effective feature 

layers, 40×40×512 and 20×20×1024. CBAM comprises 

channel attention and spatial attention which improves 

attention to features in both channel and spatial dimensions, 

as illustrated in Figure 6. The layer with information on fruit 

features of size H×W×C enters the Channel Attention Module 

where global average pooling and global max pooling are 

performed on each fruit feature layer, creating two outputs 

that are processed by a shared, fully connected layer. The 

results are then added together to form a single output that is 

transformed into a sigmoid value as the weight of the Channel 

Attention. Next, the Spatial Attention Module performs max 

pooling and average pooling on the points of features of each 

fruit to obtain two outputs that are concatenated into a feature 

layer. A convolutional network adjusts the channel number to 

1, from which the weight of Spatial Attention is obtained 

using a sigmoid function. Finally, CBAM multiplies the 

original feature layer with the weights of Channel Attention 

and the Spatial Attention to obtain a fruitful feature layer with 

both channel and spatial attention.  

Introducing the CBAM attention mechanism can 

effectively help the network to focus on the significant 

features of the fruit while ignoring the similar background 

features. This results in the generation of a feature layer with 

a positive effect, thereby resolving the issue of unclear fruit 

image edges and improving the model's ability to detect fruits.

  

 

 

 

 

 

 
Fig. 4.  SPP structure  

 
Fig.5.  ECA-Net network structure  

  
Fig. 6. CBAM network structure  
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C. Focal Loss function  

Since the background environment color is similar to that 

of the fruit, it introduces bias in the Head prediction part of 

YOLOv5. Consequently, some non-fruits erroneously 

register as fruits. This condition generates an extensive 

number of false frames, which are negative samples that will 

not match the true frame. The majority of these false frames 

are easily identifiable samples. This situation in turn leads to 

the training process being focused on easily classified 

negative samples, thus providing little useful information to 

the training process. As a result, the model's training 

performance suffers. Additionally, the large number of easily 

classified negative samples can obscure the contribution of 

positive samples to loss calculation, leading to errors in the 

gradient update direction. The model thus fails to get useful 

fruit feature information, which ultimately leads to low fruit 

detection performance. 

The loss function plays a crucial role in training the model. 

A well-suited loss function enhances the iterative 

optimization of the model training process, and the model 

achieves the best training effect by back propagation of the 

model gradient. This paper investigates the loss function of 

the improved YOLOv5 model to enhance its ability to detect 

fruitfulness. 

YOLOv5's loss calculation formula, shown in Equation (1), 

comprises of three parts. The first part, loss_cls, calculates the 

classification loss using BCE loss but only for positive 

samples. The second part, loss_loc, uses GIoU loss to 

calculate the regression loss of positive samples only. Lastly, 

loss_conf calculates the target confidence loss of all samples 

using BCE loss. 

Loss = 𝜆1𝐿𝑐𝑙𝑠 + 𝜆2𝐿𝑙𝑜𝑐 + 𝜆3𝐿𝑐𝑜𝑛𝑓                          (1) 

where λ_1, λ_2, λ_3 are the equilibrium coefficients. To 

account for positive and negative samples in the calculation 

of the target confidence loss in the YOLOv5 loss function, 

this paper proposes the utilization of Focal Loss [33][34][35]. 

This is done to mitigate the adverse effects of negative 

samples that are easily classified on the model's detection 

performance by controlling the weights of positive and 

negative samples, as well as the weights of hard and easy 

samples. Equation (2) represents the formula of the Focal 

Loss function. 

𝐹𝐿(𝑝) = {
−𝛼(1 − 𝑝)𝛾 log(𝑝)       𝑖𝑓 𝑦 = 1

−(1 − 𝛼)𝑝𝛾 log(1 − 𝑝)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (2) 

y is the label value of the sample in the binary classification 

problem. The loss function is applied to positive samples 

when y equals 1 and to negative samples otherwise. The 

hyperparameter α is used to balance the contribution of 

positive and negative samples and is set to 0.25. The 

modulation factor γ is used to control the weights of easily 

and hardly classified samples. In this paper, γ is set to 2.2. By 

definition, p represents the probability that a sample is 

predicted as positive, and for samples with true negative 

labels, a smaller p signifies more accurate model prediction. 

The introduction of the Focal loss effectively alleviates the 

influence of easily classified negative samples on the loss 

calculation and greatly enhances the contribution of a priori 

boxes that match real boxes to the model's predictions. This 

approach solves the problem of the imbalance of positive and 

negative samples in fruit detection. In addition, it greatly 

eases trouble in fruit detection caused by similar colors 

between fruit and the background. 

IV. EXPERIMENTS 

This experiment aims to evaluate the enhanced detection 

capability of the improved YOLOv5 model in identifying 

green fruits against the green background. Initially, a 

comparison was made between the improved YOLOv5 model 

and the conventional YOLOv5 model to observe the effect of 

enhancements. Subsequently, the improved YOLOv5 model 

was pitted against other Deep Learning- based target 

detection models to draw comprehensive experimental 

conclusions. 

A. Experimental environment 

T The model operated on an Ubuntu 16.04 operating 

system and was equipped with an Intel(R) Xeon(R) Silver 

4214R CPU @ 2.40GHz processor, 64 GB of RAM, and 10 

GB of graphics memory. CUDA 11.0, Python 3.7, and 

Pytorch 1.7.0 Deep Learning framework were utilized on a 

server to train the model.  

To further optimize the model's detection capabilities, it 

was pre-trained with weights from the COCO dataset. The 

improved YOLOv5 model was then utilized to train the Green 

Fruit training dataset, and its performance was assessed by 

validation and evaluation on the Green Fruit validation 

dataset.  

      

 
Fig.7.The curves of AP at IoU=0.50 and Loss  

 

B. Train 

In this study, we trained the model using the green apple 

dataset for 550 epochs and 52,800 iterations. To increase the 

dataset's diversity and the model's robustness, we applied 

Mosaic Data and Mixup Data Augmentation. The model used 
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label smoothing to prevent overfitting during the training, 

with a smoothing factor of 0.01. We used the SGD Optimizer 

with a momentum of 0.937 and a weight decay coefficient of 

5e-4 to accelerate the model's convergence and avoid the 

issue of local optimum. We obtained training curve graphs 

for AP and Loss values, as illustrated in Figure 7. The 

convergence of both AP and Loss started from the 60th epoch, 

and by the 380th epoch, the training loss suddenly decreased 

while the alteration in the validation loss was not significant, 

implying an overfitting phenomenon. So to evaluate the 

model, we chose the appropriate training outcomes ranging 

from the 60th epoch to the 380th epoch. 

 

C. Evaluation Criteria 

This experiment employs Precision (P) and recall (R) as 

criteria to evaluate the efficacy of the model. Precision is 

measured using Equation (3), and Recall is measured using 

Equation (4). The model's merit is evaluated using various 

criteria, and this experiment focuses on Precision (P) and 

recall (R).    

P =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                               (3) 

R =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                              (4) 

  where TP stands for the number of true positive samples, 

FP stands for the number of false positive samples, and FN 

stands for the number of false negative samples. The 

Precision ratio refers to the proportion of true positive 

samples to all positive samples classified by the model's 

classifier; the Recall ratio refers to the proportion of true 

positive samples to all positive samples. 

In order to conduct a thorough evaluation of the model, we 

utilize the average precision (AP) metrics at a specified IoU 

threshold and mAP. This approach is supported by the 

following equations: 

      𝐴𝑃𝐼𝑜𝑈=𝑖 = 1/101 ∑ 𝑝(𝑟)𝑟∈𝑅                      (5) 

      mAP = 1/10 ∑ 𝐴𝑃𝐼𝑜𝑈=𝑖𝑖∈𝐼                         (6) 

 where i represents the IoU threshold and the letter I 

represents the set of IoU thresholds with a total of 10 values: 

[0.5, 0.55, 0.6, 0.65, ..., 0.99, 0.95]. r denotes Recall and R 

denotes the set of Recall, which consists of 101 values: [0, 

0.01, 0.02, 0.03, ... 0.99, 1.0]. p(r) denotes the precision 

associated with the recall. 

In addition, we use the following evaluation metrics. 

Flops: The number of floating point operations per second, 

which measures the computational time complexity of the 

network model. 

 Params: The total number of parameters required in the 

training of the model, which measures the computational 

space complexity of the network model. 

FPS: The number of frames per second, which means the 

number of images that can be processed in each second. 

D. The detection effect of the improved model 

  A comparison of the proposed model with the 

conventional YOLOv5 model is showcased in this study to 

demonstrate the former's performance. The same 

experimental setup, dataset, and evaluation metrics are 

utilized to ensure fairness. Figure 8 presents a visual analysis 

of the detection outcomes. The first row of the images shows 

the detection results of the conventional YOLOv5 model, 

while the improved YOLOv5 model results are depicted in 

the second row. The triangular box in the first row indicates 

the misclassification of the background as the target fruit, 

whereas the rectangular box in the first row represents the 

failure to detect the target fruit. 

 Figure 8 illustrates that detecting independent green apples, 

there is no significant difference between the two models. 

However, the models perform differently when exposed to 

natural disturbances such as similar background and fruit 

color, overlapping fruit, branch, and leaf shading. The first 

column indicates that the improved YOLOv5 model does not, 

when compared to the conventional YOLOv5 model, 

incorrectly detect branches and leaves as apples. The second 

and third columns indicate that the improved YOLOv5 model 

performs better in identifying overlapping and obscured 

apples. To effectively showcase the model's superiority, we 

utilize AP at IoU = 0.50 and AR at maxDet = 100 as metrics 

in tandem with Flops, Params, and FPS. 

 The Table 1 presents the results of the comparison 

between the conventional YOLOv5 model and the improved 

YOLOv5 model.  

 

TABLE I 
PERFORMANCE COMPARISON OF THE IMPROVED YOLOV5 MODEL WITH 

THE ORIGINAL MODEL 
Models 𝑨𝑷𝑰𝒐𝑼=𝟎.𝟓𝟎 𝑨𝑹𝒎𝒂𝒙𝑫𝒆𝒕=𝟏𝟎𝟎 Flops/G Params/M FPS 

YOLOv5 86.30% 66.80% 114.54 46.63 33.94 

Ours 88.10% 69.10% 114.56 46.63 32.29 

 

YOLOv5 

   

Ours 

   

Fig. 8. Comparison of the detection of the model in this paper and the YOLOv5 model  
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 Specifically, the improved YOLOv5 yielded an AP of 

88.1%, exhibiting an increase of 1.8% in comparison to the 

conventional YOLOv5, which had an AP of 86.3%. 

Additionally, the improved YOLOv5 model increased the AR 

from 66.8% to 69.1%, showing a 2.3% enhancement. 

Meanwhile, there was no significant change in Params, and 

only a minimal increase of 0.02 G in Flops and decrease of 

1.65 in Fps. These positive results indicate that the improved 

YOLOv5 model effectively enhances the detection accuracy 

with negligible reduction in detection speed. Therefore, it 

proves to be a more optimal solution for detecting green 

apples in orchards. 

E. Comparison with other models 

 This study compares the detection results of the improved 

YOLOv5 with other state-of-the-art models on the green 

apple dataset. The green apple dataset was used to train 

YOLOv4, ATSS, FCOS, NAS-FCOS, FSAF, AutoAssign, 

Faster R-CNN, and Cascade R-CNN. Figure 9 presents the 

comparison of detection results of the models mentioned 

above, with YOLOv4, ATSS, FCOS, NAS-FCOS, FSAF, 

AutoAssign, Faster R-CNN, and Cascade R-CNN results 

listed consecutively from rows 1 to 8. In each row, 

rectangular boxes highlight green apples detected by the 

improved YOLOv5 model but missed by other models. And, 

triangular boxes indicate background or branches detected 

incorrectly as green apples by other model. 

 

YOLOv4 

   

ATSS 

   

FCOS 

   

NAS-  
FCOS 

   

FSAF 

   

AutoAssign 
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Faster 

R-CNN 

   

Cascade 

R-CNN 

   

Ours 

   
Fig. 9. Comparison chart of the detection models 
 

The conditions in the orchard can significantly impede 

fruit detection due to various interferences. Figure 9 

demonstrates that YOLOv4, ATSS, FCOS, NAS-FCOS, 

FSAF, AutoAssign, Faster R-CNN, and Cascade R-CNN are 

subject to fruit misses when detecting fruit that is obstructed 

by foliage and branches (as indicated by rectangular boxes). 

Due to overfitting, both Faster R-CNN and Cascade R-CNN 

can incorrectly identify branches and leaves as target fruit, 

resulting in triangular boxes. The final row depicts the 

improved YOLOv5, incorporating ECA-Net and CBAM, 

which enhances the model's sensitivity to fruit features and 

offers superior detection capability that can precisely detect 

the edges and areas of green apples even when masked by 

branches and leaves. In addition, the introduction of Focal 

Loss reduces the impact of easily classified negative samples 

on the model, resulting in the elimination of false positives 

samples due to the identification of other non-fruit targets as 

fruit. 

 To provide an equitable comparison of the models’ 

performance, this research paper presents a comparative list 

of metrics (shown in Table 2) including mAP, AP at 

IoU=0.50, AR at maxDet=100, Flops, Params, and FPS. 

According to Table 2, the improved YOLOv5 model 

generated 61.2% mAP, 88.1% AP for IoU=0.5, and 69.1% 

AR for maxDet=100, which exceed the metrics of the other 

models. Thus, the improved YOLOv5 model owns better 

detection capabilities without any misidentification or 

missing targets. The enhanced performance is attributed to 

two primary reasons. Firstly, the ECA-Net and CBAM made 

the fruit features more prominent, and secondly, Focal Loss 

reduced the impact of easily classified negative samples on 

the model gradient update direction. As a result of these 

improvements, this model achieved excellent accuracy and 

robustness. 

The NAS-FCOS and AutoAssign models' parameters are 

slightly smaller than the 46.6M of the improved YOLOv5 

model. Conversely, the other models' parameters are higher 

than the 46.6M of the improved model while all the Flops are 

more significant than the 114.5G of the improved model. This 

indicates that their computation is more extensive than the 

computation of the improved YOLOv5 model, and their FPS 

is lower than the 32.2 of the improved YOLOv5 model. The 

above outcomes demonstrate the superior performance of the 

improved YOLOv5 model in terms of speed and accuracy, 

TABLE II 

PERFORMANCE OF THE IMPROVED YOLOV5 MODEL COMPARED WITH OTHER MODELS 

Models mAP 𝑨𝑷𝑰𝒐𝑼=𝟎.𝟓𝟎 𝑨𝑹𝒎𝒂𝒙𝑫𝒆𝒕=𝟏𝟎𝟎 Flops/G Params/M FPS 

YOLOv4 56.4% 83.4% 67.8% 119.8 63.9 20.8 

ATSS 54.4% 84.3% 63.1% 267.3 51.0 20.5 

FCOS 47.2% 76.7% 58.3% 276.6 50.9 21.7 

NAS-FCOS 58.3% 85.3% 66.6% 123.3 38.1 19.0 

FSAF 60.7% 87.8% 67.5% 264.5 55.0 20.6 

AutoAssign 57.7% 86.3% 67.0% 187.9 35.9 21.0 

Faster R-CNN 58.1% 86.1% 65.4% 206.6 60.1 20.2 

Cascade R-CNN 57.0% 83.1 62.6% 384.2 77.1 17.3 

Ours 61.2% 88.1% 69.1% 114.5 46.6 32.2 
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making it the most suitable smart device for real-time 

detection. 

V. CONCLUSION 

Detecting green fruits against the green background in a 

natural orchard environment is challenging due to factors 

such as color similarity between the fruit and background, 

occlusion caused by branches and leaves, and overlapping 

fruits. Thus, the detection model must have high accuracy. To 

address the aforementioned challenge, this paper proposes an 

improved YOLOv5 detection model.  The proposed 

improvement includes two key modifications. First, we added 

attention mechanisms ECA-Net and CBAM to the feature 

extraction module of the base model. This modification 

enhances the model's focus on fruit features, thereby 

improving accuracy. Second, we added Focal loss to the loss 

calculation, which reduces the influence of negative samples 

on loss calculation. The results demonstrate that the improved 

model outperforms the original model. Evaluation against 

other models suggests the improved YOLOv5 model meets 

the accuracy requirement for identifying green fruits in 

complex orchard environments. 

Real-time agriculture demands a model capable of 

achieving rapid target detection; however, the proposed 

model still requires improvements in terms of speed. Future 

work will aim to enhance the detection speed of the model 

while maintaining high detection accuracy. Specifically, the 

objective is to effectively apply the model to detect green 

fruits. 
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