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Abstract—The conjugate gradient method provides a
straightforward approach to solve unconstrained optimization
problems. In this paper, we propose a modified formula for
the conjugate gradient parameter by adapting the RMIL
method. The proposed method ensures sufficient descent and
global convergence under certain assumptions, utilizing an exact
line search. Experimental results validate the efficiency of the
modified method.

Index Terms—conjugate, gradient, parameter, global, conver-
gent.

I. INTRODUCTION

THE arrangements for different optimization issues are
often crucial for researchers in engineering and scien-

tific fields. A straightforward optimization strategy is the
conjugate gradient method. For example, Cao et al. [1]
defined the image restoration problem as a large-scale opti-
mization issue. In addition, in Abubakar et al. [2], the signal
repair problem is solved by formulating an optimization
problem. Helmig et al. [3] create an optimization problem to
estimate the distance and the number of sensors in the inverse
calculation of thermal boundary conditions. Furthermore,
Nicolaide [4] derived the formula for solving systems of lin-
ear equations with the conjugate gradient method and others
(see [5], [6], and [7]). There are two types of optimization
problems in their application: constrained and unconstrained.

The method described in this article is the conjugate
gradient method. This method is convenient for solving
unconstrained optimization problems because it requires less
memory and is easier to compute. In this method, the
direction of finding the solution of an iteration is determined
by the objective function gradient, the conjugate gradient
parameter, and the search direction of the preceding iteration.
The development of this method is very diverse, especially
in terms of modifying the conjugate gradient parameter. If
the parameters of the conjugate gradients are different, the
conjugate gradient method and its properties will also differ.

The first conjugate gradient parameter introduced is the
FR parameter [8]. Powell [9] further investigated the FR
parameter and found that this method with exact line search
can generate a small step length without significantly im-
proving the optimal solution. Then, Polak and Ribiere [10]
introduce the PR parameter. Numerically, the PR parameter
has better performance than the FR parameter. Polak and
Ribiere [10] have shown that the PR parameter, with an
exact line search, gives globally convergent results for convex
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objective function. However, Powell [11] has also shown
that this is not necessarily true for nonconvex functions.
Additionally, Powell [11] found that the PR parameter, with
an exact line search, can rotate indefinitely and does not
approach the solution point. This behavior can occur when
βk is negative, so Powell [11] suggests that the conjugate
gradient parameter should not be negative. Therefore, Gilbert
and Nocedal [12] modified the PRP parameter to take the
maximum value between 0 and the PRP parameter, obtaining
global convergence results with an inexact line search.

Rivaie et al. [13] have modified the PR parameter by
changing the numerator from the gradient norm of the
objective function to the norm of the search direction, which
is referred to as the RMIL parameter in the future. Generally,
the RMIL parameter is better than the PR parameter because
it can solve more test functions in optimization problems.
However, the RMIL parameter is not necessarily negative,
so Dai [14] modified the parameter so that if the RMIL
parameter is negative, its value is set to zero. With this
modification, a globally convergent method is obtained. For
reliable references to research that have discussed modern
conjugate gradient methods and produced meaningful results,
please refer to [15], [16], [17] and [18].

This article presents a modified conjugate gradient pa-
rameter formula that is simpler and maintains nonnegative
parameter values. This parameter combines the FR parame-
ter, which exhibits good global convergence, and the RMIL
parameter, which demonstrate good numerical performance.
With this modified parameter, the method satisfies the re-
quirements of sufficient descent and achieves global conver-
gence. Additionally, the paper includes numerical computa-
tions and comparisons between methods.

The structure of this article is as follows: Section II
provides definitions and assumptions related to this research.
In Section III, a discussion of the modified conjugate gradient
parameter and its algorithm is presented. Section IV contains
a convergence analysis, including sufficient descent condi-
tions and global convergence. In Section V, experimental
results and comparisons between methods with modified and
existing parameters are provided. Section VI concludes this
work.

II. PRELIMINARIES

In this study, we consider the unconstrained optimization
problem stated as follows.

min
x∈Rn

f(x), (1)

with f : Rn → R is a smooth function with ∇f(x) = g(x)
available. The conjugate gradient method is an iterative
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approach to find the answer to the problem (1), which is for-
mulated by the following recursive computational formula:

xi+1 = xi + αidi, for i = 0, 1, 2, ... (2)

where xi represents the solution in the i−th iteration, αi > 0
denotes the step length, and di represents the direction. The
step length is determined through a one-dimensional search
known as a line search. The most commonly used line search
method is the exact line search, defined as:

f(xi + αidi) = min
α≥0

f(xi + αdi). (3)

The exact line search is employed due to its ability to
determine an optimal step length [19]. Recent advancements
in technology, such as faster processors and improved equip-
ment, have alleviated the computational burden associated
with the exact line search method, as demonstrated by Rivaie
et al. in 2012 [13].

The search direction di is defined as follows:

di =

{
−gi, i = 0
−gi + βidi−1, i ≥ 1,

(4)

where gi represents the gradient of the function f at the point
xi and βi is the conjugate gradient parameter. As mentioned
in section I, several well-known conjugate gradient parameter
formulas, including the Fletcher and Reeves (FR), Polak
and Ribiere (PR), and Rivaie, Mustafa, Ismail, and Leong
(RMIL) parameters, are presented below.

βFR
i =

gTi gi
∥gi−1∥2

, (5)

βPRP
i =

gTi (gi − gi−1)

∥gi−1∥2
, (6)

βRMIL
i =

gTi (gi − gi−1)

∥di−1∥2
. (7)

where ∥.∥ denotes the Euclidean norm. Equation (5)-(7)
correspond to the Fletcher and Reeves (FR) in [8], the Polak
and Ribiere (PR) in [10], and the Rivaie, Mustafa, Ismail,
and Leong (RMIL) parameter, respectively.

In order to analyze the global convergence of the conjugate
gradient method, two essential properties need to be con-
sidered: sufficient descent and global convergence [17]. The
notion of minimizing the objective function is closely tied to
the concept of descent steps, which implies that each search
step should lead to a reduction in the cost of the function f .
Consequently, the following definition establishes a condition
that ensures the desired search direction vector corresponds
to a descent direction for the function f .

Definition 2.1: An algorithm is considered to have suffi-
cient descend if there exists a positive constant C such that
for every search direction vector di the inequality

gTi di ≤ −C∥gi∥2, (8)

holds for all i ≥ 0.
Additionally, the algorithm’s efficacy relies on ensuring

the convergence of the sequence {xi} for all i = 0, 1, ...
generated by the algorithm from any initial point to a
stationary point of the function f .

Definition 2.2: An algorithm of the conjugate gradient
method is said to be globally convergent if it satisfies the
condition

lim
i→∞

inf ∥gi∥ = 0. (9)

Several assumptions are necessary to investigate the global
convergence of this method for the objective function con-
sidered below.

Assumption 2.1: The objective function f is bounded be-
low and satisfies continuity and differentiability conditions
in a neighborhood B of the level set Ω = {x ∈ Rn|f(x) ≤
f(x0)} at the initial point.

Assumption 2.2: The gradient function g is Lipschitz con-
tinuous in B. Specifically, there exists a constant K > 0 such
that ∥g(x)− g(y)∥ ≤ K∥x− y∥ for all x, y ∈ B.

The existence of a lower bound for the objective function
f is crucial for a well-defined optimization problem. The
Lipschitz continuity of the gradient is a commonly assumed
condition and is often satisfied in practice. It is implied by
many of the smoothness conditions used in local convergence
theorems [16].

Based on Assumption 2.1 and Assumption 2.2, a lemma
known as the Zoutendijk condition is established. This
lemma has wide-ranging implications. It demonstrates, for
example, that the steepest descent algorithm achieves global
convergence. It also provides insights into other algorithms
by determining the extent to which di can deviate from
the steepest descent direction while still ensuring global
convergence of the iterations. Various line search termination
criteria can be employed to establish this result, but in this
study, we will focus on the exact line search.

Lemma 2.1: Assume that Assumption 2.1 and 2.2 hold.
For any conjugate gradient method with (2)-(4), where αi is
determined by (3). The following condition holds

∞∑
i=0

(gTi di)
2

∥di∥2
< ∞. (10)

This condition plays a crucial role in ensuring the conver-
gence of the conjugate gradient method. The lemma men-
tioned above was originally proven by Zoutendijk in [23].
The assumptions regarding the sequence xi and the objective
function f are necessary to demonstrate the convergence rate
of this method.

Assumption 2.3: Sequence {xi+1}, where xi+1 = xi +
αidi,∀k = 0, 1, 2, 3, ..., αi determined by (3), di formulated
by (4), for all i = 0, 1, 2, 3... converges to x∗. Additionally,
function f is a twice continuously differentiable on the
neighborhood of B(x∗, ϵ0) = {x|∥x − x∗∥ < ϵ0} for some
ϵ0 > 0 and ∇2f(x∗) is a symmetric and positive definite
matrix.

The rate of convergence of an algorithm is a crucial
performance indicator. There are two types of convergence
rates to consider:

Definition 2.3: Let {xi} be a sequence in Rn that con-
verges to x∗. The sequence {xi} is said to be Q-linear
convergence if there exists a constant r ∈ (0, 1) such that

∥xi+1 − x∗∥
∥xi − x∗∥

≤ r (11)

∀i sufficiently large.
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This indicates that the distance to the solution x∗ decreases
by at least a constant factor with each iteration. The ”Q” in
Q-linear convergence represents the quotient, as this type of
convergence is described in terms of the quotient of succes-
sive errors. On the other hand, ”R” denotes a slightly weaker
form of convergence, referred to as R-linear convergence or
root convergence, which focuses on the overall rate of error
reduction throughout the entire algorithm rather than in each
individual step.

Definition 2.4: Let {xi} be a sequence in Rn that con-
verges to x∗. The sequence {xi} is said to be R-linearly
convergent if there exists a nonnegative sequence of scalar
{vi} such that

∥xi − x∗∥ ≤ vi (12)

∀i, and the sequence {vi} converges Q-linearly to zero.
The linear convergence rate of conjugate gradient methods

is typically demonstrated by establishing the following result,
as presented in [13].

Lemma 2.2: Assuming Assumption 2.3 holds true, and
considering the angle θi between −gi and di, where xi is
determined by exact line search and di is a descent direction.
If there exists a constant λ > 0 satisfying

Πi−1
k=0 cos θi ≥ λi,

then, there exist constants α > 0 and r ∈ (0, 1), such that

∥xi+1 − x∗∥ ≤ ari+1. (13)

Hence, xi converges to x∗, at least in an R-linearly conver-
gent.

III. NEW CONJUGATION GRADIENT PARAMETER

This section proposes a modified conjugate gradient pa-
rameter formula, which combines the RMIL and FR param-
eters. The modified formula is given as follows:

βFRMIL
i =

{
βRMIL
i , 0 ≤ βRMIL

i ≤ βFR
i

βFR
i , other. (14)

The algorithm can be summarized as follows, incorporat-
ing equations (2), (3), (4), and (14)

1) Preparation. Given x0 ∈ Rn, ε > 0 and put i = 0.
2) Calculate ∥gi∥. If ∥gi∥ ≤ ε, then xi is a solution point.

If ∥gi∥ > ε, move to step (3).
3) Calculate βi based on the modified conjugate parame-

ter formula (14).
4) Calculate di based on (4).
5) Perform an exact line search to determine the step

length αi by (3).
6) Update i = i + 1, calculate the next step by equation

(2), and move to step (2).

IV. CONVERGENCE PROPERTIES

In order to establish the conditions of sufficient descent
and global convergence for the conjugate gradient method
with the modified conjugate parameter and exact line search
(3), the following properties play a crucial role in simplifying
the analysis:

1) Sufficient Descent: It is important to ensure that the
algorithm exhibits a descent direction, meaning that the
objective function f decreases at each iteration. This

property guarantees that the method is making progress
towards a solution. The condition of sufficient descent
ensures that the search direction di leads to a decrease
in the function value, as stated in Definition 2.1.

2) Global Convergence: The algorithm’s global conver-
gence is essential to ensure that the sequence xi
generated by the method, starting from any initial
point, converges to a stationary point of the function
f . The definition of global convergence, as stated in
Definition 2.2, requires that the norm of the gradient
∥gi∥ approaches zero as i tends to infinity.

By establishing the sufficient descent and global conver-
gence properties, the investigation of the conjugate gradient
method with the modified conjugate parameter and exact line
search becomes more accessible, enabling the development
of a practical and high-quality algorithm.

Lemma 4.1: For every i ≥ 0, the condition

0 ≤ βFRMIL
i ≤ βFR

i (15)

always holds.
Proof: We consider the modified conjugate parameter

βFRMIL
i defined in (14). From the definition, we have two

cases:
Case 1: If 0 ≤ βRMIL

i ≤ βFR
i , then according to (14),

we have
βFRMIL
i = βRMIL

i .

Since both βRMIL
i and βFR

i are nonnegative, it follows that

0 ≤ βFRMIL
i ≤ βFR

i .

Case 2: If βRMIL
i does not satisfy the condition 0 ≤

βRMIL
i ≤ βFR

i , then according to (14), we have

βFRMIL
i = βFR

i .

Again, since both βFRMIL
i and βFR

i are nonnegative, we
have

0 ≤ βFRMIL
i ≤ βFR

i .

Therefore, in both cases, the condition (15) is always
satisfied for every i ≥ 0. This completes the proof of Lemma
4.1.

The following theorem proves that the modified parameter
fulfills the condition of sufficient descent.

Theorem 4.1: Given a conjugate gradient method with di
determined by (4) and βFRMIL

i formulated by (14), then

∇gTi di ≤ −C∥gi∥2, (16)

with C > 0.
Proof: We will prove that the conjugate gradient method

with the modified conjugate gradient parameter satisfies (16).
Note that

di =

{
−gi, i = 0
−gi + βFRMIL

i di−1, i ≥ 1,
(17)

First, If i = 0, by (4) we have

gT0 d0 = −gT0 g0 = −∥g0∥2.

In other words, the inequality (16) is satisfied for i = 0.
Furthermore, if i ≥ 1, then multiplying (17) by gTi , we get

gTi di = gTi (−gi + βFRMIL
i di−1) (18)

= −∥gi∥2 + βFRMIL
i gTi di−1. (19)
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Using the exact line search method (3), we get gTi di−1 = 0.
Consequently,

gTi di = −∥gi∥2,

means that di+1 is a sufficient descent direction. Therefore,
gTi di ≤ −C∥gi∥2 holds. We have finished the proof.

Next, we will establish the global convergence property
of the conjugate gradient method with the FRMIL parameter
by employing an exact line search. To analyze the global
convergence of this method, we rely on the assumptions
outlined in 2.1-2.2 and the use of Lemma 2.1.

Theorem 4.2: Given the conjugate gradient method with
the modified conjugate parameter formulation (14) and the
exact line search (3), and assuming that Assumption 2.1 and
Assumption 2.2 are satisfied, along with the condition of
sufficient descent, the following holds:

lim
i→∞

inf ∥gi∥ = 0. (20)

Proof: Based on Assumption 2.1 and 2.2, Lemma 2.1
can be applied. We will now proceed to prove this by
contradiction. Assuming that (20) is not true, it implies the
existence of a positive constant c such that

∥gi∥ ≥ c, (21)

for i is quite large, which means

1

∥gi∥2
≤ 1

c2
. (22)

Based on (4), for every i ≥ 1,

di+1 + gi+1 = βFRMIL
i+1 di.

Squaring both sides of the equation, for every i ≥ 1, we get

(di+1 + gi+1)
2 = (βFRMIL

i+1 ∥di∥)2

∥di+1∥2 + 2gTi+1di+1 + ∥gi+1∥2 = βFRMIL
i+1

2∥di∥2

∥di+1∥2 = βFRMIL
i+1

2∥di∥2

−2gTi+1di+1

−∥gi+1∥2.

By dividing both sides of the equation by (gTi+1di+1)
2, for

every i ≥ 1, we obtain

∥di+1∥2

(gTi+1di+1)2
=

βFRMIL
i+1

2∥di∥2

(gTi+1di+1)2
− 2

gTi+1di+1

− ∥gi+1∥2

(gTi+1di+1)2

=
βFRMIL
i+1

2∥di∥2

(gi+1
T di+1)2

−
(

1

∥gi+1∥
+

∥gi+1∥
gi+1

T di+1

)2

+
1

∥gi+1∥2

≤
βFRMIL
i+1

2∥di∥2

(gi+1
T di+1)2

+
1

∥gi+1∥2
.

By inequality (15), for every i ≥ 1 we get

∥di+1∥2

(gi+1
T di+1)2

≤
βFR
i+1

2∥di∥2

(gi+1
T di+1)2

+
1

∥gi+1∥2

=

(
∥gi+1∥2

∥gi∥2

)2 ∥di∥2

(gi+1
T di+1)2

+
1

∥gi+1∥2

=
∥gi+1∥4

∥gi∥4
∥di∥2

∥gi+1∥4
+

1

∥gi+1∥2

=
∥di∥2

∥gi∥4
+

1

∥gi+1∥2
. (23)

Since ∥d0∥2

(g0T d0)2
= 1

∥g0∥2 , then with (22), (23), and (4) we get

∥di+1∥2

(gi+1
T di+1)2

=
∥di+1∥2

∥gi+1∥2

≤ ∥di∥2

∥gi∥4
+

1

∥gi+1∥2

≤ ∥di−1∥2

∥gi−1∥4
+

1

∥gi∥2
+

1

∥gi+1∥2

≤ ∥di−2∥2

∥gi−2∥4
+

1

∥gi−1∥2
+

1

∥gi∥2

+
1

∥gi+1∥2
...

≤
i+1∑
k=0

1

∥gk∥2

≤ i+ 1

c2
.

Thus,
(gTi+1di+1)

2

∥di+1∥2
≥ c2

i+ 1
.

By taking the sum of both sides, we have
∞∑
i=0

(gTi+1di+1)
2

∥di+1∥2
≥ c2

∞∑
i=0

1

i+ 1
.

Note that
∑∞

i=0
1

i+1 is a harmonic series, and harmonic series
diverge. Thus,

∞∑
i=0

(gTi+1di+1)
2

∥di+1∥2
≥ ∞.

The statement above contradicts Lemma 2.1. Therefore, the
proof is complete.

Now, the corollary below suggests that when the sum
of the squares of the search direction norms is zero, the
zoutendijk condition holds, indicating a certain property or
behavior of the optimization method being analyzed.

Corollary 4.1: If
∑∞

i=0 ∥di∥2 = 0, then
∑∞

i=0
(gT

i di)
2

∥di∥2 <
∞ holds.

Proof: From the exact line search method and the search
direction (4), we have

∥gi∥2 = gTi gi

= gTi (−di + βidi−1)

= −gTi di

= −(−dTi + βidi−1)
Tdi

= ∥di∥2 − βid
T
i−1di.
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Then,

∥gi∥4 = (∥gi∥2)2

= (∥di∥2 − βid
T
i−1di)

2

= ∥di∥4 − 2βi∥di∥2di−1di + β2
i (d

T
i−1di)

2

= ∥di∥4 − 2β2
i ∥di∥2∥di−1∥2 + β4

i ∥di−1∥4.(24)

We will prove by contradiction. Assume that ∥gi∥ ≥ m
and

∑∞
i=0 ∥di∥2 = ∞. For ∥gi∥ → ∞, then 1

∥gi∥ → 0.
Based on (23), we have

∥di∥2

(gTi di)
2
≤ ∥di∥2

∥gi∥4
,

then, from (24), we have

∥di∥2

(gTi di)
2

≤ ∥di∥2

∥gi∥4

=
∥di∥2

∥di∥4 − 2β2
i ∥di∥2∥di−1∥2 + β4

i ∥di−1∥4

≤ ∥di∥2

∥di∥4 − 2β2
i ∥di∥2dTi−1di

This will imply that

(gTi+1di+1)

∥di+1∥2
≥ ∥di∥4 − 2β2

i ∥di∥2∥di−1∥2

∥di∥2
= ∥di∥2 − 2β2

i ∥di−1∥2

Based on Lemma 4.1 and (24), we have

(gTi+1di+1)

∥di+1∥2
≥ ∥di∥2 − 2β2

i ∥di−1∥2

≥ ∥di∥2 − 2
∥gi∥4

∥gi−1∥4
∥di−1∥2

= ∥di∥2 − 2
∥di∥4

∥gi−1∥4
∥di−1∥2

+
4β2

i ∥di∥2∥di−1∥4

∥gi−1∥4
− 2β4

i ∥di−1∥6

∥gi−1∥4

Since 1
∥gi∥ → 0, then

(gTi+1di+1)

∥di+1∥2
≥ ∥di∥, (25)

which leads to
∞∑
i=0

(gTi di)
2

∥di∥2
≥

∞∑
i=0

∥di∥2, (26)

and
∞∑
i=0

(gTi di)
2

∥di∥2
≥ ∞. (27)

This conclusion contradicts Lemma 2.1. Therefore, the corol-
lary holds.

Next, we will demonstrate that the rate of convergence of
the conjugate gradient method with the FRMIL parameter is
linear.

Theorem 4.3: Suppose Assumption 2.3 is satisfied. If the
sequence {xi} is generated using exact line search, di is a
descent direction, and βi is formulated according to (14),
then there exists a constant a > 0 and r ∈ (0, 1), such that

∥xi − x∗∥ ≤ ari.

Thus, xi converges to x∗ R-linearly.
Proof: If Assumption 2.1-2.3 hold true, then we assume

∀x0 ∈ N(x∗, ε). Hence, from (4) and (15) we have

∥di∥ ≤ ∥gi∥+ βFRMIL
i ∥di−1∥

≤ ∥gi∥+ βFR
i ∥di−1∥

≤ ∥gi∥+
∥gi∥2

∥gi−1∥2
∥di−1∥

=
(
1 +

∥gi∥∥di−1∥
∥gi−1∥2

)
∥gi∥.

This will imply that

cos θi =
−gTi di

∥gi∥.∥di∥
=

∥gi∥2

∥gi∥∥di∥
≥

(
1 +

∥gi∥∥di−1∥
∥gi−1∥2

)−1

.

By Lemma 2.2 we get Theorem 4.3. The proof is complete.

V. DISCUSSIONS

This section presents the experimental results of the con-
jugate gradient method with FR, PRP, RMIL, and FRMIL
parameters to demonstrate the efficiency of each method.
In this study, artificial problems are selected from 128 test
functions that range from small to large scale, namely 2, 4,
10, 50, 100, and 500, as provided in Table I. NP is used to
symbolize the number of each problem. Several test functions
are taken from Andrei [21]. A large-scale problem is included
to avoid the algorithm from being biased towards a specific
function [21]. A random starting point is assigned for each of
the selected test functions to assess the properties of global
convergence and the success of the method.

TABLE I: A list of the test function

NP Function n starting point

1 Three-hump 2 (-1,1)

2 Three-hump 2 (1,-1)

3 Three-hump 2 (-2,2)

4 Goldstein-Price 2 (2,-2)

5 Goldstein-Price 2 (9,9)

6 Goldstein-Price 2 (15,15)

7 Zettl 2 (5,5)

8 Zettl 2 (10,10)

9 Zettl 2 (20,20)

10 Rosenbrock 2 (-2,-2)

11 Rosenbrock 2 (2,2)

12 Rosenbrock 2 (11,11)

13 Quartic 4 (2,...,2)

14 Quartic 4 (5,...,5)

15 Quartic 4 (10,...,10)

16 Extended Maratos 2 (8,8)

17 Extended Maratos 2 (22,22)

18 Extended Maratos 2 (44,44)

19 Extended Maratos 4 (8,...,8)

20 Extended Maratos 4 (22,...,22)

21 Extended Maratos 4 (44,...,44)

(Continued on the next page)
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TABLE I: Continued

NP Function n starting point

22 Extended White and Holst 4 (2,...,2)

23 Extended White and Holst 4 (3,...,3)

24 Extended White and Holst 4 (-2,...,-2)

25 Extended White and Holst 10 (2,...,2)

26 Extended White and Holst 10 (3,...,3)

27 Extended White and Holst 10 (-2,...,-2)

28 Extended Frudenstein & Roth 4 (3,...,3)

29 Extended Frudenstein & Roth 4 (5,...,5)

30 Extended Frudenstein & Roth 4 (10,...,10)

31 Extended Frudenstein & Roth 100 (3,...,3)

32 Extended Frudenstein & Roth 100 (5,...,5)

33 Extended Frudenstein & Roth 100 (10,...,10)

34 Beale 2 (2,2)

35 Beale 2 (4,4)

36 Beale 2 (6,6)

37 Beale 4 (2,...,2)

38 Beale 4 (4,...,4)

39 Beale 4 (6,...,6)

40 Beale 10 (2,...,2)

41 Beale 10 (4,...,4)

42 Beale 10 (6,...,6)

43 Raydan1 2 (-1,-1)

44 Raydan1 2 (2,2)

45 Raydan1 4 (-1,...,-1)

46 Raydan1 4 (1,...,1)

47 Raydan1 4 (2,...,2)

48 Raydan1 10 (-1,...,-1)

49 Raydan1 10 (1,...,1)

50 Raydan1 10 (2,...,2)

51 Liarwhd 2 (3,3)

52 Liarwhd 2 (5,5)

53 Liarwhd 2 (7,7)

54 Liarwhd 4 (3,...,3)

55 Liarwhd 4 (5,...,5)

56 Liarwhd 4 (7,...,7)

57 Liarwhd 10 (3,...,3)

58 Liarwhd 10 (5,...,5)

59 Liarwhd 10 (7,...,7)

60 Fletcher 2 (5,5)

61 Fletcher 2 (10,10)

62 Fletcher 2 (40,40)

63 Fletcher 4 (5,...,5)

64 Fletcher 4 (10,...,10)

65 Fletcher 4 (40,...,40)

66 Fletcher 10 (5,...,5)

67 Fletcher 10 (10,...,10)

68 Fletcher 10 (40,...,40)

69 Edencsch 2 (3,3)

(Continued on the other side of this page)

TABLE I: Continued

NP Function n starting point

70 Edencsch 2 (23,23)

71 Edencsch 2 (43,43)

72 Edencsch 4 (3,...,3)

73 Edencsch 4 (23,...,23)

74 Edencsch 4 (43,...,43)

75 Edencsch 10 (3,...,3)

76 Edencsch 10 (23,...,23)

77 Edencsch 10 (43,...,43)

78 Generalized Quartic 2 (1,1)

79 Generalized Quartic 2, (10,10)

80 Generalized Quartic 2 (20,20)

81 Generalized Quartic 4 (1,...,1)

82 Generalized Quartic 4 (10,...,10)

83 Generalized Quartic 4 (20,...,20)

84 Generalized Quartic 100 (1,...,1)

85 Generalized Quartic 100 (10,...,10)

86 Generalized Quartic 100 (20,...,20)

87 Extended Denschnf 2 (2,2)

88 Extended Denschnf 2 (13,13)

89 Extended Denschnf 4 (2,..,2)

90 Extended Denschnf 4 (50,..,50)

91 Extended Denschnf 100 (2,..,2)

92 Extended Denschnf 100 (13,...,13)

93 Extended Denschnf 100 (50,..,50)

94 Extended Denschnb 2 (4,4)

95 Extended Denschnb 2 (8,8)

96 Extended Denschnb 2 (15,15)

97 Extended Denschnb 4 (4,...,4)

98 Extended Denschnb 4 (8,...,8)

99 Extended Denschnb 4 (15,...,15)

100 Extended Denschnb 100 (4,...,4)

101 Extended Denschnb 100 (8,...,8)

102 Extended Denschnb 100 (15,...,15)

103 Himmelblau 2 (15,15)

104 Himmelblau 2 (25,25)

105 Himmelblau 2 (35,35)

106 Himmelblau 10 (15,...,15)

107 Himmelblau 10 (25,...,25)

108 Himmelblau 10 (35,...,35)

109 Himmelblau 100 (15,...,15)

110 Himmelblau 100 (25,...,25)

111 Himmelblau 100 (35,...,35)

112 Extended Penalty 2 (2,2)

113 Extended Penalty 2 (5,5)

114 Extended Penalty 2 (10,10)

115 Extended Penalty 10 (2,...,2)

116 Extended Penalty 10 (5,...,5)

117 Extended Penalty 10 (10,...,10)

(Continued on the next page)
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TABLE I: Continued

NP Function n starting point

118 Extended Penalty 100 (2,...,2)

119 Extended Penalty 100 (5,...,5)

120 Extended Penalty 100 (10,...,10)

121 Tridiagonal1 2 (5,5)

122 Tridiagonal1 2 (7,7)

123 Tridiagonal1 10 (5,...,5)

124 Tridiagonal1 10 (7,...,7)

125 Tridiagonal1 10 (15,...,15)

126 Tridiagonal1 500 (5,...,5)

127 Tridiagonal1 500 (7,...,7)

128 Tridiagonal1 500 (15,...,15)

The test functions in Table I were generated by Matlab
R2020a and executed on a laptop with the following specifi-
cations: Intel(R) Celeron(R) processor, 4.00 GB RAM, 64-bit
Windows 10 Operating System Home Single Language. The
iteration stopping criterion is based on condition ∥gi∥ ≤ ε
with ε set to 10−6. If the step length produces nonpositive
results, the experiment result is labeled as ”fail,” as indicated
in some of the experimental results in Table II. Experimental
results are compared based on the number of iterations (NI)
and CPU time (CT), which are summarized in Table III.
These experimental results indicate the performance profile
based on the number of iterations and CPU time, as shown
in Fig. 1 and Fig. 2. The performance representation curve in
Fig. 1 and Fig. 2 follows the approach introduced by Dolan
and More [22].

We use the performance profile introduced by Dolan and
More in [22] to investigate the capability of every method.
The performance profile is determined using the following
formula. Let S denote the set of nS methods, and P denote
the set of nP test functions. For every method s ∈ S and each
function p ∈ P , let tp,s represent the number of iterations or
CPU time required by method s to solve function p. Then
the performance ratio for comparing methods is given by

rp,s =
tp,s

min{tp,s : s ∈ S}
.

Take the number rM ≥ rp,s for every p, s and set rp,s = rM
if method s does not resolve p.

TABLE II: Experiment results

NP FRMIL FR PRP RMIL

NI CT NI CT NI CT NI CT

1 10 1.02 1590 76.2 6 0.55 13 0.95

2 10 0.86 1590 75.5 13 0.53 6 0.89

3 7 0.77 7 0.63 5 0.52 6 0.58

4 10 1.34 10 1.31 11 1.23 10 1.28

5 12 1.44 12 1.28 14 1.38 18 1.70

6 9 1.02 11 1.14 10 1.06 11 1.20

7 13 0.66 16 0.80 9 0.53 18 0.90

(Continued on the other side of this page)

TABLE II: Continued

NP FRMIL FR PRP RMIL

NI CT NI CT NI CT NI CT

8 12 0.63 10 0.55 11 0.5 19 0.88

9 14 0.77 20 0.95 9 0.53 19 0.90

10 50 3.00 37 1.78 23 1.23 63 3.80

11 37 1.45 fail fail fail fail 52 2.20

12 69 3.60 170 8.36 fail fail 136 8.63

13 10 0.81 15 1.19 10 0.89 11 0.97

14 11 1.16 20 2.08 9 1.19 9 1.17

15 12 0.89 22 1.55 12 0.94 13 1.00

16 35 1.36 39 1.47 fail fail 22 0.88

17 34 1.64 18 1.08 15 0.86 22 1.61

18 20 0.84 44 1.60 19 0.83 22 0.88

19 23 1.44 18 1.20 19 1.27 22 1.40

20 26 2.10 44 3.23 19 1.45 22 1.75

21 20 1.30 43 2.58 20 1.30 22 1.60

22 23 1.48 130 7.16 20 1.48 31 2.31

23 33 1.98 104 5.80 24 1.55 73 4.36

24 63 4.09 96 6.17 fail fail 39 2.83

25 23 2.90 61 6.73 fail fail fail fail

26 48 5.40 80 8.73 25 3.10 91 9.84

27 48 6.86 43 5.36 fail fail 42 5.64

28 19 1.81 20 1.90 fail fail 27 2.53

29 12 1.36 fail fail fail fail 16 1.55

30 15 1.5 25 2.36 5 0.70 43 3.89

31 14 26.52 22 39.27 12 24.09 27 4.75

32 12 24.03 17 32.34 11 22.60 fail fail

33 19 32.52 21 34.30 5 12.75 18 31.44

34 59 3.28 84 4.58 9 0.67 68 3.63

35 12 0.80 15 0.95 7 0.58 19 1.11

36 20 1.23 213 10.98 12 0.83 17 1.10

37 59 5.23 85 7.53 9 1.06 68 6.67

38 12 1.34 15 1.75 7 0.88 19 2.06

39 16 1.69 145 13.95 11 1.27 19 2.28

40 59 100.1 96 149.8 9 18.98 70 118.6

41 17 33.60 24 42.38 8 18.56 23 42.84

42 15 30.97 253 389 10 25.55 20 37.90

43 4 0.63 5 0., 56 4 0.39 4 0.40

44 5 0.59 7 0.55 5 0.92 5 0.72

45 11 1.06 13 1.22 10 1.00 11 1.20

46 20 3.73 19 3.83 19 3.84 19 3.25

47 12 1.14 12 1.16 11 1.19 11 1.13

48 22 4.42 27 4.08 21 3.77 20 4.19

49 20 3.38 19 3.60 19 3.77 19 3.55

50 22 3.76 21 3.75 20 3.31 22 3.63

51 14 0.86 2617 134.55 13 0.88 11 0.77

52 15 1.00 1761 90.53 12 0.77 15 0.95

53 15 1.03 1546 77.97 13 0.81 15 0.95

54 21 2.09 21 2.03 9 1.03 19 2.11

(Continued on the next page)
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TABLE II: Continued

NP FRMIL FR PRP RMIL

NI CT NI CT NI CT NI CT

55 18 1.77 27 2.44 13 1.34 16 1.67

56 18 1.88 20 2.19 13 1.34 19 1.88

57 30 48.81 41 61.42 13 24.25 28 47.77

58 23 38.44 30 43.98 fail fail 26 44.56

59 34 53.00 62 95.67 12 22.44 40 59.55

60 4 0.28 4 0.28 4 0.31 3 0.28

61 8 0.52 8 0.41 fail fail 4 0.30

62 2 0.25 2 0.23 3 0.28 4 0.36

63 16 1.27 fail fail 19 1.39 17 1.28

64 19 1.47 23 1.61 14 1.14 fail fail

65 16 1.17 26 1.88 17 1.30 20 1.56

66 24 3.90 24 3.88 24 3.90 25 4.09

67 30 4.98 31 4.95 34 5.39 34 5.34

68 53 10.78 45 9.31 27 4.73 62 9.56

69 7 0.50 10 0.56 6 0.75 6 0.44

70 8 1.16 11 1.23 8 0.94 8 1.23

71 7 0.48 8 0.48 8 0.59 7 0.50

72 18 0.50 31 0.56 17 0.75 19 0.44

73 25 2.42 30 2.61 27 2.69 32 3.03

74 30 3.70 80 7.09 34 3.19 50 4.58

75 25 5.81 39 8.70 20 4.78 27 6.34

76 29 6.64 42 9.36 35 7.84 36 8.09

77 45 9.47 75 15.25 53 11.09 56 11.66

78 6 0.45 8 0.70 6 0.36 6 0.56

79 8 0.52 15 0.72 8 0.48 8 0.44

80 8 0.41 17 0.69 8 0.45 8 0.44

81 9 0.73 11 0.89 10 0.86 10 1.30

82 12 0.89 22 1.55 12 0.94 13 1.00

83 13 1.08 36 2.42 13 1.03 13 1.05

84 9 14.64 10 15.44 9 14.95 9 15.77

85 9 16.78 12 18.75 10 16.36 10 16.31

86 10 16.62 12 19.89 11 17.58 11 17.53

87 8 0.95 11 1.32 9 0.94 9 1.14

88 9 0.82 9 0.70 10 1.17 9 0.89

89 8 0.94 11 1.22 9 1.08 9 1.03

90 9 1.01 11 1.08 9 0.98 9 0.98

91 9 21.31 12 22.75 9 21.30 9 19.97

92 9 19.88 9 20.45 10 21.14 10 20.88

93 10 19.98 10 20.56 9 18.25 10 19.75

94 7 0.92 12 0.84 7 1.84 8 0.70

95 10 0.62 13 0.77 8 0.49 8 0.61

96 12 0.71 14 0.80 9 0.60 10 0.60

97 7 1.36 12 1.94 7 1.36 8 1.53

98 10 1.78 14 2.28 9 1.58 9 1.61

99 12 1.97 15 2.33 9 1.58 10 1.77

100 7 12.50 13 18.38 8 14.16 8 14.05

101 10 16.23 16 23.31 9 14.47 10 16.42

102 13 18.47 16 21.67 10 18.28 10 15.20

(Continued on the other side of this page)

TABLE II: Continued

NP FRMIL FR PRP RMIL

NI CT NI CT NI CT NI CT

103 7 0.45 10 0.50 6 0.47 6 0.50

104 8 0.44 11 0.41 8 0.38 8 0.41

105 7 0.39 8 0.41 8 0.44 7 0.39

106 8 1.45 8 1.50 7 1.50 8 1.59

107 7 1.39 6 1.38 6 1.38 6 1.45

108 6 1.31 6 1.34 7 1.52 6 1.41

109 8 11.94 9 13.56 9 17.94 8 13.80

110 7 11.42 6 10.81 7 11.42 8 12.41

111 6 10.39 6 10.61 7 11.44 6 10.92

112 12 0.78 12 0.98 6 0.55 17 0.91

113 8 0.55 8 0.83 7 0.48 9 0.60

114 7 0.50 7 0.66 7 0.48 12 0.79

115 16 2.51 16 3.05 7 1.42 21 3.17

116 19 3.19 19 3.63 7 1.41 21 2.98

117 19 16.95 19 21.88 6 14.44 22 22.05

118 20 29.94 36 42.00 10 16.05 18 24.33

119 13 20.92 13 19.97 8 14.34 15 22.64

120 11 16.95 14 21.88 8 14.44 15 22.05

121 15 0.67 31 1.36 7 0.45 26 1.05

122 8 0.45 9 0.48 6 0.39 18 0.94

123 26 4.42 35 5.72 26 4.34 26 4.41

124 27 4.47 37 6.00 26 4.44 27 4.53

125 29 4.86 32 5.31 28 4.70 31 5.17

126 26 212.5 31 248.1 28 227.4 26 229.3

127 26 208.6 31 249.6 28 240.4 26 210.5

128 29 226.3 39 313.3 31 243.0 30 243.9

To obtain an overall assessment of a method’s perfor-
mance, we aim to derive a general score. For this purpose, we
introduce the performance function ρs(τ), which is defined
as follows:

ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ},

where ρs(τ) represents the probability that method s achieves
a performance ratio rp,s within a factor of τ ∈ R compared to
the best possible ratio. In essence, it quantifies the likelihood
of method s performing well relative to the best method.
Typically, methods with higher values of ρ(τ), or those
located in the top right region of the performance profile
figure, are regarded as recommended or indicative of a
superior method.

TABLE III: The resume of experiment results

Parameter Sum of NI Sum of CPU time Success Rate

FR 14, 281 2, 944.6534 98%

PRP 1, 881 1, 396.4064 93%

RMIL 2, 750 1, 710.8595 98%

FRMIL 2, 397 1, 583.5158 100%
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Fig. 1: Performance representation curve based on the num-
ber of iterations.

Fig. 2: Performance representation curve based on the CPU
time.

Fig. 1 and Fig. 2 represent the performance of all methods
based on the number of iterations and the total CPU time
required to solve each test function. The curve of the method
with the FRMIL parameter is at the top left to right in com-
parison to the other parameters, indicating that the FRMIL
parameter outperforms the FR, PRP, and RMIL parameters.
Although the PRP method previously achieved a higher
probability value than the modified method, there are several
functions that the PRP method was unable to complete,
as shown in Table II. According to the summary result in
Table III, the modified method successfully completes all test
functions, the RMIL method completes the 98% of the test
function, and the PRP method completes the 93% of the test
function. The FR method can solve 98% of the test function,
but its high iteration count hinders its performance compared
to the other methods. Therefore, the FRMIL parameter is
more efficient than the FR, PRP, and RMIL parameters.

VI. CONCLUSION

This article introduces a modified formula for the con-
jugate gradient parameter. The parameter presented in this
paper is called the FRMIL parameter, which is obtained
by combining the FR parameter, known for its global con-
vergence, with the RMIL parameter, known for its good
performance. The FRMIL method satisfies the requirements
of sufficient descent and global convergence, especially when
used in conjunction with an exact line search. Experimental
results demonstrate that the FRMIL parameter outperforms
the FR, PRP, and RMIL parameters in terms of efficiency.
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