
 

  

 

Abstract—In this paper, an improved remora optimization 

algorithm (IROA) is proposed to solve the multi-objective 

optimal power flow problem (MOOPF). The algorithm 

introduced the crossover strategy and variance strategy in the 

differential evolutionary (DE) algorithm. The use of these two 

strategies can increase the diversity of the remora optimization 

algorithm (ROA) population and jump out of the defect of 

being trapped in a local optimum. To better solve the MOOPF, 

this paper proposed constraint prioritization strategy (CPS), 

congestion distance ranking strategy (CDRS), and optimal 

compromise solution strategy (OCSS) to acquire a uniform 

Pareto optimal set (POS) and the best trade-off solution (BTS). 

Combined with practical applications, six kinds of objective 

functions are selected, namely, basic fuel cost, active power loss, 

emission, voltage deviation, voltage stability, and fuel cost with 

valve point. The above six objective functions are arranged and 

combined to obtain the MOOPF problems with dual or triple 

objectives for solving on IEEE30-bus, IEEE57-bus, and 

IEEE118-bus systems, which are used to demonstrate the 

capability of IROA. Furthermore, three performance metrics 

Hypervolume (HV), Spacing (SP), and Generational Distance 

(GD) were applied to verify the uniformity and diversity of the 

POS. The results of the IROA algorithm are compared with 

those of the non-dominated sorting genetic algorithm Ⅱ 

(NSGA-Ⅱ) and the multi-objective particle swarm optimization 

algorithm (MOPSO), and it is obtained that the IROA 

algorithm has a better competitive advantage in solving the 

MOOPF. 

 
Index Terms—IROA, Pareto front, MOOPF, performance 

metrics 
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I. INTRODUCTION 

LECTRICAL power system is an inseparable system in 

daily life [1]. The normal life of residents, the orderly 

development of industrial production, and even the 

prosperity of the country is inseparable from the safe and 

stable economic operation of the electrical power system. At 

the same time, reliability and economy should be considered 

comprehensively in the planning and operation of power 

systems to achieve a reasonable balance of investment. The 

planning of the power system needs to be completed in time 

and optimized from all possible options. This is a nonlinear 

problem with multiple constraints, which is difficult to be 

solved by the traditional derivation method and needs to be 

solved by systematic engineering methods and advanced 

intelligent algorithms. 

In the early 1960s, the scholar derived the mathematical 

model of the single objective optimization (OPF) problem 

[2]. OPF refers to the regulation of relevant input variables 

such as generator bus voltage, reactive power compensation, 

generator active power, and the tap ratio of the transformer in 

the power system to minimize active power loss or fuel cost 

within the scope permitted by constraints [3-5]. But OPF can 

only optimize for only one problem [6, 7]. The proposal of 

MOOPF can be optimized by considering two or more 

problems, which can better adapt to the increasingly large 

power system [2, 8-11]. The goals of MOOPF optimization 

include fuel cost, active power loss, emissions, etc. [12]. 

MOOPF is a nonlinear and nonconvex problem, it is not 

possible to use the traditional mathematical model to solve it 

directly [13]. The only way to solve this problem is to use 

computer intelligence algorithms [14-18], such as genetic 

algorithm (GA) [19], differential evolution algorithm (DE) 

[20], particle swarm optimization algorithm (PSO) [21], 

whale optimization algorithm (WOA) [22] and so on. 

However, in daily production, multiple objectives are often 

optimized at the same time, which leads to conflicts between 

different objectives. Using intelligent algorithms to solve 

multi-objective problems, we can find the POS. Therefore, 

more and more scholars are committed to finding better 

intelligent algorithms to solve MOOPF. They often use 

non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) [23], 

multi-objective particle swarm optimization algorithm 

(MOPSO) [24] and multi-objective evolutionary algorithm 

based on decomposition (MODE) [25], modified sine-cosine 

algorithm [4], improved colliding bodies optimization 
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algorithm [26] , improved bat algorithm [12], firefly 

algorithm [27], hybrid firefly-bat algorithm [28], slime 

mould algorithm [29], search group algorithm [30], interior 

search algorithm [31], marine predators algorithm [32], 

manta ray foraging algorithm [33] and so on. The outcome 

indicated that the heuristic algorithm can tackle the MOOPF 

problem, but there is further room for enhancement. 

Remora Optimization Algorithm (ROA) was proposed in 

2021 by Heming Jia et al. [34], which mainly simulates the 

process of Remora attaching to hosts of different body sizes 

to complete the foraging process. The ROA algorithm is 

simple in principle and efficient in solving multi-objective 

problems. To be applied more to the MOOPF problem, we 

improved the ROA and proposed the IROA. To demonstrate 

the capability and feasibility of the presented algorithm, 

IROA tests were executed on three standard power systems 

(IEEE30-bus, IEEE57-bus, IEEE118-bus). The outcomes 

indicated that IROA has superior optimization and 

practicability. 

We will organize the remainder of the article according to 

the following structure: Part II: The math model of MOOPF 

was established and 3 settlement strategies were presented. 

Part III: This part introduces the concept, principle and 

application of ROA algorithm in MOOPF problem. Part IV: 

This part presents the experimental results and performance 

analysis of MOOPF using ROA in three standard nodes of 

power system with different numbers of nodes. Finally, Part 

V summarizes the work done in this study. 

II. MATHEMATICAL MODEL 

In practical power system operation, it is necessary to 

consider optimizing two or more objective functions at the 

same time. The multi-objective optimization problem can be 

mathematically formulated as: 

 1 2min ( ( , ), ( , ),..., ( , ))imizeY y x u y x u y x u=  (1) 

where, y1 y2 and yi represent the target functions to be 

minimized, i indicates the amount of optimization goals, and 

Y is the objective case of optimization.  

The constraints of Equation (1) are： 

 ( , ) 0, 1,2,...,jD x u j d =  (2) 

 ( , ) 0, 1,2,...,kE x u k e= =  (3) 

in (2) and (3), Dj and Ek indicate the equation constraint and 

the inequality constraint. e represents the amount of equation 

restrictions and d indicates the amount of inequality 

restrictions.  

A. Mathematical model of the objective function 

In this paper, a total of six objective functions will be 

considered, including power loss (Fpl), fuel cost (Fcost), 

emissions (Fem) and fuel cost with valve point effects (Fco-vp)., 

voltage stability (FLd) and voltage deviation (FVd). 

1) Fcost  

The objective function for the minimization of the base 

fuel cost (Fcost) is defined as shown in (4) and is expressed in 

$/h. 

 2

os

1

( )
GN

c t i i Gi i Gi

i

F a b P c P
=

= + +  (4) 

where PGi represents the generator’s active power, NG 

indicates the quantity of generators, and ai, bi, ci represent the 

generator fuel cost factors. 

2) Fpl  

The definition of the minimization of the active power loss 

(Fpl) objective function is shown in (5) and is expressed in 

MW. 

 ( )22

1

2 cos
lN

pl k i j i j ij

k

F c V V V V 
=

= + −  (5) 

where Nl is the amount of branches in the power system, δij is 

the voltage phase angle difference, Vi represents voltage 

amplitude and ck is branch conductance value. 

3) Fem 

The objective function for total exhaust emissions (Fem) is 

defined as shown in (6) and expressed in ton/h. 

 2

1

( exp( ))
GN

em i Gi i Gi i i i Gi

i

F P P P    
=

= + + +  (6) 

where, αi, βi, γi and ηi are the exhaust factors for the ith 

machine. 

4) Fco-vp  

The equation of the base fuel cost considering the valve 

point effect (Fco-vp) objective function is shown in (7) and has 

an expression of $/h. 

 2 min

cost_vp

1

( *sin( *( )) )
GN

i i Gi i Gi i i Gi Gi

i

F a b P c P d e P P
=

= + + + −  (7) 

where, di, ei is the valve point effect fuel factor and PGi
min is 

the optimum value of active power for the ith machine. 

5) FVd 

Voltage deviation (FVd) is a necessary indicator of the safe 

and stable operation of system. It can be expressed by the 

equation(8). 

 
1

| 1.0 |
PQN

Vd n

n

F V
=

= −  (8) 

in(8), FVd represents the sum of system voltage deviation. 

NPQ is the number of P-Q nodes of the system. 

6) FLd 

The voltage stability index (FLd) is used to describe the 

power quality of the power system indicators, the lower the 

voltage stability index, the smaller the voltage fluctuations. It 

is shown in equation (9). 

 
1

1
vN

i
Ld ji

i j

V
F K

V=

= −  (9) 

    
1

1 2jiK Y Y
−

= −  (10) 

where, the number of PV nodes is denoted by Nv, Vi and Vj 

representing the composite voltage of the ith PV node and 

the jth PQ node; Y1, Y2 are denoting submatrix of the 

derivative matrix of the network is determined by separating 

the parameters of PQ nodes and PV nodes. 

B. Constraints of the objective function 

The MOOPF problem has a strictly constrained minimum 

optimization. When solving the MOOPF problem, a feasible 

solution must satisfy all equation and inequality constraints. 

1) Equation constraints 

The equation constraints include the balance equations for 

active power and reactive power, expressed in (11) and(12). 

This means that the active power generated by the generator 

should be equal to the sum of the active power consumed by 

the load and the active network losses, while the reactive 

power generated by the generator should be equal to the sum 

of the reactive power consumed by the load and the reactive 
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network losses[35]. 

 Gi Di lossP P P= +  (11) 

 Gi Di lossQ Q Q= +  (12) 

where PGi is the active power emitted by the generator node, 

PDi is the active power consumed by the load node and Ploss is 

the active power loss on the transmission line, where QGi is 

the reactive power emitted by the generator node, QDi is the 

reactive power consumed by the load node and Qloss is the 

reactive power loss on the transmission line. 

2) Inequality constraints 

Inequality constraints in the MOOPF problem encompass 

restrictions on both control variables and state variables. 

a) Inequality constraints on control variables 

The control variables for the MOOPF problem contain 

PVTC = [ PG, VG, T, QC], PG represents the active power 

emitted by the generator node, VG is the generator voltage, T 

is the transformer ratio and QC is the reactive power 

compensation, each control variable requires upper and 

lower limits: 

 

min max

min max

min max

min max

G G G

G G G

C C C

P P P

V V V

T T T

Q Q Q

     
     
     
     
     
     
      
     
     
     
     
     
     
     

 (13) 

As a control variable, it changes as the independent 

variable changes and can be initialized with a range 

specification to a valid range. For out-of-bounds control 

variables, they can be adjusted after each iteration according 

to equation (14). 

 

max max

min min

,

,

i i i

i

i i i

PVTC PVTC PVTC
PVTC

PVTC PVTC PVTC

  
=  

  
 (14) 

where, PVTCi
max is the upper bounds of the control variables 

and PVTCi
min is the lower bounds of the control variables in 

group i. 

b) Inequality constraints on state variables 

The four state variables PVQS = [PG1, VL, QG, Sl] 

inequality constraints for MOOPF are shown in the following 

equation(15). 
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     

 (15) 

where PG1 is the active power at the balance node, VL is the 

voltage at the load node, QG is the reactive power from the 

generator, Sl is the apparent power of the power line. 

C. Solution strategy 

For multi-objective optimization problems, the 

optimization process can be more complex because it 

requires the simultaneous optimization of two or more 

objective problems. Different constraints must be satisfied 

simultaneously to overcome the interplay between the 

determinants of the different problems. After a series of 

optimization processes, an optimal set of solutions can 

eventually be obtained rather than a single optimal solution, 

which requires the decision maker to make trade-offs to 

obtain the most suitable solution. As a result, Pareto's 

multi-objective optimization method can be chosen to solve 

problems related to multi-objective trend optimization. 

1) Constraint Prioritization Strategy 

Any control variable that violates the inequality constraint 

during the calculation of the Newton-Raphson method may 

be adjusted as in equation (14). For state variables a 

constraint prioritization strategy will be used. When the 

independent variable is x, formula (16) is used to calculate 

the total constraint violation. 

 ( ) max( ( , ),0) vi p i

j u

svio x g s x P


=   (16) 

where, v represents the count of inequality constraints. 

The constraint prioritization strategy can be described as 

follows: Randomly select two different solutions in the 

solution set, denoted as independent variables c1 and c2, and 

calculate their constraint violation quantities Svio(c1) and 

Svio(c2). And the constraint-first Pareto dominance method 

will be introduced, as in Eq. (17) , when and only when two 

conditions hold simultaneously, c1 is said to dominate c2. 

 

 
1 2

1 2

1 2

1,2,..., : ( , ) ( , )

1,2,..., : ( , ) ( , )

i i

j j

i m f s c f s c
c c

j m f s c f s c

  


  

 (17) 

The next step is to determine the classification of 

dominance relationships, which proceeds as follows: 

If Svio(c1) = Svio(c2), when and only when the 

equations(17) are satisfied, then c1 is said to dominate c2 and 

is denoted as c1 c2. 

If Svio(c1) < Svio(c2), it can be inferred that c1 will 

dominate c2, denoted as c2 c1. 

If Svio(c1) > Svio(c2), this indicates that c2 dominates c1 

and is denoted as c2 c1. 

Finally, if c1  c2, c1 will be chosen as the Pareto most 

compromise optimal solution, if c2  c1, and c2 will be chosen 

as the Pareto most compromise optimal solution. 

2) Congestion Distance Ranking Strategy 

Congestion distance is a metric describing the degree of 

crowding between a genetic individual and its neighboring 

individuals, denoted by id. The congestion distance of a 

population is obtained by making a rectangle enclosing 

individual i, but not containing other individuals, at the same 

population level. As shown in Fig. 1. 
 

0
f1

i-1

i+1
i

id

 
Fig. 1 Congestion Distance Ranking Strategy 
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From Fig. 1, we can see that the smaller the id value, the 

more other individuals around the individual. Adding 

congestion distance comparison to the algorithm can make 

the solved Pareto frontier distribution more competitive, thus 

ensuring that the number of populations obtained is 

sufficiently diverse. 

3) Optimal compromise solution strategy 

Based on the principle of Pareto multi-objective 

optimization, a Pareto optimal solution set can be obtained 

after solving the function, but this solution set does not 

contain a completely optimal solution. Hence, the decision 

maker needs to choose the most suitable optimal compromise 

solution based on the existing solution requirements and 

constraints. To determine whether a solution is an optimal 

compromise solution, the fuzzy affiliation of this solution 

can be found using the formula(18).  

 

min

max
min max

max min

max

1,

( ) ,

0,

k k

k k
k k k k

k k

k k

if y y

y y
v i if y y y

y y

if y y

 


−
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−
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 (18) 

where, 
min

ky  is the minimum value of all solution vectors 

with respect to the objective k,
max

ky  is the maximum value of 

all solution vectors with respect to the objective k. 

In solving for the affiliation value, the normalization of a 

single solution must satisfy a function value that is equal to 

the sum of the affiliation degrees of all solutions, which can 

be expressed by the formula(19). 

 1

1 1

( )

( )

( )

M

k

k

N M

k

i k

v i

v i

v i

=

= =

=



 (19) 

In(19), M is the number of unoptimized functions. 

From the above, it can be seen that finding an optimal 

compromise is a matter of finding the option with the 

maximally non-dominant position in the set of options.  

III. PROPOSED AN IMPROVED REMORA OPTIMIZATION 

ALGORITHM 

A. Remora Optimization Algorithm 

Remora Optimization Algorithm (ROA) is a bionic, 

nature-inspired metaheuristic that simulates the process of 

remora attaching to hosts of different body sizes and thus 

completing their foraging. The ROA has now been 

mathematically simulated for kinetic patterns and kinetic 

behavior, and its validity has been examined and compared 

in parallel with ten other natural heuristics. Statistical 

analysis and comparisons indicate that ROA demonstrates 

superior application prospects and strong competitiveness 

when compared to other advanced heuristics. Therefore, it is 

considered to be applied to the multi-objective optimization 

of power system tides to obtain better tide results. 

1) Principle and process of ROA 

Remora is a carnivorous marine fish, often using suction 

cups to attach to the bottom of a boat or other large fish to 

swim far and seek food. When there is not enough food 

around to survive, remora will look for nearby hosts to attach 

to. Based on the elite idea of the sailfish optimization 

algorithm, the carp position update equation is as follows 

(20). 

 est
est

( ) ( )
( 1) ( ) ( ( ) ( ))

2

B rand
B rand

X k X k
X k X k rand X k

+
+ = −  −  (20) 

k is the number of current iterations, X denotes the individual 

after position update, Xrand denotes the randomly selected 

individual, and XBest denotes the population's best of 

individuals before the location update. The formula mainly 

uses the optimal individual guidance mechanism while 

adding random selection rules to ensure the search range of 

the search space. 

At the same time, remoras will consider whether it is 

necessary to change hosts while adsorbing on the current host. 

Therefore, the fish need to constantly make small movements 

around the host, which is the adaptive behavior of fish to 

prevent the host from being attacked and its own safety. This 

behavior can be expressed by the formula (21) 

 ( 1) ( ) ( ( ) ( ))fit preX k X k X k X k randn+ = + −   (21) 

where, Xpre is represents position of the previous generation. 

Xfit is the fitness value of the current position. 

When remora search for a suitable boat bottom or other 

large fish, they attach themselves to the body of the host for 

long voyages and search for food in order to save energy 

while being protected from enemy attacks. The position 

update in this case is as follow formulas. 

 ( 1) cos(2 )+ ( )X k Dist e X k + =    (22) 

 ( 1) 1rand a =  − +  (23) 

 1
k

a
K

 
= − + 

 
 (24) 

 ( ) ( )BestDist X k X k= −  (25) 

where Dist indicates the distance between the remora and the 

target prey, k is the current number of iterations; k is the 

number of current iterations; K is the total number of 

iterations set;  is a random number in [-1, 1], a is also a 

random number in [-2, -1]. 

When remora reach food-rich waters, they detach from 

their existing hosts and begin the process of localized search 

for food. The formula for local search is as x 

 ( 1) ( )X k X k A+ = +  (26) 

 ( ( ) ( ))BestA B X k C X k=  −   (27) 

 2B V rand V=  −  (28) 

 2(1 )
k

V
K

= −  (29) 

where, A is the move step, and its value is related to the 

current remora fish and dimension. Also, to control the host 

to remora stature ratio, the parameter C was used to map the 

remora's position. Assuming that the host volume is 1, the 

remora is a small fraction of the host volume, and in this 

paper, we assume that C is a random number of [0, 0.3]. 

B. Improved remora optimization algorithm 

In order to increase the diversity of the population and thus 

improve the search capability of the algorithm. With more 

selectivity in the population, the algorithm has a higher 

probability of finding the optimal compromise solution. 

Therefore, the crossover strategy and variation strategy of 

the Differential Evolutionary algorithm (DE) are introduced 

into the remora optimization algorithm. 

1) Variation strategy 

This process of remora feeding around the host can be 

seen as a local search process. The diversity of populations is 
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limited during local search. So, variation strategy is 

introduced at this point. Adding variation operators to the 

remora optimization algorithm will increase the population 

diversity of the algorithm and thus improve its optimization 

capability. The variation process can be given by the 

equation(30). 

( 1) ( ) ( ( ) ( )) ( ( ) ( ))bestX k X k X k X k X p X q + = + − + − (30) 

In(30), p∈[1, n], q∈[1, n], n is the number of populations; α

∈[0, 1], β∈[0, 1], which are coefficient of variation. 

2) Crossover Strategy 

The variation operator increases the search ability while 

its convergence ability also increases. But on the other hand, 

it also increases the probability that the algorithm falls into 

local optimum, at this time, the crossover operation of DE is 

introduced to increase the number of different gene 

permutations and combinations on individuals to make the 

population richer, and different individuals can be selected 

for the next calculation, so as to avoid the algorithm falling 

into local optimum. Its calculation formula is as formula 

(31). 

 
,( ) , [0,1]

( )
( ) ,

j i j r

j

j

X i rand C
X i

X k k i


= 


 (31) 

where X(i)j denotes the jth value in the ith individual, Cr is the 

crossover ratio; i, k = 1, 2, …, n; j=1, 2, …, d. 

 
TABLE I 

PSEUDO-CODE OF IROA ALGORITHM 

Assign initial values for the population size N and the maximum number of 

iterations T 

Initialize positions of the population Xi (i =1, 2, 3, …, N) 

Initialize the best solution XBest and corresponding best fitness f (XBest )  

While k < K do 

  Calculate the fitness value of each Remora 

  Check if any search agent goes beyond the search and amend it 

  Update a, , V and H 

  For each Remora indexed by i do 

      If H(i)=0 then 

        Update the position using Equation(22) 

        (Evaluate the solutions generated by the global search) 

              If caught in a local optimum 

                    Updating populations with the variation formula(30) 

                    Updating populations with the variation formula(31) 

      Else if H(i)=1 then 

        Use equation(20) to update the position 

      End if 

      Make a one-step prediction by Equation(21) 

      Compare fitness values to determine if a host change is needed 

      If the host is not being replaced, Equation(26) is used as the host 

feeding mode for Remora 

  End for 

End while 

Return XBest 

 

ROA is an algorithm in which the global search is carried 

out while the local search is carried out. After the process of 

global-local-global loop, it is able to find the optimal 

solution set better. Meanwhile the variational and crossover 

strategies of the differential evolutionary algorithm are 

added to the ROA algorithm to form an improved ROA 

algorithm. IROA algorithm is able to increase the variety of 

individuals during the global search, which makes it easier to 

find the optimal solution and improve the convergence rate. 

3) Pseudocode for IROA 

With the above search strategies and formulas, the 

pseudo-code of IROA algorithm can be written as shown in 

TABLE I. The flowchart for solving MOOPF problem using 

the IROA algorithm is displayed in Fig. 6. 

IV. SIMULATION RESULTS 

Meanwhile, in order to compare the optimization effect of 

ROA algorithm more intuitively, a total of four algorithms, 

NSGA-Ⅱ, PSO algorithm and IROA algorithm, will be used 

to simulate 11 MOOPF cases under the standard IEEE30 

node, standard IEEE57 node test system and standard 

IEEE118 node test system of power system respectively, and 

finally the simulation results obtained by the four algorithms 

will be compared and analyzed. 

A. Test Systems 

Power system standard test systems have an important role 

in the research in the field of power systems. The dataset of 

this test system provides a public research platform for 

power system planning and operation. The standard test 

system can provide the basic data for power supply and grid 

planning, operation optimization modeling and optimization 

solution methods. 
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Fig. 2 Power system of IEEE30 
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Fig. 3 Power system of IEEE57 

 

As Fig. 2, the IEEE30 node test system has 41 branches, 
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21 load nodes, 6 generators, 6 reactive power compensation 

devices and 4 transformers. Nodes 1, 2, 5, 8, 11, and 13 are 

generator nodes, also known as PV nodes; where node 1 is a 

balance node. 

As Fig. 3, IEEE57 node system, which contains 33 

dimensional autotransformers, 7 thermal power generators, 3 

reactive power compensators and 17 transformers. 1, 2, 3, 6, 

8, 9, and 12 are generator nodes, also called PV nodes; node 

1 is the balancing node; P represents the active power of all 

generators, excluding the balancing node. 
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Fig. 4 Power system of IEEE118 

 

As Fig. 4, the IEEE118 node system has 128 independent 

variables in a 128-dimensional space. The detailed data of 

the three systems can be found in [27, 37]. 

In this paper, 8 multi-objective cases will be experimented 

in the IEEE30 system including 6 bi-objective cases and 2 

tri-objective cases, 2 bi-objective cases in the IEEE57 

system, and one bi-objective case in the IEEE118 system 

with the specific objective functions shown in the TABLE II. 

It should be noted that all simulation experiments in this 

paper were conducted on MATLAB 2018b software with the 

following computer information: intel Intel(R) Core (TM) 

i5-9600k CPU @3.70GHz with 8G RAM. 
 

TABLE II 

SIMULATION CASES 

Test 

system 

Case 

No. 

FPloss FEmission Fcost FVd FLd Fco-vp 

IEEE30 1 √  √    

2  √ √    

3 √     √ 

4 √ √     

5    √ √  

6 √   √   

7 √ √ √    

8 √ √    √ 

IEEE57 9  √ √    

10 √  √    

IEEE118 11  √ √    

B. Algorithm parameter setting 

The Pareto Frontier gained for Case 1 is demonstrated in 

the Fig. 5 for 100, 200, 300, 400, and 500 iterations, 

respectively, and it can be seen that the output pareto fronts 

converge well and are uniformly distributed when the 

iterative number is 300. To save computational time, the 

iterative number was chosen to be 300. From the literatures, 

it can be seen that the population sizes selected by scholars in 

solving the MOOPF problem are all 100 [38-40]. In order to 

better compare with other literature results, the population 

number selected in this paper is also 100. 
 

 
Fig. 5 Number of different iterations of case1 

 

To be able to compare the optimization advantages of the 

IROA algorithm, two algorithms, MOPSO algorithm and 

NSGA2 algorithm, were used to do the same experiments for 

each case in this paper. The algorithms parameter setting of 

the IROA algorithm, MOPSO algorithm and NSGA2 

algorithm are shown in TABLE III. 

A. IEEE30 system simulation results 

Simulation experiments were completed on IEEE30 

system in Case 1 to Case 8. 

1) Case1: Fpl and Fcost 

Case 1 will optimize both Fpl and Fcost. To compare the 

properties of the IROA, MOPSO and NSGA2 were used to 

optimize this case. 

The acquired results of the tests are shown in TABLE IV, 

as can be seen from the table, the active power loss obtained 

by the IROA is 4.9948 MW, and the basic fuel cost is 

833.9937 $/h, both of which are better than the MOPSO and 

the NSGA2. The Pareto Front (PF) is presented in Fig. 7. It 

can be significantly deduced from the figure the IROA is able 

to gain a more competitive PF compared to the other two 

algorithms. 

2) Case2: Fcost and Fem 

In Case 2, the two objective functions of Fcost and Fem are 

optimized simultaneously. The gained experimental results 

are summarized in TABLE V. The results of this case 

demonstrate that the optimal base fuel cost obtained by the 

IROA algorithm is 831.3102 $/h and the optimal waste 

emission is 0.2468 ton/h. Compared to the other two 

algorithms, the optimization results of IROA are better. The 

PF of the three algorithms is displayed in Fig. 8. Upon 

observation, the IROA algorithm has improved capabilities 

in searching the optimal solution and the Pareto solution set 

has more selectivity. This signifies that the IROA offers a 

balance between various conflicting objectives. 

3) Case3: Fpl and Fco-vp 

Case 3 will optimize both the active power loss and the 

bi-objective function of the fuel cost considering the 

valve-electric effect. Three algorithms are used to optimize 

them separately, and the results are displayed in TABLE VI.
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branch data, emission data, etc
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Fig. 6 Flow chart for solving MOOPF problem 

 
TABLE III 

PARAMETER SETTINGS FOR THE THREE ALGORITHMS 

Algorithms Parameters Case1~Case6 Case7~Case8 Case9 

IROA Population size Np 100 100 100 

Number of iterations Kmax 300 500 500 

Crossover probability of DE Cr 0.8 0.8 0.8 

Variation probability of DE Da 0.15 0.15 0.15 

MOPSO Population size Np 100 100 - 

Number of iterations Kmax 300 500 - 

Inertia weight factor wmax/wmin 0.9/0.4 0.9/0.4 - 

Learning factor c1/c2 2/2 2/2 - 

NSGA2 Population size Np 100 100 100 

Number of iterations Kmax 300 500 500 

Mutation index/percentage 20/0.1 20/0.1 20/0.1 

Crossover index/percentage 20/0.1 20/0.1 20/0.1 

 

 
Fig. 7 The pareto front of case1 

 

 
Fig. 8 The pareto front of case2 
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TABLE IV 

THE OPTIMIZATION RESULT OF CASE1 

Control Variables (CV) IROA NSGA2 MOPSO 

PG2(MW) 53.4800 53.0193 51.2690 

PG5 32.7025 33.3277 33.1832 

PG8 35.0000 34.8352 34.5238 

PG11 27.9543 30.0000 29.9987 

PG13 21.3902 18.8920 25.5940 

VG1(p.u) 1.1000 1.09193 1.1000 

VG2 1.0916 1.07825 1.0936 

VG5 1.0667 1.05309 1.1000 

VG8 1.0787 1.05885 1.0883 

VG11 1.0975 1.09925 1.0938 

VG13 1.1000 1.09493 1.1000 

T11(p.u) 0.1018 0.0748 0.2000 

T12 0.0071 0.0872 0.0022 

T15 0.0958 0.0891 0.0741 

T36 0.0610 0.0805 0.0716 

QC10(p.u) 0.0036 0.0265 0.0500 

QC12 0.0355 0.0346 0.0000 

QC15 0.0249 0.0298 0.0137 

QC17 0.0046 0.0215 0.0424 

QC20 0.0199 0.0138 0.0500 

QC21 0.0465 0.0219 0.0500 

QC23 0.0284 0.0322 0.0500 

QC24 0.0500 0.0458 0.0435 

QC29 0.0300 0.0102 0.0026 

Ppower loss(MW) 4.9948 5.1040 4.9597 

PBasic fuel cost($/h) 833.9937 835.6152 841.6569 

 

TABLE V 

THE OPTIMIZATION RESULT OF CASE2 

CV IROA NSGA2 MOPSO MHFPA[38] 

PG2(MW) 57.0535 60.2635 59.2282 58.3160 

PG5 26.9851 28.8826 27.4519 27.1604 

PG8 35.0000 33.3634 35.0000 35.0000 

PG11 26.0819 23.9125 25.7069 25.7353 

PG13 26.6344 26.0001 26.4458 26.0175 

VG1(p.u) 1.0982 1.0414 1.1000 1.1000 

VG2 1.0879 1.0239 1.0898 1.0816 

VG5 1.0695 0.9923 1.0661 1.0545 

VG8 1.0796 1.0105 1.0786 1.0590 

VG11 1.0777 1.1000 1.05828 1.0472 

VG13 1.1000 1.0516 1.1000 1.0995 

T11(p.u) 0.0869 0.1576 0.2000 1.0675 

T12 0.0429 0.0086 0.0639 0.9024 

T15 0.1275 0.0803 0.1590 0.9902 

T36 0.0750 0.0633 0.1209 0.9792 

QC10(p.u) 0.0338 0.0453 0.0000 0.0318 

QC12 0.0477 0.0472 0.0265 0.0085 

QC15 0.0092 0.0269 0.0465 0.0023 

QC17 0.0170 0.0429 0.0500 0.0331 

QC20 0.0256 0.0105 0.0500 0.0500 

QC21 0.0201 0.0430 0.0000 0.0500 

QC23 0.0106 0.0078 0.0500 0.0500 

QC24 0.0500 0.0409 0.0000 0.0243 

QC29 0.0081 0.0211 0.0500 0.0397 

PBasic fuel cost($/h) 831.3102 833.7782 833.4271 831.6277 

PEmission(ton/h) 0.2468 0.2477 0.2450 0.2468 

 

TABLE VI shows that the optimization results obtained 

by the IROA algorithm are: the optimal active power loss is 

5.6485 MW and the optimal fuel cost with value-point is 

865.3990 $/h. IROA and the pareto frontier is shown in Fig. 

9. It can be noticed that the Pareto Front obtained after 

considering the valve point effect is significantly worse than 

that in case1 without considering the valve point effect. 

However, the IROA algorithm is still able to draw the pareto 

front with a competitive advantage over the other two 

algorithms. Meanwhile, the Pareto front solved by the IROA 

algorithm makes the distribution of case options more 

uniform. 

4) Case4: Fpl and Fem 

In Case 4, the two objective functions of Fpl and Fem will 

be optimized simultaneously, and the simulation outcomes 

obtained are demonstrated in Fig. 10. In this picture, the PF 

achieved by the IROA is significantly superior to the 

MOPSO algorithm and the NSGA2 algorithm, and the 

distribution of each selectable solution is uniform and 

smooth. At the same time, the target function's value is 

displayed in Fig. 10. It is evident that IROA has superior 

properties in locating the optimal compromise solution, and 

the optimal active power loss obtained is 2.8853 MW and the 

emission is 0.2055 ton/h. 
 

 
Fig. 9 The pareto front of case3 

 
TABLE VI 

THE OPTIMIZATION RESULT OF CASE3 

CV IROA NSGA2 MOPSO 

PG2(MW) 44.4037 39.2881 41.0319 

PG5 31.9463 32.8513 33.7751 

PG8 34.5046 35.0000 35.0000 

PG11 24.1038 27.2908 30.0000 

PG13 19.3096 19.4105 15.5671 

VG1(p.u) 1.0991 1.0758 1.1000 

VG2 1.0897 1.0633 1.0894 

VG5 1.0641 1.0361 1.0679 

VG8 1.0749 1.0523 1.0777 

VG11 1.0951 1.0947 1.1000 

VG13 1.0963 1.0963 1.1000 

T11(p.u) 0.1304 0.0371 0.2000 

T12 0.0294 0.1370 0.0000 

T15 0.1123 0.0931 0.1182 

T36 0.0880 0.0564 0.0775 

QC10(p.u) 0.0405 0.0152 0.0462 

QC12 0.0147 0.0293 0.0392 

QC15 0.0182 0.0173 0.0489 

QC17 0.0052 0.0216 0.0500 

QC20 0.0354 0.0306 0.0500 

QC21 0.0499 0.0436 0.0500 

QC23 0.0365 0.0377 0.0239 

QC24 0.0288 0.0497 0.0500 

QC29 0.0427 0.0338 0.0242 

PActive power loss(MW) 5.6485 5.7367 5.3711 

Pfuel cost with value-point ($/h) 865.3990 871.0438 873.5947 

 

5) Case5: FVd and FLd 

In Case 5, the two objective functions, FVd and FLd, will be 

solved concurrently, and the resulting results are given in Fig. 

11 and TABLE VIII. The figure demonstrates that IROA 

gains a more competitive PF contrast with other two 

algorithms. The set of Pareto solutions is evenly distributed 

and more selectable. In the TABLE VIII, the optimal 
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compromise solution for voltage stability by IROA is 0.4728, 

which is improved by 2.23% compared to NSGA2. The 

voltage deviation solved by IROA is 0.1330. In conclusion, 

the solution set and the optimal compromise solution derived 

by IROA have more competitive advantages over both 

classical algorithms. 

 

 
Fig. 10 The pareto front of case4 

 
TABLE VII 

THE OPTIMIZATION RESULT OF CASE4 

CV IROA NSGA2 MOPSO 

PG2(MW) 74.5077 74.5478 73.5975 

PG5 49.9997 49.9999 50.0000 

PG8 34.9999 34.9987 35.0000 

PG11 29.9999 29.9986 30.0000 

PG13 39.9986 39.9999 40.0000 

VG1(p.u) 1.0999 1.0882 1.1000 

VG2 1.0965 1.0831 1.1000 

VG5 1.0783 1.0628 1.1000 

VG8 1.0860 1.0693 1.0936 

VG11 1.0999 1.0999 1.1000 

VG13 1.0999 1.0999 1.1000 

T11 0.0848 0.1266 0.1774 

T12 0.0887 0.0017 0.0000 

T15 0.0864 0.0617 0.0934 

T36 0.0733 0.0554 0.0788 

QC10(p.u) 0.0497 0.0428 0.0500 

QC12 0.0498 0.0100 0.0500 

QC15 0.0402 0.0378 0.0500 

QC17 0.0500 0.0480 0.0500 

QC20 0.0434 0.0311 0.0367 

QC21 0.0499 0.0500 0.0500 

QC23 0.0298 0.0354 0.0222 

QC24 0.0500 0.0488 0.0500 

QC29 0.0215 0.0217 0.0184 

PActive power loss (MW) 2.8853 2.9398 2.9789 

PEmission(ton/h) 0.2055 0.2055 0.2053 

 

6) Case6: Fpl and FVd 

In Case 6, the two objective functions of Fpl and FVd will 

be optimized simultaneously, and the obtained simulation 

results are shown in Fig. 12 and TABLE VI. The minimum 

active power loss and minimum voltage deviation got by 

IROA are 3.0712 MW and 0.5265, which are excellent than 

the other two algorithms. Meanwhile, the PF solved by IROA 

is more widely distributed on the coordinate axes, giving 

more diverse choices to the decision maker. 

7) Case7: Fpl and Fem and Fcost 

Case 7 will optimize a triple objective function consisting 

of Fpl, Fem and Fcost. The case will be optimized with three 

algorithms simultaneously. The experimental data of the 

objective function is presented in TABLE X. 
 

 
Fig. 11 The pareto front of case5 

 

TABLE VIII 

THE OPTIMIZATION RESULT OF CASE5 

Control Variables (CV) IROA NSGA2 MOPSO 

PG2(MW) 27.3805 25.6042 41.7188 

PG5 15.0000 41.5439 32.2042 

PG8 28.3760 16.2395 35.0000 

PG11 18.1403 23.1170 13.5328 

PG13 12.2230 28.2348 22.4575 

VG1(p.u) 1.0727 1.0614 1.1000 

VG2 1.0498 1.0457 1.0649 

VG5 0.9795 0.9971 1.0239 

VG8 1.0379 1.0280 1.0530 

VG11 1.0410 1.0397 1.0816 

VG13 1.0307 1.0211 1.0026 

T11(p.u) 0.1803 0.0626 0.1527 

T12 0.0597 0.1186 0.1342 

T15 0.1386 0.1078 0.0896 

T36 0.0000 0.0001 0.0000 

QC10(p.u) 0.0397 0.0008 0.0398 

QC12 0.0468 0.0375 0.0043 

QC15 0.0211 0.0172 0.0023 

QC17 0.0399 0.0047 0.0000 

QC20 0.0312 0.0050 0.0372 

QC21 0.0302 0.0302 0.0154 

QC23 0.0276 0.0188 0.0022 

QC24 0.0006 0.0048 0.0500 

QC29 0.0230 0.0498 0.0000 

Pvoltage stability 0.4728 0.4836 0.6340 

Pvoltage deviation 0.1330 0.1334 0.1306 

 

 
Fig. 12 The pareto front of case6 
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TABLE X it is obvious that the IROA algorithm obtains 

better solutions with active power loss of 4.0964 MW; 

optimal emission of 0.2190 ton/h; and base fuel cost of 

877.2487$/h, respectively, which shows that the IROA 

algorithm performs equally well in solving the triple 

objective problem. and the pareto frontier is shown in Fig. 13. 

The figure shows that the IROA algorithm still performs well 

in the three-objective optimization problem, again 

demonstrating the better overall performance of the IROA 

algorithm. 

 
TABLE IX 

THE OPTIMIZATION RESULT OF CASE6 

CV IROA NSGA2 MOPSO 

PG2(MW) 79.9727 80.0000 80.0000 

PG5 49.9995 50.0000 50.0000 

PG8 35.0000 35.0000 35.0000 

PG11 29.9995 30.0000 30.0000 

PG13 39.9508 40.0000 40.0000 

VG1(p.u) 1.0874 1.0384 1.1000 

VG2 1.0825 1.0346 1.1000 

VG5 1.0613 1.0146 1.1000 

VG8 1.0688 1.0169 1.1000 

VG11 1.0448 1.0531 1.1000 

VG13 1.0449 1.0247 1.1000 

T11(p.u) 0.1911 0.1230 0.2000 

T12 0.0717 0.0540 0.2000 

T15 0.1677 0.1021 0.1159 

T36 0.1274 0.0785 0.1271 

QC10(p.u) 0.0402 0.0084 0.0000 

QC12 0.0020 0.0342 0.0500 

QC15 0.0281 0.0291 0.0000 

QC17 0.0396 0.0099 0.0500 

QC20 0.0203 0.0496 0.0000 

QC21 0.0281 0.0170 0.0311 

QC23 0.0396 0.0275 0.0000 

QC24 0.0489 0.0465 0.0000 

QC29 0.0284 0.0357 0.0000 

PActive power loss(MW) 3.0712 3.1370 3.4159 

Pvoltage deviation 0.5265 0.5534 0.9809 

 

 
Fig. 13 The pareto front of case7 

 

8) Case8: Fpl and Fem and Fco-vp 

Case 8 the optimization process involves simultaneous 

consideration of three objective functions: Fem, Fpl and Fco-vp, 

the results of the optimized purpose functions are obtained as 

shown in TABLE XI. As we have seen, the IROA algorithm 

still obtains a better optimal compromise solution when 

faced with a triple objective problem of higher complexity. 

Its active power loss is 4.4041 MW, the exhaust emissions is 

0.2238 ton/h, and the fuel cost considering the valve point 

effect is 938.4571 $/h. Fig. 14 shows the pareto front 

obtained after the optimization of three different algorithms. 

It is evident that the obtained PF distribution becomes less 

effective as the complexity of the objective function 

increases, but the IROA algorithm still obtains a more 

selective solution set, further validating the competitive 

nature of the algorithm. 

 
TABLE X 

THE OPTIMIZATION RESULT OF CASE7 

CV IROA NSGA2 MOPSO MOFA-PFA[39] 

PG2(MW) 63.4488 58.2342 55.7719 57.8900 

PG5 39.3339 38.3757 36.3876 36.2900 

PG8 33.9484 34.9999 35.0000 35.0000 

PG11 28.3156 29.9406 29.8740 29.2710 

PG13 32.8314 38.5710 40.0000 40.0000 

VG1(p.u) 1.0978 1.0783 1.1000 1.0985 

VG2 1.0891 1.0642 1.0955 1.0869 

VG5 1.0674 1.0454 1.0849 1.0625 

VG8 1.0707 1.0620 1.0830 1.0767 

VG11 1.0807 1.0922 1.1000 1.0857 

VG13 1.0642 1.1000 1.0696 1.0386 

T11(p.u) 0.0541 0.0931 0.2000 1.0860 

T12 0.1829 0.0071 0.0000 0.9930 

T15 0.1090 0.1066 0.0584 1.0520 

T36 0.0831 0.0554 0.1131 1.0770 

QC10(p.u) 0.0193 0.0226 0.0000 0.0140 

QC12 0.0340 0.0407 0.0000 0.0220 

QC15 0.0309 0.0086 0.0500 0.0080 

QC17 0.0089 0.0082 0.0459 0.0250 

QC20 0.0364 0.0310 0.0500 0.0390 

QC21 0.0281 0.0425 0.0373 0.0270 

QC23 0.0329 0.0193 0.0500 0.0100 

QC24 0.0260 0.0380 0.0500 0.0170 

QC29 0.0349 0.0087 0.0442 0.0500 

PPower loss(MW) 4.0964 4.0282 4.0568 4.2179 

PEmission(ton/h) 0.2190 0.2151 0.2169 0.2165 

PBasic fuel 

cost($/h) 

877.2487 883.9783 878.5838 879.9100 

 
TABLE XI 

THE OPTIMIZATION RESULT OF CASE8 

CV IROA NSGA2 MOPSO 

PG2(MW) 58.7071 72.0058 57.0749 

PG5 36.5367 35.1946 30.4608 

PG8 34.8866 34.3179 35.0000 

PG11 28.8529 30.000 30.0000 

PG13 31.9603 27.4856 40.0000 

VG1(p.u) 1.1000 1.0618 1.1000 

VG2 1.0868 1.0547 1.0923 

VG5 1.0667 1.0333 1.1000 

VG8 1.0727 1.0403 1.0823 

VG11 1.0592 1.0220 1.1000 

VG13 1.0234 1.0605 1.1000 

T11(p.u) 0.2000 0.1083 0.0837 

T12 0.1269 0.0683 0.1988 

T15 0.1996 0.1099 0.1448 

T36 0.1422 0.0875 0.0647 

QC10(p.u) 0.0197 0.0302 0.0500 

QC12 0.0368 0.0012 0.0500 

QC15 0.0420 0.0208 0.0400 

QC17 0.0157 0.0068 0.0500 

QC20 0.0031 0.0189 0.0000 

QC21 0.0212 0.0399 0.0500 

QC23 0.0232 0.0067 0.0500 

QC24 0.0500 0.0241 0.0248 

QC29 0.0128 0.0075 0.0000 

Ppower loss(MW) 4.4041 4.6056 4.6380 

PEmission(ton/h) 0.2238 0.2229 0.2220 

PFuel cost with value-point ($/h) 938.4571 943.2878 941.6254 
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Fig. 14 The pareto front of case8 

 

B. IEEE57 system simulation results 

To confirm the effectiveness of the IROA algorithm, two 

bi-objective optimization experiments were completed on 

the IEEE57 system. Due to the rise in the system node count, 

the computational speed is relatively slower and the 

convergence difficulty of the algorithm increases. The 

MOPSO algorithm, NSGA2 algorithm was selected to do the 

same experiments and used to compare the effect of ROA 

algorithm. 

 
TABLE XII 

THE OPTIMIZATION RESULT OF CASE9 

CV IROA NSGA2 MOPSO MHFPA[38] 

PG2(MW) 100.0000 99.9967 99.6800 100.0000 

PG3 84.3158 88.0121 83.4873 85.6281 

PG6 100.0000 99.6444 99.3754 99.9643 

PG8 342.7495 346.2758 346.9068 342.7870 

PG9 99.9548 99.3281 99.9737 99.6791 

PG12(p.u) 325.7776 322.4117 327.1706 327.3909 

VG1 1.0903 1.0178 1.0627 1.0296 

VG2 1.0797 1.0128 1.0487 1.0230 

VG3 1.0840 0.9983 1.0089 1.0163 

VG6 1.0836 0.9946 0.9808 1.0297 

VG8 1.0853 0.9965 0.9708 1.0330 

VG9 1.0802 0.9869 0.9766 1.0140 

VG12 1.0804 0.9851 0.9739 1.0204 

T19 0.0318 0.1086 0.0766 0.9000 

T20 0.1470 0.1381 0.0000 1.0974 

T31 0.0281 0.1175 0.1882 1.0878 

T35 0.0240 0.0851 0.1585 0.9855 

T36 0.1167 0.0519 0.0524 1.1000 

T37 0.1324 0.1093 0.0916 1.0716 

T41 0.1093 0.0878 0.0060 0.9620 

T46 0.1105 0.1403 0.1358 1.0112 

T54 0.0617 0.0157 0.0571 0.9181 

T58 0.0911 0.1030 0.0790 0.9395 

T59 0.1163 0.0214 0.0411 0.9060 

T65 0.0893 0.1011 0.0435 0.9306 

T66 0.0951 0.0178 0.0215 0.9000 

T71 0.1374 0.0021 0.0154 0.9529 

T73 0.0922 0.1047 0.0788 0.9974 

T76 0.1312 0.1064 0.0530 0.9502 

T80 0.1439 0.0532 0.1092 0.9333 

QC18(p.u) 0.0920 0.1715 0.1771 0.2106 

QC25 0.0964 0.2409 0.2417 0.1569 

QC53 0.2514 0.0756 0.1396 0.1258 

PBasic fuel 

cost($/h) 

42919.08

06 

43074.3556 43035.9109 42939.6926 

PEmission(ton/

h) 

1.3002 1.3016 1.3202 1.3033 

1) Case 9: Fcost and Fem 

Case 9 will optimize both Fcost and Fem objective functions. 

The optimization results obtained are shown in TABLE XII. 

The PF acquired by the 3 methods is depicted in Fig. 15. It 

can be obviously visualized that the IROA algorithm obtains 

a preferable compromise. The basic fuel cost is 42919.0806 

$/h, and the exhaust emission is 1.3002 ton/h. The pareto 

front distribution shows the strengths and weaknesses of the 

three algorithms, and the IROA algorithm gives a more 

uniform pareto front and a more competitive solution set. 
 

TABLE XIII 

THE OPTIMIZATION RESULT OF CASE10 

CV IROA NSGA2 MOPSO MOIBA[40] 

PG2(MW) 60.1668 45.3010 86.1457 53.4086 

PG3 68.0368 74.9928 66.27492 62.6900 

PG6 98.8846 89.3289 98.2140 89.8593 

PG8 362.5957 367.7005 349.5353 377.9932 

PG9 99.9563 99.8887 99.9977 99.9232 

PG12(p.u) 410.0000 409.9982 409.85774 410.0000 

VG1 1.0608 1.0587 1.1000 1.0536 

VG2 1.0574 1.0531 1.1000 1.0467 

VG3 1.0545 1.0501 1.1000 1.0436 

VG6 1.0689 1.0599 1.1000 1.0521 

VG8 1.0736 1.0714 1.1000 1.0613 

VG9 1.0670 1.0575 1.1000 1.0481 

VG12 1.0557 1.0495 1.1000 1.0337 

T19(p.u) 0.1748 0.1475 0.0279 1.0350 

T20 0.0622 0.1233 0.2000 0.9496 

T31 0.0599 0.0916 0.2000 0.9837 

T35 0.0568 0.0338 0.0936 1.0267 

T36 0.1345 0.0357 0.0851 1.0055 

T37 0.0572 0.0646 0.1590 1.0597 

T41 0.0661 0.0631 0.2000 0.9682 

T46 0.0264 0.0291 0.0367 0.9558 

T54 0.0434 0.1298 0.0362 0.9893 

T58 0.0901 0.0916 0.1252 0.9281 

T59 0.0833 0.0910 0.2000 0.9192 

T65 0.1020 0.1008 0.1408 0.9525 

T66 0.0556 0.0663 0.1021 0.9441 

T71 0.0683 0.0279 0.1810 0.9527 

T73 0.0792 0.0917 0.2000 0.9421 

T76 0.0797 0.0642 0.0407 1.0606 

T80 0.0674 0.0731 0.1920 0.9688 

QC18(p.u) 0.2544 0.1455 0.0955 0.2343 

QC25 0.1589 0.1119 0.1674 0.1310 

QC53 0.0921 0.1145 0.1607 0.1876 

PBasic fuel 

cost($/h) 

42178.3625 42313.6702 42242.0330 42098.7213 

PPloss/MW 10.7071 10.7751 11.6702 11.4759 

 

 
Fig. 15 The pareto front of case9 
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Fig. 16 The pareto front of case10 

 

 
Fig. 17 The pareto front of case11 

 

2) Case10: Fpl and Fcost 

In Case 10, the two target functions, Fpl and Fcost, will be 

optimized concurrently, and the optimization values 

obtained are indicated in TABLE XIII. After the 

optimization of the IROA algorithm, the value of the basic 

fuel cost is 42178.3625 $/h and the value of the active power 

loss is 10.7071 MW. In comparison with the other two 

methods, IROA has greater efficiency in finding the optimal 

compromise solution. Also, the PF acquired by the three 

algorithms is shown in Fig. 16. It becomes evident that the 

distribution of the solution set obtained by IROA is more 

global, allowing more choices for the decision maker. As 

opposed to the other two algorithms, the IROA has better 

distributivity and more uniform distribution. This is enough 

to see that the IROA algorithm has better results in finding 

the optimal solution of MOOPF. 

C. IEEE118 system simulation results 

1) Case11: Fcost and Fem 

In Case 11, both Fcost and Fem objective functions will be 

optimized simultaneously. Since the MOPSO algorithm 

cannot converge when calculated on the IEEE118 system, 

the ROA algorithm and the NSGA2 algorithm are used to 

optimize it, and the obtained 128-dimensional independent 

variable optimization results and the values of the optimal 

object function are provided in TABLE XIV. It becomes 

evident that the BTS obtained by IROA is the specific values 

of the basic fuel cost is 58753.6039 $/h and the value of the 

emissions is 2.4210 ton/h. 

Fig. 17 visually depicts the Pareto frontier produced by 

applying the two algorithms. We can clearly see that the 

computational complexity increases as the dimensionality of 

the independent variables increases, resulting in the Pareto 

front obtained by this algorithm being inferior to the IEEE30 

and IEEE57 system. However, in the figure, the difference 

between the IROA and NSGA2 algorithms can still be seen, 

and IROA still obtains a more competitive pareto front. The 

above experiments are sufficient to see that the IROA 

algorithm has a better performance in both seeking the 

optimal solution and drawing the PF. 

D. Performance Evaluation 

From the aforesaid test outcomes, it can be concluded that 

the IROA algorithm can acquire a more superior optimal 

compromise and pareto fronts compared to the MOPSO 

algorithm and NSGA-Ⅱ algorithm. In order to compare the 

advantages of ROA algorithm more intuitively, three 

performance metrics include Hypervolume (HV), Spacing 

(SP), and Generational Distance (GD), which are selected in 

this paper to evaluate the diversity, uniformity of pareto 

solution set, and convergence of algorithms, respectively. 

 

In this paper, the HV, SP, and GD metrics are calculated 

for these six cases based on the Pareto solution sets obtained 

from three algorithms, IROA, MOPSO, and NSGA-II, on the 

IEEE30 system with four dual-objectives and two 

triple-objectives. It is worth stating that for each algorithm, 

for each case, 20 independent iterations were performed, 

with 300 iterations for each experiment. 

1) HV 

The HV index was proposed by Zitzler et al [43]. It is 

applied to weigh the volume of a target space in which there 

exists at least one space occupied by a non-occupying 

collection of solutions. HV index is a good measure of the 

diversity and convergence of the algorithm. A higher HV 

index signifies that the solution set exhibits enhanced 

convergence and diversity, thereby approaching the true 

Pareto frontier. As a result, it represents a superior collection 

of non-dominated solutions. It is calculated as (32) 

 
1

( )

S

i

i

HV v
=

=  (32) 

where,  denotes the Lebesgue measure, used for volume 

measurement; S represents the count of non-dominated 

solution sets, and vi represents the hypervolume consisting of 

the reference point and the ith solution within the solution 

set.  

2) SP 

SP refers to the quantified smallest standard deviation of 

the distance between every single solver and other solvers. A 

smaller SP value indicates a more homogeneous set of Pareto 

solutions. 

 2

1

1
( )

1

P

i

i

SP d d
P =

= −
−

  (33) 

where, P denotes the entire pareto front; di denotes the ith 

solution in the solution set; and d
一

 denotes the mean value of  
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TABLE XIV 

THE OPTIMIZATION RESULT OF CASE11 

CV IROA NSGA2 Control variables IROA NSGA2 

PG4(MW) 5.0000 10.6402 VG26 0.9868 0.9924 

PG6 6.6419 16.5024 VG27 0.9423 0.9338 

PG8 6.2206 6.2025 VG31 1.0199 1.0100 

PG10 249.6831 254.5999 VG32 0.9811 1.0186 

PG12 276.4132 207.1168 VG34 0.9833 0.9965 

PG15 10.8777 13.1936 VG36 0.9896 0.9995 

PG18 53.3815 67.7711 VG40 1.0485 1.0388 

PG19 5.8105 6.7298 VG42 1.0630 1.0626 

PG24 5.0000 10.5524 VG46 1.0534 1.0430 

PG25 100.0000 100.0000 VG49 0.9960 1.0269 

PG26 102.9708 101.0980 VG54 0.9955 1.0495 

PG27 8.6017 8.7462 VG55 0.9915 1.0344 

PG31 10.3170 10.1454 VG56 1.0270 1.04370 

PG32 54.1897 43.5886 VG59 1.0554 1.0032 

PG34 8.7623 8.1147 VG61 1.0473 1.0224 

PG36 25.0000 25.4320 VG62 1.0199 0.9916 

PG40 8.7920 8.0573 VG65 1.0579 1.0010 

PG42 9.4605 8.0003 VG66 1.0562 1.0416 

PG46 56.1314 75.8906 VG69 1.0118 1.0663 

PG49 250.0000 247.0330 VG70 1.0430 0.9552 

PG54 152.9166 76.6452 VG72 1.0043 1.0293 

PG55 25.0000 38.9495 VG73 0.9965 1.0302 

PG56 27.7466 25.7784 VG74 0.9934 1.0029 

PG59 57.1411 132.8590 VG76 1.0119 1.0550 

PG61 200.0000 193.5529 VG77 1.0154 1.0772 

PG62 25.0000 30.8124 VG80 1.0047 1.0040 

PG65 420.0000 341.4283 VG85 1.0038 0.9663 

PG66 241.6464 303.6128 VG87 0.9733 0.9769 

PG69 30.2945 49.7666 VG89 1.0303 1.0494 

PG70 10.0000 14.0931 VG90 0.9794 1.0155 

PG72 5.0000 5.8220 VG91 1.0262 1.0252 

PG73 5.0025 5.6324 VG92 1.0318 1.0776 

PG74 39.4420 29.4916 VG99 1.0242 1.0546 

PG76 31.1341 25.0343 VG100 1.0307 1.0583 

PG77 176.0161 197.4512 VG103 1.0330 1.0171 

PG80 25.0000 35.5182 VG104 1.0428 0.9814 

PG85 10.0000 10.0000 VG105 1.0246 0.9884 

PG87 184.3840 140.4687 VG107 1.0106 1.0475 

PG89 118.9866 71.8654 VG110 1.0208 1.0099 

PG90 8.0000 9.7378 VG111 1.0421 1.0223 

PG91 20.9944 23.0993 VG112 1.0080 1.0083 

PG92 179.1091 101.1477 VG113 1.0012 1.0144 

PG99 116.7986 144.6727 VG116 1.0017 0.9880 

PG100 132.2775 207.6204 T54(p.u) 0.0460 0.0355 

PG103 8.0000 8.2211 T58 0.0763 0.1039 

PG104 31.0139 25.0519 T59 0.0829 0.0741 

PG105 26.9262 49.8663 T65 0.0739 0.1004 

PG107 9.1367 17.6540 T66 0.0730 0.0171 

PG110 25.6514 25.1645 T71 0.0576 0.0774 

PG111 31.9422 54.5549 T73 0.0290 0.1993 

PG112 32.4938 42.7042 T76 0.0352 0.0621 

PG113 40.0202 41.0419 T80 0.0346 0.1161 

PG116 31.7032 30.9885 QC18(p.u) 0.01717 0.2155 

VG1(p.u) 1.0470 1.0270 QC25 0.0249 0.1680 

VG4 1.07020 1.0445 QC53 0.2344 0.0369 

VG6 1.0115 0.9604 QC18 0.1856 0.1465 

VG8 0.9857 1.0265 QC18 0.1108 0.0117 

VG10 1.0364 1.0221 QC25 0.2176 0.1739 

VG12 0.9856 1.0230 QC53 0.0382 0.1758 

VG15 0.9812 1.0173 QC18 0.2446 0.0932 

VG18 0.9711 1.0055 QC18 0.1476 0.2951 

VG19 1.0428 0.9733 QC25 0.1636 0.1581 

VG24 1.0548 1.0577 QC53 0.2528 0.0267 

VG25 0.9895 0.9988 QC18 0.2290 0.1737 

   PBasic fuel cost($/h) 58753.6039 59879.6818 

   PEmission(ton/h) 2.4210 2.6056 

all di. It is worth noting that the SP index only measures the 

uniformity of the solution set without considering its 

extensiveness. When SP = 0, it signifies that there exists 

equidistance between the solutions of this solution set. 

3) GD 

GD denotes the smallest mean separation of each point in 

the solved subset from the true solution set, and a lower value 

of GD means better convergence. GD index can be expressed 

by the formula (34). 
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where P represents the collection of solutions found by the 

method, P* is a set of homogeneously spaced points of 

reference suspended from the PF sampling; dis (x, y) denotes 

the Euclidean distance between point y in the solution set P 

and point x in the reference set P*. 

4) Results of performance indicators 

It is worth mentioning that box plots are made for the 

analysis of HV, SP and GD indexes in this paper. A box plot 

is a statistical chart used to show the dispersion of the data. It 

shows the maximum value, minimum value, median and two 

quartiles of the obtained optimal solution set, which can 

visualize the distribution of a set of data. 

 

TABLE XV 

DETAILED DATA OF THE BOXES 

Index Cases 
IROA MOPSO NSGA2 

Mean Deviation Mean Deviation Mean Deviation 

SP 

Case 1 0.9176 0.1902 1.1537 1.4558 0.8831 0.0950 

Case 2 0.8583 0.0687 1.7496 2.9594 0.8381 0.0525 

Case 3 0.9507 0.0534 1.6335 3.4559 1.0234 0.0860 

Case 4 0.0012 0.0004 0.0020 0.0076 0.0001 0.0007 

Case 7 1.1171 0.0905 1.4984 3.1001 1.0958 0. 0995 

Case 8 0.0190 0.0094 0.1050 0.1249 0.0070 0.0015 

HV 

Case 1 896.2558 21.6534 526.2380 276.9425 869.2816 29.2753 

Case 2 21.1400 0.3522 11.8351 7.5588 24.1643 0.2930 

Case 3 1244.8415 12.6642 693.0386 469.3449 1210.4582 33.7775 

Case 4 0.0013 0.0001 0.0003 0.0003 0.0012 0.0003 

Case 7 0.5798 0.0109 0.9168 0.2225 0.5837 0.0234 

Case 8 11.8264 0.6690 8.6911 2.1880 11.8753 0.1298 

GD 

Case 1 0.0675 0.0157 0.0797 0.0196 0.2497 0.1018 

Case 2 0.0642 0.0150 0.3380 0.2235 0.0644 0.0149 

Case 3 0.0731 0.0169 0.0930 0.0224 0.0821 0.0295 

Case 4 0.0056 0.0022 0.0210 0.0165 0.0156 0.0135 

Case 7 0.0737 0.0172 0.2545 0.2534 0.0888 0.0212 

Case 8 0.0197 0.0077 0.0330 0.0166 0.0320 0.0108 

 

TABLE XVI 

AVERAGE OPTIMIZATION TIME 

Algorithms 
Average optimization time (second) 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 

IROA 141.689 136.704 141.053 149.195 139.207 140.193 152.198 149.990 345.303 339.225 1084.825 

NSGA2 147.961 141.384 148.511 158.723 153.680 139.574 161.535 153.670 354.888 353.493 1235.293 

MOPSO 156.294 151.089 161.137 166.990 239.120 144.496 166.524 155.970 362.650 366.825 - 

 

Case1                                                                        Case2                                                                          Case3 

 
 

                                     Case4                                                                        Case7                                                                       Case8 

 
Fig. 18 Plot box of HV 
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                                      Case4                                                                      Case7                                                                        Case8 

 
Fig. 19 Plot box of SP 

 

                                     Case1                                                                        Case2                                                                       Case3 

 
 

                                      Case4                                                                      Case7                                                                        Case8 

 
Fig. 20 Plot box of GD 

 

In Fig. 18, the box plot of HV index of case1-case4 and 

case7-case8 is shown. Each vignette contains three different 

algorithms, which are IROA, MOPSO, and NSGA2 

algorithms. It is obvious to see that from case1-case4, the 

convergence and diversity of the IROA algorithm perform 

optimally compared to the MOPSO algorithm and the 

NSGA-Ⅱ algorithm. In case7 and case8, the performance is 

worse, but it can be seen that the IROA algorithm has 

stability in every calculation compared to the MOPSO 

algorithm, and 20 independent repetitions of the experiment 

are able to obtain similar optimal solution sets. 

In Fig. 19, the box plot of SP index of case1-case4 and 

case7-case8 is shown. From the figure, it is clear that the 

IROA algorithm obtains more uniform solution sets than 

MOPSO algorithm and NSGA-Ⅱ algorithm in computing 

case1, case2, case3, case7 and case8. And the solution sets 

obtained by the IROA algorithm are stable for each 

experiment, unlike the MOPSO algorithm, where the 

calculation results are extremely unstable with large gaps. 

In Fig. 20, the box plot of GD index of case1-case4 and 

case7-case8 is shown. The convergence of the three 

algorithms is clearly illustrated in the figure. The value of 
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DG closer to 0, it can be determined that the convergence 

value of the algorithm is better. According all the cases, the 

convergence of the solution set obtained by the IROA 

algorithm is better than that of the other two algorithms. Also, 

by comparing the lengths of the square boxes, it can be seen 

that the stability of the IROA algorithm is better than that of 

the MOPSO algorithm and the NSGA-Ⅱ algorithm.  

At the same time,  

TABLE XV reveals the assessment results in detail for SP, 

HV and GD. In summary, the results of 20 independent 

replications demonstrate that the convergence, extensiveness, 

and uniformity of solution set distribution of the IROA 

algorithm in solving the MOOPF problem are better than 

those of the MOPSO and NSGA-Ⅱ algorithms. 

E. Algorithm Complexity 

In practical engineering problems, power system 

scheduling departments tend to take the least amount of time 

to make decisions. In this paper, the time complexity is 

chosen to evaluate how fast each algorithm gets the results. 

The TABLE XVI shows the time required to solve case 1-11 

for three algorithms (IROA algorithm, MOPSO algorithm 

and NSGA2 algorithm), each containing 20 independent 

repetitions of the experiment. It can be concluded that the 

IROA algorithm has a faster search speed compared to 

MOPSO and NSGA2, efficiency of the IROA algorithm is 

further validated. 

V. CONCLUSION 

In this paper, an IROA algorithm proposed for nonlinear 

nonconvex MOOPF Problems by using crossover strategy 

and mutation strategy in DE algorithm. The introduction of 

these two strategies makes the population of IROA more 

diverse and avoids the algorithm falling into local optimum. 

Three Strategies, CPS, CDRS and OCSS, are proposed to 

obtain POS in IROA. The POS distribution is uniform and 

can satisfy all the constraints of MOOPF. The solution ability 

of IROA is tested on IEEE30-bus, IEEE57-bus and 

IEEE118-bus standard systems. Six objective functions of 

Fpl, Fcost, Fem, Fco-vp, FLd, FVd are selected, and the 

multi-objective problem composed of these four objective 

functions is solved. The experimental results verify the 

superiority and generality of IROA algorithm. HV, SP and 

GD are used to evaluate the uniformity, diversity and 

proximity of POS distribution obtained by IROA algorithm. 

It is proved that IROA is better than NSGA-Ⅱ and MOPSO, 

not only the POS is more uniform, but also the BTS is better. 

Therefore, the IROA algorithm proposed in this paper has a 

better competitive advantage in solving MOOPF problem, 

and can effectively solve the actual power system MOOPF 

problem. 
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